
Chapter 2 – 2D Graphics and Animation
• Full Screen Graphics

• Screen Layout

• Pixel Color and Bit Depth

• Refresh Rate

• Switching the Display to Full-

Screen Mode

• Anti-Aliasing

• Which Display Mode to Use 

• Images

• Transparency

• File Formats

• Reading Images

• Hardware-Accelerated Images

• Image Drawing Benchmarks

• Animation

• Active Rendering

• The Animation Loop

• Getting Rid of Flicker and Tearing

• Double Buffering

• Page Flipping

• Monitor Refresh and Tearing

• The BufferStrategy Class

• Creating a Screen Manager

• Sprites

• Simple Effects

• Image Transforms

Full-Screen Graphics

Key Ideas: The display on a computer consists of two main
parts, the video card and the monitor.

• The video card stores the screen contents and can also hold
images for hardware-accelerated graphics.

• The monitor translates the stored screen image into an actual
light image.

Screen Layout

The screen of a computer is divided into pixels, single points of a
certain color, that are arranged in a grid format with it’s origin at the top
left of the screen.

The available resolutions depend on both the video card and the
monitor. Typical resolutions include 640x480, 800x600, 1024x768,
and 1280x1024. You should offer more than one resolution in your
game because players will want to adjust for performance and
because newer LCD displays can have problems with non-native
resolution graphics.

Importance of Color

4

Color Models and Primary Colors

• Color Models 
 
 
 

• Primary Colors

– Dominant frequency

– Combine two or more sources with different dominant frequency we

can generate additional colors

– The hues of the sources are called primary colors.

– Two primaries that produce white are called complementary colors

– No finite set of real primary colors can produce all visible colors

– Given a set of 3 colors a fourth can be produced

5

CIE CMY(K) HSV RGB

6

CIE Chromaticity Diagram

CMY(K) Color Model and Cube

7

HSV Color Model

8

RGB Color Model

9

RGB Color Cube

10

Pixel Color and Bit Depth

Pixel Color

Computers use the RGB color model to control pixel color. In this system
different levels of red green and blue are combined to make a color for display.

The number of colors a monitor can display depends  
on bit depth which is the number of bits used to store  
each pixels color information.

Bit Depth

• 8 bit - 28 = 256 colors

• 15 bit - 5 bits per color - 215 = 32,768 colors

• 16 bit - 5 bits for red and blue, 6 bits for green - 216 = 65,536 colors 	  

[note: the human eye is twice as sensitive to tones of green]

• 24 bit - 8 bits per color - 224 = 16,777,216 colors

• 32 bit - same as 24 bit, but it fits into a 32 bit space which is more

convenient for computers to work with

Refresh Rate

• The refresh rate is the number of times per second that the
monitor redraws itself based on the content of the video card.
Common rates are between 75Hz and 85Hz. Lately, rates are
changing to 60Hz, 120Hz, 144Hz over even more.

• Refresh rate of video card vs refresh rate of monitor

Anti-Aliasing

In the FullScreenTest program the text on the screen had jagged edges
because it was not anti-aliased. Anti-aliased text is blurred or in some cases
rendered at the sub-pixel level in order to make the edges look smother.

These enlarged images show the difference anti-aliasing makes.

To make text anti-aliased, set appropriate rendering hint before drawing any
text. The functionality is present only in the Graphics2D class, a subclass from
Graphics.

Which Display Mode to Use

• Your game should be able to run in more than one
display mode.

• When possible allow the player to select the same
resolution as the current resolution.

• Bit depth: 16, 24, and 32 bit color are all good
selections. 16 bit is faster while 24 and 32 bit
graphics look better.

• A refresh rate between 75Hz and 85Hz is suitable for
the human eye.

14

Images
• Transparency

– There are three types of image transparency,
opaque, transparent, and translucent.

– Opaque - every pixel is drawn

– Transparent - a pixel is either visible or not

visible

– Translucent - a pixel can be partially visible (the

final color is a weighted average of the color in
the picture and the color behind it)

15

File Formats
Java supports three image formats, GIF, PNG, AND
JPEG.

• GIF - can be opaque or transparent. Limited to 8 bit
color.

• PNG - can be opaque, transparent, or translucent.
PNG images also support any bit depth.

• JPEG - opaque 24 bit images only. Works well for
photographs, however the compression method is
based on an 8x8 grid which can give diagonal lines
a stair-step appearance.

Apache's Scalable Vector Graphics (SVG) implementation, called Batik, at http://http://xmlgraphics.apache.org/batik/

http://xml.apache.org/batik/default.htm

The ImageTest program uses the SimpleScreenManager class to establish
fullscreen mode then draws a JPEG background image and four PNG
foreground images.

