
Outline DL MT-OWL AROWL

Understanding: DL and Automated Reasoning with OWL
Semantic Web (CSC751)

Ubbo Visser

Department of Computer Science
University of Miami

October 24, 2023

Outline DL MT-OWL AROWL

Outline

Description logic

Model-theoretic semantics of OWL

Automated reasoning with OWL

Outline DL MT-OWL AROWL

Description logic

It is identified as the decidable fragment of first-order predicate logic, with favorable
tradeoffs between expressivity, scalability, and computational complexity.

DLs are decidable and there are efficient algorithms for reasoning with them available.

Main purpose: entail implicit knowledge from logic-based semantics.

During this lecture we learn:

Direct model-theoretic semantics.
Semantics using a translation into first-order predicate logic.
Tableaux algorithm for ALC.
Tableaux algorithm for SHIQ, and
Computational complexities.

Outline DL MT-OWL AROWL

ALC
ALC stands for Attribute Language with Complement.

Basic building blocks of ALC: classes, roles, and individuals. Individuals put into
relationships with each other.

Expression: Professor(ubboVisser) ⇝ ubboVisser belongs to class Professor .
Expression: hasAffiliation(ubboVisser , universityOfMiami) ⇝ hasAffiliation abstract role
describes that UbboVisser is affiliated with UniversityOfMiami .
Expression: Professor ⊑ FacultyMember ⇝ Professor is a subclass of the class
FacultyMember .
Expression: Professor ≡ Prof ⇝ Professor is equivalent to the class Prof .
Complex class relationships are constructed using conjunction {⊓, owl:intersectionOf},
disjunction {⊔, owl:unionOf}, and negation {¬, owl:complementOf}. These constructors
can be nested arbitrarily.
Professor ⊑ (Person ⊓ FacultyMember) ⊔ (Person ⊓ ¬PhdStudent).

Outline DL MT-OWL AROWL

ALC
Basic building blocks of ALC:

Complex classes can also be described using quantifiers, which corresponds to role
restrictions in OWL. Let R be a role and C a class, then {∀R.C , owl:allValuesFrom} and
{∃R.C , owl:someValuesFrom} are class expressions. E.g., Exam ⊑ ∀hasExaminer .Professor
⇝ all examiners of an exam must be professors, and
Exam ⊑ ∃hasExaminer .Professor ⇝ must have at least one examiner who is a professor.
Quantifiers can be nested arbitrarily.

⊥ ≡ owl:Nothing; ⊥ ≡ C ⊓ ¬C for some arbitrary class C.

⊤ ≡ owl:Thing; ⊤ ≡ C ⊔ ¬C for some arbitrary class C.

⊤ ≡ ¬⊥.

owl:disjointWith; C ⊓ D ⊑ ⊥ ≡ C ⊑ ¬D for two classes C and D.

rdfs:range; ⊤ ⊑ ∀R .C states that C is the range of role R, and

rdfs:domain; ∃R .⊤ ⊑ C states that C is the domain of role R.

Outline DL MT-OWL AROWL

ALC
Let A be an atomic class (a class name), and let R be an abstract role (extension is
direct for concrete roles). Let C ,D be class expressions, which will be constructed using
following rule,
C ,D ::= A | ⊤ | ⊥ | ¬C | C ⊓ D | C ⊔ D | ∀R .C | ∃R .C .

Terminological knowledge (T-Box) axioms (formula):

Contains statements of the form C ≡ D or C ⊑ D, where C and D are class expressions.
Axioms of the form C ⊑ D are called General Class Inclusion (GCI) axioms.

Assertional knowledge (A-Box) axioms (formula):

If C is a class expression, R be a role, and a, b are individuals, then A-Box contains
statements of the form C(a), and R(a, b)

ALC KB ≡ ALC T-Box plus ALC A-Box.

Outline DL MT-OWL AROWL

ALC to SHOIN (D)

We extend ALC to SHION (D), i.e., ALC ⊆ SHOIN (D).

Letters behind these names are systematic: they describe the language constructs allowed
in DL.

S stands for ALC plus role transitivity,
H stands for role hierarchies, i.e., role inclusion axioms,
O stands for nominals, i.e., for closed classes with one element,
I stands for inverse roles,
N stands for cardinality restrictions,
D stands for datatypes,
F stands for role functionality,
Q stands for qualified cardinality restrictions,
R stands for generalized role inclusion axioms, and
E stands for existential role restrictions.

Outline DL MT-OWL AROWL

SHOIN (D)

owl:oneOf: this represents closed classes (a.k.a. union of nominals) that contains exactly
{a1, . . . , an} ≡ {a1} ⊓ . . . ⊓ {an} ⊑ ⊥ individuals.

owl:minCardinality, owl:maxCardinality, and owl:cardinality: ≥ nR , ≤ nR , and = nR .
These are part of unqualified cardinality restrictions.

Individual relationships for equivalence {a} ≡ {b}, and disjointness {a} ⊓ {b} ⊑ ⊥.

Role inclusion axioms: R ⊑ S , and equivalence: R ≡ S .

Inverse roles: S ≡ R− states that S is the inverse of R .

Transitivity: Tra(R), and symmetry: R as R ≡ R−.

Functionality: ⊤ ⊑≤ 1R , and inverse functionality: ⊤ ⊑≤ 1R−.

Datatypes.

Role functionality and inverse functionality are implemented using cardinality restrictions.
Thus, SHOINF(D) is implicit in SHOIN (D).

Outline DL MT-OWL AROWL

SHOIN (D) to SHOIQ(D)

Qualified cardinality restrictions: ≥n R .C , and ≤n R .C . This extends SHOIN (D) to
SHOIQ(D)

SHOIQ(D) to SROIQ(D)

Generalized role inclusion: R1 ◦ . . . ◦ Rn ⊑ R says that the concatenation of R1, . . . ,Rn

is a subrole of R .

OWL description logic variants

OWL 1 Full: is not a description logic.

OWL 1 DL: SHOIN (D).

OWL 1 Lite: SHIF(D).

OWL 2 Full: is not a description logic.

OWL 2 DL: SROIQ(D).

OWL 2 EL: EL++.

OWL 2 QL: DL-Lite.

