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Abstract

Texture and temporal variations in scenes, and peculiarities of MPEG compression algorithms result in very

complex frame-size data sets for any long-duration variable bit rate (VBR) video. A major hurdle in capturing the

statistical behavior of such a data trace can be removed by segmentation of all frames into an appropriate number of

analytically characterizable classes. However, video-trace segmentation techniques, particularly those which also enable

preserving periodicity of group of pictures (GOP) in the modeled data, are lacking in the literature.

In this paper, we propose and evaluate few techniques for segmenting frame-size data sets in any long-duration video

trace. The proposed techniques partition the group of pictures in a video into size-based groups called shot-classes.

Frames in each shot-class have three data-sets––one each for intra (I-), bi-directional (B-), and predictive (P-) type

frames. We have evaluated the performance of the proposed segmentation techniques by modeling each of I-, B-, and P-

type frame in each shot-class by a Gamma distribution. Accuracy and usefulness of the proposed segmentation methods

in building frame-size traffic models have been evaluated by QQ plots and the leaky-bucket simulation study. The

results reveal that one of the segmentation techniques is very effective in characterizing the frame-size data behavior in a

long-duration VBR video.
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1. Introduction

Video is expected to be the major traffic source

for broadband networks [1,10]. Because of large

bandwidth requirement for communication of

high-quality uncompressed video it is expected

that most, if not all, video will be encoded with

MPEG-like data compression techniques [3].

These compression algorithms can provide a very
ed.
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high compression ratio while maintaining good

quality of decompressed video. However, MPEG-

coding provides different amount of compression

for different frames [3], and results in variable bit

rate (VBR) data––known as VBR video. Some

deterministic algorithms for computation of burs-
tiness of VBR video have been proposed by Try-

fonas and others [18]. Once these algorithms are

widely known, they are expected to replace such

burstiness measure as leaky-bucket simulation.

Texture and temporal scene variations, and pecu-

liarities in the MPEG compressions of intra (I-),

bi-directional (B-), and predictive (P-) frames

make it extremely difficult to accurately charac-
terize all frame sizes in any long-duration VBR

video data set by any single analytical model. This

calls for finer characterization of individual I-, B-,

and P-type frames and identification of smaller

video segments over which each characterization

holds good.

Accurate traffic models of VBR video are nec-

essary for prediction of performance of any
broadband network during its design and opera-

tion. Several traffic models have been proposed in

the literature. They include first-order autoregres-

sive (AR) [12], discrete AR (DAR) [5,9,19],

Markov renewal process (MRP) [2], MRP trans-

form-expand-sample (TES) [11], finite-state Markov

chain (MC) [1,5,13,19], Gamma-beta auto-regres-

sion (GBAR) [4], and group-of-pictures (GOP)
GBAR [3] models. Although traffic for short-du-

ration video clips (those lasting only a few seconds

or minutes) can be modeled without segmenting

the trace, segmentation is essential for developing

traffic models for long-duration videos such as

full-length commercial movies. By long we mean

videos which typically span over a couple of hours

or more and would contain a few hundreds of
thousands of compressed frames.

1.1. Two categories of traffic model

Video traffic models can be broadly classified

into two categories: (i) data rate models (DRMs),

and (ii) frame-size models (FSMs). In a data rate

model, only the rate at which data are arriving at a
link is generated for performance prediction pur-

pose. Almost all models including AR, DAR,
MRP, MRP TES, MC, GBAR fall under this

category. These models are good for predicting

average packet-loss probability, and ATM buffer

over-flowing probability. However, they fail to

identify such details as percentages of I, B, and P

frames affected.
In a frame-size model, sizes of individual

MPEG frames are considered, and hence data rate

information can be obtained from the frame-size

information. Models reported by Krunz and Tri-

pathi [8], Dawood and Ghanbari [2], and Frey and

Nguyen-Quang [3] fall under this category. It is

believed that the main obstacle in the development

of an accurate frame-size model for a long-dura-
tion video is to capture the distributions of I-, B-,

and P-type frames in suitably identified segments

of the video. The GOP GBAR model attempts to

capture overall statistical properties of I, P, and B

frames of MPEG movies without capturing seg-

ment-level regularity of frame sizes [2]. The model

by Krunz and Tripathi [8] assumes that the vari-

ation of a scene changes the average size of I
frames, but not the sizes of P and B frames.

However, results in Dawood and Ghanbari [2] and

our analysis (see Table 2 in Section 3.2) show wide

variations in P and B frames as well. Also, the sizes

of the frames, drawn from log-normal distribu-

tions following Krunz et al. [7], are not quite good

fits. Dawood and Ghanbari have used one video

traffic model for each type of video, and combined
them using a finite state machine; at any instant

the video model to be used for traffic generation is

determined by the current state of the finite state

machine. The accuracy of the model reveals the

need for segmentation of video trace. We used

video-trace segmentation for developing accurate

traffic models in [15,17]. This further motivated us

to study various video-trace segmentation meth-
ods which are reported in this paper. Before re-

porting the segmentation methods, next we discuss

our objectives for video-trace segmentation.