View

SimpleScreenManager

and

ImageTest Code

Run ImageTest

Image Drawing Benchmarks

The ImageSpeedTest program is a modified version of the ImageTest
program that spends one second each drawing the four types of images
tested in the ImageTest program and prints a display of how many of
each type of image was drawn.

View

ImageSpeedTest

Code

Run

ImageSpeedTest

Note: You should not spend large amounts of time in the paint() method
as in ImageSpeedTest. It will prevent the AWT event dispatch thread
from performing its other duties such as handling user input.

To give you an idea, here are the results of this test on a 600MHz Athlon with a GeForce-256 video card, a display
resolution of 800x600, and a bit depth of 16—and in a good mood at the time:

Opaque: 5550.599 images/sec

Transparent: 5478.6953 images/sec

Translucent: 85.2197 images/sec

Translucent (Anti-Aliased): 113.18243 images/sec

Animation
First will look at cartoon-style animation. This is where several images are
drawn in a sequence to create the illusion of movement.

1 2 3

Each image is a frame and each frame is displayed for a certain amount
of time. An example of how this can be done in code is shown in
Animation.java.

Active Rendering
Active Rendering is a term used to describe drawing directly to the screen
in the main thread. Using active rendering means that you do not need to
wait for the paint() method to be invoked by the AWT event dispatch thread
which may be busy. The following code shows an example of using active
rendering:

Graphics g= screen.getFullScreenWindow().getGraphics();

draw(g); // draw is a method you define

g.dispose();

In this code the graphics context for the screen is obtained using
Component’s getGraphics() method. Then the draw method, defined in
the main class, draws directly onto the screen. The graphics device is
disposed because the garbage collector may take some time to get to it and
the object is created on every screen update.

The Animation Loop
The following program, AnimationTest1, uses active rendering to draw
the animation continuously in a loop. The steps of the animation loop
are:

1. Update any animations

2. Draw onto the screen

3. Optionally sleep for a short time

4. Return to step 1

View

AnimationTest1

Code

Run

AnimationTest1

Flicker and Tearing elimination
You probably noticed that AnimationTest1 looks terrible. The image may be
constantly flickering because it is being drawn directly on the screen and
then drawn over by the background before it is drawn again. To address this
problem we introduce a buffer.

Double Buffering
An animation that is double buffered is first drawn to an image somewhere
in memory (the back buffer), then that image is copied to the screen once it
is completed.

Page Flipping

• When using double buffering you always have to copy an image the size of the
entire screen to draw each frame. Page Flipping allows you to skip this extra
copying step.

• In page flipping you have two buffers that are usually both in video memory. One
buffer acts as the screen device and the other holds the next frame until it is
ready to be displayed. Then the graphics device’s display pointer is changed
from one buffer to the other making it the source for the monitor’s screen refresh
instantly. The process repeats with the buffers in exchanged roles.

• In page flipping the screen is updated instantly without any copying of data.

Monitor Refresh and Tearing
The monitor will update itself based on video memory a certain number
of times per second. If the display pointer is changed from one image
to another during a redraw then the top of the monitor displays a
different image than the bottom. This is called tearing because it looks
as though things on screen are being torn in half.

To avoid this problem the display pointer must be changed between
refresh cycles. This can be achieved using java’s BufferStrategy class.

Frame1 Frame2

Screen

Creating a Screen Manager

The ScreenManager class is an improved version of the
SimpleScreenManager class that adds the following features:

• Double buffering and page flipping using the BufferStrategy class

• getGraphics() which gets the graphics context for the display

• update() which updates the display

• getCompatibleDisplayModes() Gets a list of the compatible

display modes

• getCurrentDisplayMode() gets current display mode

• findFirstCompatibleMode() which gets the first compatible

mode from a list of modes

ScreenManager.java

In the new ScreenManager class make
sure to note the new methods:

• displayModesMatch() and

• createCompatibleImage()

The program AnimationTest2 updates AnimationTest1 to use the new
ScreenManager class.

View

AnimationTest2

Code

Run

AnimationTest2

Sprites

A sprite is a graphic that moves independently around the screen.
Sprites can also be animated.

The following Sprite class defines a movement based on its position
and velocity. By basing the velocity on time the sprite is made to move
the same speed no matter what speed the machine renders frames.

Sprite.java

The program SpriteTest1 creates a sprite with random velocity and
makes it bounce around the screen.

View

SpriteTest1

Code

Run

SpriteTest1

Simple Effects
Transforms

Transforming an image allows you to do such things as rotate, scale,
flip, and shear images. These effects can be performed in real time but
they are not hardware accelerated.

The AffineTransform object describes a transform. The class provides
methods for controlling transforms such as rotate(), scale(), and
translate().

There is a special drawImage() method int the Graphics2d object that
takes an AffineTransform object as a parameter.

SpriteTest2 uses transforms to make the sprite face in the direction it is
going.

View

SpriteTest2

Code

Run

SpriteTest2