Outline DL MT-OWL AROWL

SROIQ(D)

SROIQ(D) has a T-Box for terminological knowledge, A-Box for assertional knowledge,
and an R-Box for roles.

Let R be a set of atomic roles that represents R-Box, i.e., R contains all role names, all
inverse role names ({R−,R}), and the universal (abstract/concrete) role U. U is like
⊤ for roles, that is the superrole of all roles and inverse roles. U relates all possible pairs
of individuals.

Outline DL MT-OWL AROWL

SROIQ(D)

Generalized role inclusion axiom: a statement of the form S1 ◦ . . . ◦ Sn ⊑ R .

A set of generalized role inclusion axioms form a generalized role hierarchy.

Generalized role hierarchy is regular if there exists a strict partial order ≺
(∀x , y ∈ X : x < y iff x ≤ y and x ∕= y) on R such that:

S ≺ R iff S− ≺ R.
Every role inclusion axioms is one of the forms:
R ◦ R ⊑ R, R− ⊑ R, S1 ◦ . . . Sn ⊑ R,
R ◦ S1 ◦ . . . Sn ⊑ R, S1 ◦ . . . Sn ◦ R ⊑ R
s.t. R is non-inverse role name, and Si ≺ R for i = 1, . . . , n.
This restriction eliminates cycles in generalized role hierarchies and provides decidability
guarantees for SROIQ(D).
e.g.,
hasParent ◦ hasHusband ⊑ hasFather , and hasFather ⊑ hasParent enforces
hasParent ≺ hasFather and hasFather ≺ hasParent, and the role hierarchy is not regular,
because S ≺ R must be strict.

Outline DL MT-OWL AROWL

SROIQ(D)

Thus, regular role hierarchies must avoid equivalence. Role equivalence introduces
synonyms. But in practice, synonyms are internally replaced by another symbol.

Simple roles guarantees decidability. It is defined as follows:

{R,R−} does not occur on the right-hand side, then it is simple.
Inverse of a simple role is simple.
If R occurs only on the right-hand side of a role inclusion axiom, S ⊑ R with S simple, then
R is simple.
R does not occur on the right-hand side of a role inclusion axiom containing concatenation ◦.
e.g., {R ⊑ R1; R1 ◦ R2 ⊑ R3; R3 ⊑ R4}
then, the simple roles of the role hierarchy is {R,R−,R1,R

−
1 ,R2,R

−
2 }.

SROIQ(D) expresses {Tran(R),R ◦ R ⊑ R}, {Sym(R),R− ⊑ R}, Asy(R), Ref (R), and
Dis(S ,R). These axioms are decidable iff they include simple roles (a.k.a. role
characteristics).

Therefore, SROIQ(D) R-Box is the union of role characteristics
and a role hierarchy, and it is regular if its role hierarchy is regular.

Outline DL MT-OWL AROWL

SROIQ(D) KB

Given a regular R-Box set R, then the class expression set C is defined as:

Every class name is a class expression.
⊤ and ⊥ are class expressions.
If C ,D are class expressions, R, S ∈ R and S is simple, a, a1, . . . , an are individuals, and n is
a non-negative integer, then the following are class expressions:
¬C , C ⊓ D, C ⊔ D, {a}, {a1, . . . , an}, ∀R.C , ∃R.C , ∃S .Self ,
≤ nR.C , ≥ nR.C .
T-Box: a set of class inclusion axioms C ⊑ D and C ≡ D, where C and D are class
expressions.
A-Box: a set of individual assignments C(a), R(a, b), or ¬R(a, b), where C ∈ C, R ∈ R
and a and b are individuals.

SROIQ(D) KB ≡ union or regular SROIQ(D) R-Box R SROIQ(D) T-Box and
SROIQ(D) A-Box for R.

Outline DL MT-OWL AROWL

Model-theoretic semantics of OWL

Individual names Class names Roles names

Outline DL MT-OWL AROWL

Interpreting individuals, classes, and roles

First we fix the symbols of the vocabulary V through:

a set I of symbols for individuals,
a set C of symbols for class names, and
a set R of symbols for roles.

Ignoring punning, the sets I, C, and R must be mutually disjoint.

There exist a domain of interpretation ∆ with a set of entities (resources, individuals or
single objects).

Then we provide an interpretation for individuals, class names, and roles by means of the
functions:

II : I → ∆, which maps individuals to elements of the domain,
IC : C → 2∆, which maps class names to subsets of the domain (the class extension), and
IR : R → 2∆×∆, which maps roles to binary relations of the domain, i.e., a set of pairs of
elements (the property extension).

∆ is arbitrary and the implementation of functions II , IC , and IR has a lot of freedom.

Outline DL MT-OWL AROWL

E.g., (1)

Professor ⊑ FacultyMember

Professor(ubboVisser)

hasAffiliation(ubboVisser , uofm)

Let,

∆ = {♣,♠,♥}
II (ubboVisser) = ♥

II (uofm) = ♠
IC (Professor) = {♣}

IC (FacultyMember) = {♣,♠}
IR(hasAffiliation) = {(♣,♠), (♠,♥)}

These settings are nonsense, yet, they provide a valid interpretation.

Outline DL MT-OWL AROWL

A word on interpretation

We mentioned that the mapping is nonsense.

The choice of the names in the elements in ∆. In logic, we abstract from these symbols.
i.e., we can rename things in ∆ without compromising logical meaning.
Whether the interpretation faithfully captures the relations between entities as stated in the
knowledge base. II (ubboVisser) ∕∈ IC (Professor), and
(II (ubboVisser), II (uofm)) ∕∈ IR(hasAffiliation) although the knowledge base states that it
should, i.e., whether the interpretation captures the structure of the knowledge base.

Interpretations that do make sense for a knowledge base are models of that knowledge
base.

Outline DL MT-OWL AROWL

Complex class and role expressions

How do we provide an interpretation for complex classes and role expressions?

We define an interpretation function .I , which lifts the interpretation of individuals,
class names, and roles names to complex classes and role expressions.

An interpretation for a given SROIQ knowledge base consists of a domain ∆ and an
interpretation function .I which satisfy the constraints given in the next slide.

There are many degrees of freedom for choosing ∆, II , IC , and IR . As we have shown in
the above example, the interpretations may not intuitively meaningful.

Outline DL MT-OWL AROWL

⊤I = ∆ and ⊥I = ∅ -

(¬C)I = ∆\CI ¬C describes things which are not in C

(C ⊓ D)I = CI ∩ DI C ⊓ D describes things which are both in C and
in D

(C ⊔ D)I = CI ∪ DI C ⊓D describes things which are both in C or in
D

(∃R.C)I = {x | there is some
y with (x , y) ∈ RI ∩y ∈ CI}

∃R.C describes those things which are connected
via R with something in C

(∀R.C)I = {x | for all y with
(x , y) ∈ RI ⇒ y ∈ CI}

∀R.C describes those things x for which every y
which connects from x via role R is in the class
C

(≤ nR.C)I = {x |#{(x , y) ∈
RI | y ∈ CI} ≤ n}

≤ nR.C describes those things which are con-
nected via R to at most n things in C

(≥ nR.C)I = {x |#{(x , y) ∈
RI | y ∈ CI} ≥ n}

≥ nR.C describes those things which are con-
nected via R to at least n things in C

{a}I = {aI} {a} describes the class containing only a

(∃S .Self)I = {x | (x , x) ∈
SI}

∃S .Self describes those things which are con-
nected to themselves via S

(R−)I = {(b, a) | (a, b) ∈
RI}

for all R ∈ R

UI = ∆×∆ for the universal role U

Outline DL MT-OWL AROWL

Interpreting axioms

Models capture the structure of the knowledge base. This is done by providing a faithful
representation of the axioms in terms of sets.

Models of a knowledge base are interpretations that satisfy additional constraints that
are determined by the axioms of the knowledge base.

An interpretation I of a SROIQ knowledge base K is a model
of K , I |= K, if the model holds the following additional con-
straints: 10.8

If C(a) ∈ K , then aI ∈ CI .

If R(a, b) ∈ K , then (aI , bI) ∈ RI .

If ¬R(a, b) ∈ K , then (aI , bI) ∕∈ RI .

If C ⊑ D ∈ K , then CI ⊆ DI .

If S ⊑ R ∈ K , then SI ⊆ RI .

If S1 ◦ . . . ◦ Sn ⊑ R ∈ K , then {(a1, an+1) ∈ ∆×∆ | there are
a1, . . . , an ∈ ∆ such that (ai , ai+1) ∈ SI

i for all
i = 1, . . . , n} ∈ RI .

If Ref (R) ∈ K , then {(x , x) | x ∈ ∆} ∈ RI .

If Asy(R) ∈ K , then (x , y) ∕∈ RI whenever (y , x) ∈ RI .

If Dis(R, S) ∈ K , then RI ∩ SI = ∅.

Outline DL MT-OWL AROWL

Revisit e.g., (1)

Based on the definition for the model in the previous slide, we see that the interpretation
in e.g., (1) is NOT a model for that knowledge base. In order for that interpretation to be
a model, it needs to include (ubboVisserI , uofmI) ∈ hasAffiliationI , i.e.,
IR(hasAffiliation) = {(♣,♠), (♠,♥), (♥,♠)}.
Another model for e.g., (1):

∆ = {α,β, γ}
II (ubboVisser) = β

II (uofm) = α

IC (Professor) = {β}
IC (FacultyMember) = {β, γ}

IR(hasAffiliation) = {(β,α)}

How many models exists for a knowledge base?

Outline DL MT-OWL AROWL

Logical consequence

.I Model1 Model2 Model3
∆ {α,β, γ} {1, 2} {♣}
II (ubboVisser) β 1 ♣
II (uofm) α 2 ♣
IC (Professor) {β} {1} {♣}
IC (FacultyMember) {α,β, γ} {1, 2} {♣}
IR(hasAffiliation) {(β,α)} {(1, 1), (1, 2)} {(♣,♣)}

How do we find logical consequences, i.e., implicit knowledge of a knowledge base, from
models? We have to consider all the models.

A model provides a possible view or realization of the knowledge base.

Each model captures the structure of the knowledge base.

A model could contain additional relations which are not intended.

From all models, there are things that are common among each model and they provide
the logical consequence of the knowledge base.

Outline DL MT-OWL AROWL

Logical consequence

Let K be a SROIQ knowledge base and α be a general inclusion
axiom or an individual assignment. Then α is logical consequence
of K , K |= α, if αI holds in every model I of K . i.e.,

K |= C ⊑ D iff (C ⊑ D)I for all I |= K iff CI ⊆ DI for all
I |= K

K |= C(a) iff (C(a))I for all I |= K iff aI ∈ CI for all I |=
K

K |= R(a, b) iff (R(a, b))I for all I |= K iff (aI , bI) ∈ RI for
all I |= K

K |= ¬R(a, b) iff (¬R(a, b))I for all I |= K iff (aI , bI) ∕∈ RI for
all I |= K

Outline DL MT-OWL AROWL

E.g., (2)

Lets formally show that K ∕|= FacultyMember(uofm). (NOT a logical consequence).

This is done by giving a model M for the knowledge base where
uofmM ∕∈ FacultyMemberM.

∆ = {♠,♣}
II (ubboVisser) = ♣

II (uofm) = ♠
IC (Professor) = {♣}

IC (FacultyMember) = {♣}
IR(hasAffiliation) = {(♣,♠)}

Outline DL MT-OWL AROWL

Useful notations for algorithms

A knowledge base is satisfiable or consistent if it has at least one model.

A knowledge base unsatisfiable, or contradictory, or inconsistent if it is not satisfiable.

A class expression C is satisfiable if there is a model I of the knowledge base s.t CI ∕= ∅.
A class expression C is unsatisfiable if CI = ∅. This usually points to modeling errors. It
also provides provision to build scalable reasoning algorithms. E.g.,

Unicorn(beauty) (1)

Unicorn ⊑ Fictitious (2)

Unicorn ⊑ Animal (3)

Fictitious ⊓ Animal ⊑ ⊥ (4)

The knowledge base is inconsistent because (4) contradicts (1). If we remove (1), the knowledge
base is consistent, but, Unicorn is unsatisfiable, as the existence of a Unicorn individual leads to a
contradiction.

Outline DL MT-OWL AROWL

SROIQ semantics via first-order predicate logic

Every SROIQ knowledge base translates a theory in first-order predicate logic with equality.

π(K) = ∪α∈Kπ(α). π(α) definition depends on the type of the axiom α.

If α is an individual assignment, then π(α) is defined as:

π(C(a)) = C(a)

π(R(a, b)) = R(a, b)

π(¬R(a, b)) = ¬R(a, b)

Outline DL MT-OWL AROWL

SROIQ semantics via first-order predicate logic

If α is an R-Box statement, then π(α) is defined as (S is a role name):

π(R1 ⊑ R2) = ∀x , y(πx,y (R1) → πx,y (R2))

πx,y (S) = S(x , y)

πx,y (R
−) = πy,x(R)

πx,y (R1 ◦ . . . ◦ Rn) = ∃x1, . . . , xn

πx,x1(R1) ∧

n−2

i=1

πxi ,xi+1(Ri+1) ∧ πn−1,y (Rn)

π(Ref (R)) = ∀xπx,x(R)

π(Asy(R)) = ∀x , y(πx,y (R) → ¬πy,x(R))

π(Dis(R1,R2)) = ¬(∃x , y)(πx,y (R1) ∧ πx,y (R2))

Outline DL MT-OWL AROWL

SROIQ semantics via first-order predicate logic

If α is a class inclusion axiom (C ⊑ D), then π(α) is defined as (A is a class name):

π(C ⊑ D) = ∀x(πx(C) → πx(D))

πx(A) = A(x)

πx(¬C) = ¬πx(C)

πx(C ⊓ D) = πx(C) ∧ πx(D)

πx(C ⊔ D) = πx(C) ∨ πx(D)

πx(∀R.C) = ∀x1(R(x , x1) → πx1(C))

πx(∃R.C) = ∃x1(R(x , x1) ∧ πx1(C))

πx(≥ nS .C) = ∃x1, . . . , xn

i ∕=j

(xi ∕= xj) ∧

i

(S(x , xi) ∧ πxi (C))

πx(≤ nS .C) = ¬(∃x1, . . . , xn+1)

i ∕=j

(xi ∕= xj) ∧

i

(S(x , xi) ∧ πxi (C))

πx({a}) = (x = a)

πx(∃S .Self) = S(x , x)

Outline DL MT-OWL AROWL

E.g., (4)

Professor ⊑ FacultyMember

∀x(Professor(x) → FacultyMember(x))

Professor ⊑ (Person ⊓ FacultyMember) ⊔ (Person ⊓ ¬PhdStudent)
∀x(Professor(x) → ((Person(x) ∧ FacultyMember(x)) ∨

(Person(x) ∧ ¬PhdStudent(x)))
Exam ⊑ ∀hasExaminer .Professor

∀x(Exam(x) → ∀y(hasExaminer(x , y) → Professor(y)))

Exam ⊑ ≤ 2hasExaminer

∀x(Exam(x) → ¬(∃x1, x2, x3)((x1 ∕= x2) ∧ (x2 ∕= x3) ∧ (x1 ∕= x3)

hasExaminer(x , x1) ∧ hasExaminer(x , x2) ∧
hasExaminer(x , x3)))

Professor(ubboVisser) Professor(ubboVisser)

hasAffiliation(ubboVisser , uofm) hasAffiliation(ubboVisser , uofm)

hasParent ◦ hasBrother ⊑ hasUncle

∀x , y(∃x1(hasParent(x , x1) ∧ hasBrother(x1, y)) → hasUncle(x , y))

Outline DL MT-OWL AROWL

Automated reasoning with OWL

Tableaux algorithms

Formal semantics provides implicit knowledge via logical consequence.

α is a logical consequence of K , K |= α, if and only if every model of K is a model of α.

An algorithm based on the prior definition requires checking every possible model of the
knowledge base, which is not feasible.

We need an algorithm that finds the logical consequence based on syntax. We use
Tableaux algorithms (Pellet, HermiT, RacerPro, Konclude, and FaCT++).

But its soundness and completeness needed to be proven formally, which requires
substantial mathematical build-up.

We consider only the algorithm, and the proofs are taken for granted.

We start with tableaux algorithm for ALC.

Outline DL MT-OWL AROWL

Inference types

Subsumption or class inclusion. Structuring knowledge
bases

C ⊑ D?

Class equivalence. Are two classes representing the
same class?

C ≡ D?

Class disjointness. Are there common members? C ⊓ D ⊑ ⊥?
Global consistency of a knowledge base. Is the knowl-
edge base meaningful?

K |= false?

Class consistency. Is C empty? C ⊑ ⊥?
Instance checking. Is a contained in C? C (a)?
Instance retrieval. Find all known individuals belonging
to a given class.

∀xC (x)?

Inference problem

Using a tableaux algorithm, we reduce the inference types to each other.

We check the knowledge base satisfiability, i.e., whether the knowledge base has at least
one model.

Outline DL MT-OWL AROWL

Inference by reduction to unsatisfiability

Subsumption K |= C ⊑ D iff K ∪{(C ⊓¬D)(a)} is unsatisfiable,
where a is a new individual not occurring in K .

Class equivalence K |= C ≡ D iff K |= C ⊑ D and K |= D ⊑ C .
Class disjointness K |= C ⊓D ⊑ ⊥ iff K ∪ {(C ⊓D)(a)} is unsatisfi-

able, where a is a new individual not occurring in
K .

Global consistency K is globally consistent if it has a model.
Class consistency K |= C ⊑ ⊥ iff K ∪ {C (a)} is unsatisfiable, where

a is a new individual not occurring in K .
Instance checking K |= C (a) iff K ∪ {¬C (a)} is unsatisfiable.
Instance retrieval To find all individuals belonging to a class C , we

have to check for all individuals a whether K |=
C (a).

Outline DL MT-OWL AROWL

Reduction to satisfiability

A tableaux algorithm determines if a knowledge base is satisfiable.

It attempts to construct a model of the knowledge base in a general and an abstract
manner.

If the construction fails, then there is no model of the knowledge base or the knowledge
base is unsatisfiable.

Otherwise the knowledge base is satisfiable.

The formal proofs that verify these claims are omitted from this lecture.

The reduction of all inference problems to the checking of unsatisfiability of the
knowledge base.

Keep in mind that tableaux algorithms attempt to construct models, which is why it is
used in DL automated reasoning.

Outline DL MT-OWL AROWL

Tableaux algorithm for ALC

Preprocessing of ALC knowledge base

ALC A-Box does not allow statements such as ¬C(a) or (C ⊓ ¬D)(a).

But these are just class expressions. We introduce a new class name A in the T-Box with A ≡ C
and re-write the A-Box statement as A(a).

Replace C ≡ D by C ⊑ D and D ⊑ C .

Replace C ⊑ D by ¬C ⊔ D.

Transform the knowledge base K into Negation Normal Form (NNF) by applying equations in
5-21 (cf. next slide) exhaustively.

NNF (K) moves all the negation symbols down into subformulae until they occur directly in front
of class names.

NNF (K) only transforms the T-Box.

NNF (K) = A ∪R ∪

C⊑D∈K NNF (C ⊑ D), where A and R are the A-Box and the R-Box of K .

K and NNF (K) are logically equivalent, i.e., they have identical models.

Outline DL MT-OWL AROWL

NNF (C ⊑ D) = NNF (¬C ⊔ D) (5)

NNF (C) = C if C is a class name (6)

NNF (¬C) = ¬C if C is a class name (7)

NNF (¬¬C) = NNF (C) (8)

NNF (C ⊔ D) = NNF (C) ⊔ NNF (D) (9)

NNF (C ⊓ D) = NNF (C) ⊓ NNF (D) (10)

NNF (¬(C ⊔ D)) = NNF (¬C) ⊓ NNF (¬D) (11)

NNF (¬(C ⊓ D)) = NNF (¬C) ⊔ NNF (¬D) (12)

NNF (∀R.C) = ∀R.NNF (C) (13)

NNF (∃R.C) = ∃R.NNF (C) (14)

NNF (¬∀R.C) = ∃R.NNF (¬C) (15)

NNF (¬∃R.C) = ∀R.NNF (¬C) (16)

NNF (≤ nR.C) = ≤ nR.NNF (C) (17)

NNF (≥ nR.C) = ≥ nR.NNF (C) (18)

NNF (¬ ≤ nR.C) = ≥ (n + 1)R.NNF (C) (19)

NNF (¬ ≥ (n + 1)R.NNF (C)) = ≤ nR.NNF (C) (20)

NNF (¬ ≥ 0.R.C) = ⊥ (21)

Outline DL MT-OWL AROWL

E.g.,

P ⊑ (E ⊓ U) ⊔ ¬(¬E ⊔ D)

Lets transform this formula to NNF

¬P ⊔ (E ⊓ U) ⊔ ¬(¬E ⊔ D)

¬P ⊔ (E ⊓ U) ⊔ (E ⊓ ¬D) □

Outline DL MT-OWL AROWL

Náıve Tableaux algorithm

Reduction to unsatisfiability/satisfiability.

Given: the knowledge base K .

Construct: a special graph called the Tableaux, which represents a model of K .

If this construction fails, then K is unsatisfiable.

Tableaux

A node represents an element of the domain:
Every node x is labeled with a set L(x) of class expressions, i.e., C ∈ L(x) means “x is in
the extension of C”. ∀x ⊤ ∈ L(x), we often do not write this down, and the tableaux
does not explicitly derive this.

An edge represents a role relationship:
Every edge (x , y) is labeled with a set L(x , y) of role names, i.e., R ∈ L(x , y) means
“(x , y) is in the extension of R”.

This is a structured way of deriving and representing logical consequences of a knowledge
base.

Outline DL MT-OWL AROWL

Illustration

Assume that the knowledge base is transformed to NNF.

K |= C (a) (22)

K |= (¬C ⊓ D)(a) (23)

(¬C ⊓ D)(a) |= ¬C (a) (24)

Formulae 22 and 24 cause a contradiction. Therefore, K cannot have a model and it is
unsatisfiable.

We just constructed a part of tableaux and a contradiction is found. This means that the
initial knowledge base is unsatisfiable.

Outline DL MT-OWL AROWL

Illustration

Let,

K |= C (a)

K |= ¬C ⊔ D

K |= ¬D(a)

We want to derive all class memberships of a, L(a).
Some notations:

L(a) ← C means L(a) is updated by adding C .
If L(a) = {D}, then L(a) ← C causes L(a) = {C ,D}.
L(a) ← {C ,D} means subsequent application of L(a) ← C and L(a) ← D, which both C
and D add to L(a).

Outline DL MT-OWL AROWL

Illustration continued

K |= C (a) (25)

K |= ¬C ⊔ D (26)

K |= ¬D(a) (27)

From 25, L(a) ← C , and 27, L(a) ← ¬D: L(a) = {C ,¬D}.
26 is a T-Box statement and it might as well hold for a: L(a) ← ¬C ⊔ D.

(¬C ⊔ D) ∈ L(a), which means that ¬C (a) or D(a). This introduces two new cases:

If ¬C(a), then L(a) ← ¬C = {C ,¬D,¬C ⊔ D,¬C}, which is a contradiction.
If D(a), then L(a) ← D = {C ,¬D,¬C ⊔ D,D}, which is a contradiction.
In both cases we arrive at a contradiction, which indicates that K is unsatisfiable.

Branching leads to nondeterminism of the tableaux algorithm.

Outline DL MT-OWL AROWL

Illustration: Roles

K |= R(a, b)

K |= S(a, a)

K |= R(a, c)

K |= S(b, c)

aS
R

R
❄

❄❄
❄❄

❄❄
❄ b

S

c

K |= ∃R .∃S .C (a)

a
R x

S y

Outline DL MT-OWL AROWL

Tableaux example

K = {C (a),C ⊑ ∃R .D,D ⊑ E}
NNF (K) = {C (a),¬C ⊔ ∃R .D,¬D ⊔ E}

Is (∃R .E)(a) a logical consequence of K?

From inference by reduction to unsatisfiability table:

Instance checking K |= C (a) iff K ∪ {¬C (a)} is unsatisfiable.

Therefore, we need to show that K ∪ {¬(∃R .E)(a)} is unsatisfiable. From 16,
NNF (∃R .E) = ∀R .¬E .

NNF (K) = {C (a),¬C ⊔ ∃R .D,¬D ⊔ E , ∀R .¬E (a)},

which we need to show that NNF (K) is unsatisfiable.

Outline DL MT-OWL AROWL

The náıve tableaux algorithm for ALC

A tableaux for an ALC knowledge base consists of:

a set of nodes, labeled with individual names or variable names,

directed edges between some pairs of nodes,

for each node labeled x , a set L(x) of class expressions, and
for each pair of nodes x and y , a set L(x , y) of role names.

Algorithm

Algorithm 1: NAIVE ALC Tableaux(NNF (K))

Data: NNF (K)
Result: Satisfiability status of K
initialTableaux = INITIALIZE Tableaux(NNF (K));
return APPLY RULES(initialTableaux , NNF (K));

Outline DL MT-OWL AROWL

Algorithm

Algorithm 2: INITIALIZE Tableaux(NNF (K))

Data: NNF (K)
Result: Initial tableaux

For each individual a occurring in K , create a node labeled a and set L(a) = ∅.
For all pairs a, b of individuals, set L(a, b) = ∅.
For each A-Box statement C (a) in K , set L(a) ← C .

For each R-Box statement R(a, b) in K , set L(a, b) ← R .

Outline DL MT-OWL AROWL

Algorithm 3: APPLY RULES(initialTableaux , NNF (K))

In each step, nondeterministically apply the following rules:

⊓-rule: If C ⊓ D ∈ L(x) and {C ,D} ∕⊆ L(x), then set L(x) ← {C ,D}.
⊔-rule: If C ⊔ D ∈ L(x) and {C ,D} ∩ L(x) = ∅, then set L(x) ← C or L(x) ← D.
∃-rule: If ∃R.C ∈ L(x) and there exists no y with R ∈ L(x , y) and C ∈ L(y), then

add a new node with label y (where y is a new node label),
set L(x , y) = {R}, and
set L(y) = {C}.

∀-rule: If ∀R.C ∈ L(x) and there is a node y with R ∈ L(x , y) and C ∕∈ L(y), then set
L(y) ← C .
T-Box-rule: If C is a T-Box statement and C ∕∈ L(x), then set L(x) ← C .

Terminates,

either there is a node x such that L(x) contains a contradiction, i.e., if there is C ∈ L(x)
and at the same time ¬C ∈ L(x) (also apply for ⊤,⊥),
or none of the rules are applicable.

Outline DL MT-OWL AROWL

Tableaux example

NNF (K) = {A(a), (∃R.B)(a),R(a, b),R(a, c), S(b, b), (A ⊔ B)(c),¬A ⊔ (∀S .B)}
From Algorithm 2,

bS L(b) = ∅

a

R

R

L(a) = {A, ∃R.B}

c L(c) = {A ⊔ B}

Outline DL MT-OWL AROWL

An explanation of Algorithm 3

K is satisfiable if the Algorithm 3 terminates without contradiction, otherwise, K is
unsatisfiable.

Sources of non-determinism:

Which expansion rule to apply next: whatever rule we choose, it will not get us onto the
wrong track, though the algorithm may take more steps to terminate. This leads to don’t
care non-determinism.
The choice which has to be made when applying the ⊔-rule: bad choice gets us on to the
wrong track. This is because, if we choose to set L(x) ← C , then it is no longer possible to
set L(x) ← D as the rule {C ,D} ∩ L(x) = ∅ prevent this. If the choice leads to a
contradiction, then we have to backtrack to that choice point and try another alternative.
This leads to don’t know non-determinism.

If you can make a choice of rule applications such that no contradiction occurs and the
process terminates, then the knowledge base is satisfiable.

Outline DL MT-OWL AROWL

Tableaux example

K = {C(a),C ⊑ ∃R.D,D ⊑ E}
Question: K |= (∃R.E)(a)
Problem: Instance checking.

Solution: K |= C(a) iff K ∪ {¬C(a)} is
unsatisfiable.

NNF (¬(∃R.E)(a)) = ∀R.¬E(a)
NNF (K) =
{C(a),¬C ⊔ ∃R.D,¬D ⊔ E , ∀R.¬E(a)}

Algorithm

L(a) = {C , ∀R.¬E}
L(a) ← ¬C ⊔ ∃R.D
L(a) ← ¬C contradiction.

L(a) ← ∃R.D
L(x) ← ¬D ⊔ E

L(x) ← ¬D contradiction.

L(x) ← E

L(x) ← ¬E(∀-rule) contradiction.

Tableaux

a

R

L(a) = {C , ∀R.¬E , ∃R.D}

x L(x) = {D,¬D ⊔ E , E ,¬E
contradiction

}

Outline DL MT-OWL AROWL

Tableaux example

K = {C(a),C ⊑ ∃R.D,D ⊑ E}
Question: K |= (∃R.E)(a)
Problem: Instance checking.

Solution: K |= C(a) iff K ∪ {¬C(a)} is
unsatisfiable.

NNF (¬(∃R.E)(a)) = ∀R.¬E(a)
NNF (K) =
{C(a),¬C ⊔ ∃R.D,¬D ⊔ E , ∀R.¬E(a)}

Algorithm

L(a) = {C , ∀R.¬E}
L(a) ← ¬C ⊔ ∃R.D
L(a) ← ¬C contradiction.

L(a) ← ∃R.D
L(x) ← ¬D ⊔ E

L(x) ← ¬D contradiction.

L(x) ← E

L(x) ← ¬E(∀-rule) contradiction.

Tableaux

a

R

L(a) = {C , ∀R.¬E , ∃R.D}

x L(x) = {D,¬D ⊔ E , E ,¬E
contradiction

}

Outline DL MT-OWL AROWL

Tableaux example

K = {C(a),C ⊑ ∃R.D,D ⊑ E}
Question: K |= (∃R.E)(a)
Problem: Instance checking.

Solution: K |= C(a) iff K ∪ {¬C(a)} is
unsatisfiable.

NNF (¬(∃R.E)(a)) = ∀R.¬E(a)
NNF (K) =
{C(a),¬C ⊔ ∃R.D,¬D ⊔ E , ∀R.¬E(a)}

Algorithm

L(a) = {C , ∀R.¬E}
L(a) ← ¬C ⊔ ∃R.D
L(a) ← ¬C contradiction.

L(a) ← ∃R.D
L(x) ← ¬D ⊔ E

L(x) ← ¬D contradiction.

L(x) ← E

L(x) ← ¬E(∀-rule) contradiction.

Tableaux

a

R

L(a) = {C , ∀R.¬E , ∃R.D}

x L(x) = {D,¬D ⊔ E , E ,¬E
contradiction

}

Outline DL MT-OWL AROWL

Tableaux example

K = {C(a),C ⊑ ∃R.D,D ⊑ E ⊔ F ,F ⊑ E}
Question: K |= (∃R.E)(a)
Problem: Instance checking.

Solution: K |= C(a) iff K ∪ {¬C(a)} is
unsatisfiable.

NNF (¬(∃R.E)(a)) = ∀R.¬E(a)
NNF (K) = {C(a),¬C ⊔ ∃R.D,¬D ⊔ E ⊔
F ,¬F ⊔ E , ∀R.¬E(a)}

Algorithm

L(a) = {C , ∀R.¬E}
L(a) ← ¬C ⊔ ∃R.D
L(a) ← ¬C contradiction.

L(a) ← ∃R.D

Algorithm

L(x) ← ¬E(∀-rule)
L(x) ← ¬D ⊔ E ⊔ F

L(x) ← ¬D contradiction.

L(x) ← E ⊔ F

L(x) ← E contradiction.

L(x) ← F

L(x) ← ¬F ⊔ E

L(x) ← ¬F contradiction.

L(x) ← E contradiction.

Outline DL MT-OWL AROWL

Tableaux example

K = {C(a),C ⊑ ∃R.D,D ⊑ E ⊔ F ,F ⊑ E}
Question: K |= (∃R.E)(a)
Problem: Instance checking.

Solution: K |= C(a) iff K ∪ {¬C(a)} is
unsatisfiable.

NNF (¬(∃R.E)(a)) = ∀R.¬E(a)
NNF (K) = {C(a),¬C ⊔ ∃R.D,¬D ⊔ E ⊔
F ,¬F ⊔ E , ∀R.¬E(a)}

Algorithm

L(a) = {C , ∀R.¬E}
L(a) ← ¬C ⊔ ∃R.D
L(a) ← ¬C contradiction.

L(a) ← ∃R.D

Algorithm

L(x) ← ¬E(∀-rule)
L(x) ← ¬D ⊔ E ⊔ F

L(x) ← ¬D contradiction.

L(x) ← E ⊔ F

L(x) ← E contradiction.

L(x) ← F

L(x) ← ¬F ⊔ E

L(x) ← ¬F contradiction.

L(x) ← E contradiction.

Outline DL MT-OWL AROWL

Tableaux

a

R

L(a) = {C , ∀R .¬E , ∃R .D}

x L(x) = {D,¬E ,✟✟¬D ⊔E ⊔ F ,✟✟¬F ⊔E}

Outline DL MT-OWL AROWL

Tableaux example

Human ⊑ ∃hasParent.Human

Orphan ⊑ Human ⊓ ∀hasParent.¬Alive
Orphan(harryPotter)

hasParent(harryPotter , jamesPotter)

K |= ¬Alive(jamesPotter)?

We need
¬¬Alive(jamesPotter) = Alive(jamesPotter)
and show NNF (K ∪ Alive(jamesPotter))
unsatisfiable.

¬H ⊔ ∃P.H
¬O ⊔ (H ⊓ ∀P.¬A)

O(h)

P(h, j)

A(j)

Algorithm

h

P

L(h) = {O}

j L(j) = {A}

T-Box-rule: L(h) ← ¬O ⊔ (H ⊓ ∀P.¬A)
⊔-rule: L(h) ← ¬O contradiction.

L(h) ← H ⊓ ∀P.¬A
⊓-rule: L(h) ← {H, ∀P.¬A}
⊔-rule: ∀P.¬A ∈ L(h)
L(j) ← ¬A contradiction.

Outline DL MT-OWL AROWL

Tableaux

h

P

L(h) = {O,¬O ⊔ (H ⊓ ∀P .¬A),H ⊓ ∀P .¬A,H, ∀P .¬A}

j L(j) = {A,¬A}

Outline DL MT-OWL AROWL

Tableaux example

NNF (K) = {C (a),¬C ⊔ ∃R .D,¬D ⊔ E , ∀R .¬E (a)}

From Algorithm 2,

a L(a) = {C , ∀R .¬E}
From Algorithm 3,

T-Box-rule: L(a) ← ¬C ⊔ ∃R.C .
⊔-rule: L(a) ← ¬C contradicts with C .

L(a) ← ∃R.D.

∃-rule: a

R

L(a) = {C , ∀R.¬E ,¬C ⊔ ∃R.D, ∃R.D}

x L(x) = {D}

Outline DL MT-OWL AROWL

Tableaux example

From Algorithm 3,

T-Box-rule: L(x) ← ¬D ⊔ E .
⊔-rule: L(x) ← ¬D contradicts with D.

L(x) ← E

a

R

L(a) = {C , ∀R.¬E ,¬C ⊔ ∃R.D, ∃R.D}

x L(x) = {D,¬D ⊔ E ,E}
∀R.¬E ∈ L(a), means that everything to which a connects via R must be in ¬E . Since, a
connects to x via R, we set L(x) ← ¬E , which results in a contradiction.
Therefore, the knowledge base is unsatisfiable, and the instance checking problem is solved,
i.e., K |= (∃R.E)(a).
a

R

L(a) = {C , ∀R.¬E ,¬C ⊔ ∃R.D, ∃R.D}

x L(x) = {D,¬D ⊔ E ,E ,¬E}

Outline DL MT-OWL AROWL

The tableaux algorithm with blocking for ALC
Algorithm 1 for ALC does not always terminate.

Consider: K = {∃R .⊤,⊤(a1)}.
Consider the interpretation I , with ∆ = {a1, a2, . . .}, s.t aIi = ai and (ai , ai+1) ∈ R I for all
i = 1, 2, This is a model of K . Therefore, K is satisfiable.

Let’s try to construct the tableaux for K .

We initialize with a node a and L(a1) = {⊤}.
T-Box-rule: L(a1) ← ∃R.T .
∃-rule: creates a new node x with L(a1, x) = {R} and L(x) = {⊤}.
For the new x we again apply the T-Box-rule, which yields into L(x) ← ∃R.T .
∃-rule: creates another new node y with L(x , y) = {R} and L(y) = {⊤}.
This process repeats and does not terminate.

a1L(a1)={⊤,∃R.T}
R xL(x)={⊤,∃R.T}

R yL(y)={⊤,∃R.T}
R . . .

Outline DL MT-OWL AROWL

Blocking continue

We said that ALC or SROIQ is decidable.

In order to achieve guaranteed termination, we need to introduce blocking. This simply
eliminates the repeats.

If the newly created node x has the same properties as the node a1, then instead of
expanding x to a new node y , we reuse a1.

Definition: A node with label x is directly blocked by a node with label y if

x is a variable (i.e., not an individual)
y is an ancestor of x , and
L(x) ⊆ L(y).

Outline DL MT-OWL AROWL

Blocking continue

Definition of ancestor: ∀x L(z , x) ∕= ∅ is called a predecessor of x . Every predecessor of x ,
which is not an individual, is an ancestor of x , and every predecessor or ancestor of x ,
which is not an individual, is also an ancestor of x .

A node with label x is blocked if it is directly blocked or one of its ancestors is blocked.

Full tableaux algorithm: The rules in Algorithm 3 are applied if x is not blocked.

From our example, L(x) ⊆ L(a1). Therefore, x is blocked by a1. The resulting tableaux is:

a1L(a1)={⊤,∃R.T}
R xL(x)={⊤}

The blocked node x represents the infinite set {a2, a3, . . .}.
Therefore, J is, ∆ = {a1, a} s.t aJ1 = a1, x

J = a and RJ = {(a1, a), (a, a)}. The model
would be cyclic.

Outline DL MT-OWL AROWL

Blocking example

K = {H ⊑ ∃P .H,B(t)}

Which stands for: Human ⊑ ∃hasParent.Human
Bird(tweety)

Question: K |= ¬H(t)?
NNF (K ′) = {¬H ⊔ ∃P .H,B(t),H(t)}

Initialized L(t) = {B,H}
t

P

L(t)={B,H,¬H⊔∃P.H,∃P.H}

x L(x)={H}

T-Box-rule L(t) ← ¬H ⊔ ∃P.H
⊔-rule L(t) ← ¬H (contradiction)

L(t) ← ∃P.H
∃-rule create a node with label x ,

L(t, x) = {P}, and L(x) =
{H}
node x is blocked by t

Outline DL MT-OWL AROWL

Open world assumption

Let
K = {h(j , p), h(j , a),M(p),M(a)}

which stands for

hasChild(john, peter), hasChild(john, alex),Male(peter),Male(alex)

K ∕|= ∀hasChild .Male(john) (not a logical consequence of the knowledge base)
(K ∕|= ∀ x hasChild(x , john) → Male(john)).

Add the negation of the statement ¬∀h.M(j) to K , and show that NNF (K ′) is satisfiable.

OWA for K ′ satisfiability:

There is no information whether or not john has only peter and alex as children.
There may be that john has additional children who are not listed in K ′.
Therefore, it is not possible to infer that all john’s children are Male.

Outline DL MT-OWL AROWL

Illustration

NNF (K ′) = {h(j , p), h(j , a),M(p),M(a), ∃h.¬M(j)}.
Algorithm 2 yields:

p L(p) = {M}

L(j) = {∃h.¬M} j
h

h

✄✄✄✄✄✄✄✄
a L(a) = {M}

Algorithm 3 yields: ∃-rule L(j , x) = {h} and L(x) = {¬M}.
p L(p) = {M}

L(j) = {∃h.¬M} j
h

h

✄✄✄✄✄✄✄✄

h

❀
❀❀

❀❀
❀❀

❀ a L(a) = {M}

x L(x) = {¬M}

Outline DL MT-OWL AROWL

Illustration

Algorithm 1 terminates, since none of the rules are applicable. This means that K ′ is
satisfiable. It means that ∀h.M(j) is not a logical consequence of K .

The new node x represents a potential child of john who is not a Male.

Indeed the constructed tableaux corresponds to a model of K ′.

Outline DL MT-OWL AROWL

Final illustration

K = {C (a),C (c),R(a, b),R(a, c), S(a, a), S(c , b),C ⊑ ∀S .A,
A ⊑ ∃R .∃S .A,A ⊑ ∃R .C}

Question K |= ∃R .∃R .∃S .A(a).
Tableaux can grow considerably large if the expansion rules are chosen randomly!.

Follow this:

T-Box-Rule on c ¬C ⊔ ∀S .A.
∀-rule ∀S .A ∈ L(c).
∀-rule ∀R.∀R.∀S .¬A ∈ L(a).
T-Box-rule on b ¬A ⊔ ∃R.∃S .A.
⊔-rule on ¬A ⊔ ∃R.∃S .A ∈ L(b).
∀-rule ∀R.∀S .¬A ∈ L(a).
∃-rule on the new node x ∃S .A ∈ L(x).
∀-rule ∀S .¬A ∈ L(x) homes you in a contraction.
Draw the tableaux.

Outline DL MT-OWL AROWL

Worst-case complexity classes of some description logic

Description logic Combined complexity Data complexity
ALC ExpTime-complete NP-complete
SHIQ ExpTime-complete NP-complete
SHOIN (D) NExpTime-complete NP-hard
SROIQ(D) N2ExpTime-complete NP-hard
EL++ P-complete P-complete
DLP P-complete P-complete
DL-Lite P LOGSPACE

Complexity of the description logics are usually measured in terms of the size of the
knowledge base combined complexity.

Complexity is measured only using ABox is called data complexity.

Outline DL MT-OWL AROWL

SHIQ
The ALC full tableau algorithm has been extended to SHIQ adding two more constraints
to Algorithm 2 and few more rules to Algorithm 3.

The termination conditions are modified to handle the other constructs introduced in the
extended algorithm.

We will not pursue on the SHIQ tableaux algorithm. You can find an expressive
description of the algorithm in section 5.3.4 [HKR09].

Outline DL MT-OWL AROWL

Acknowledgement

Acknowledgement

The slides for this course have been prepared by Saminda Abeyruwan.

Outline DL MT-OWL AROWL

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph.

Foundations of Semantic Web Technologies.

Chapman & Hall/CRC, 2009.