1.2. Segmentation of a long-duration video trace

A long-duration VBR video, say a full-length

commercial movie, contains a few hundreds of
thousands of frames. For example, Crocodile

Dundee, one of the movie traces in our study, has
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29,089 group of pictures (GOP). This amounts to

about 174,500 MPEG compressed frames in

IBBPBB format of a GOP. When these frame sizes

in bytes are plotted against the time axis (see [9] for

an example) the data behavior appears too noisy

and suggests no simple way of a single statistical
characterization for the entire video trace. Two

major factors contribute to the complexity of this

data behavior. First, three different types of frames

(known as I, B, and P in MPEG parlance) having

different mean and variance characteristics peri-

odically intermingle in the trace. Second, texture

and temporal variations in scene changes follow

no regular pattern. For example, one scene in a
movie may continue for five minutes in the same

room with hardly any movement of the actors or

of their surroundings resulting in relatively small

sized P and B frames. In contrast, the very next

outdoor scene may have lots of scene variations

over only a few seconds causing large values of B

frames for that interval. Consequently, frame-size

behavior of a long-duration video cannot be cap-
tured well unless such size-based segments or

bursts are identified and the size behavior of each

frame type in each segment is modeled.

In a video-trace segmentation, the primary

concern is how to do a proper segmentation of all

video frames into an appropriate number of ana-

lytically characterizable classes using which the

traffic model can be developed [16]. This segmen-
tation problem is yet another manifestation of the

classical problem of pattern classification for a

given modeling purpose, and no the-best-classifi-

cation criterion exists. Classification difficulties lie

at two levels. It is not known what would be the

best number of classes. Worse, for a given number

of classes or segments it�s unclear what would be

the ideal criteria to partition all frames into those
classes. In the domain of classification of a VBR

video data-set, it�s necessary to characterize the

behavior of each frame type, to capture the dura-

tion of subsequent segments in terms of real time,

and also to enable preservation of periodicity of

frames as they occur in a of group of pictures

(GOP). Although Iraqi and Boutaba [6] have

shown scene changes can be identified by com-
paring adjacent GOP sizes and have used the

concept for bandwidth allocation of wireless net-
works, it is not intended for segmentation of video

traces. Segmentation techniques fulfilling these

requirements are lacking in the literature.

1.3. Outline of the paper

The purpose of this paper is to address the two

fundamental difficulties of segmentation from the

viewpoint of characterizing frame-size behavior in

a VBR video. We address both (i) how to find a

good number of segments, and (ii) how to deter-

mine the criteria based on which individual frames

may be made to belong to those segments. In this

paper, we propose and evaluate three such seg-
mentation techniques. Each of these techniques

partitions the group of pictures in the video into

size-based groups called shot-classes. Frames in

each shot-class have three data-sets––one each for

intra (I-), bi-directional (B-), and predictive (P-)

type frames. We have evaluated the performance

of the proposed segmentation techniques by

showing how the behavior of I, B, and P frames in
identified segments can be captured by Gamma

models, and how intra-segment duration and in-

ter-segment transitions can be modeled by a

Markov chain. Applicability of the proposed

methods in developing frame-size traffic models

have been demonstrated using QQ plots and leaky-

bucket simulations. Our results indicate the

segmentation technique GIIL (named after Geo-
metrically Increasing frame-size Interval Lengths

for shot-classes) proposed in this paper is very

effective in capturing the frame-size behavior in a

video trace.

Section 2 presents the proposed methods for

segmentation of long-duration video-traces. In

Section 3, we evaluate the performance of the

proposed segmentation methods and study the
effect of threshold parameter. To these ends, we

showed how the sizes of individual frame types

could be modeled under the segmentation schemes

and how a variation in threshold affects the accu-

racy of the model. We also show QQ plots and the

leaky bucket simulation results to highlight how

the proposed segmentation led to accurate frame-

size traffic models as in [17]. Results for the trace
of the full-length movie, Crocodile Dundee are re-

ported––the results for other videos (see Section 3)
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being very similar have not been given separately.

We discuss our observations and future extensions

of our work in Section 4.
2. VBR video segmentation methods

In a VBR video, frames are of different sizes

because of composition or content of a picture,

and temporal similarity of adjacent pictures. Also,

frames from different parts of the video produce

different amounts of compressions. Parts or seg-

ments of the video with similar compressions are

necessary for successful analysis and modeling as
shown by Dawood and Ghanbari [2]. This section

presents three different techniques of segmenting a

long-duration VBR video trace. Of particular

emphasis in this study is to observe the sensitivity

of the segmentation techniques on the effectiveness

of a segmentation-dependent video model. Let

F ¼ F1; F2; F3; . . . ; Fnf be the sequence of nf frames

obtained from MPEG encoding of a long-duration
video. Since estimation of data loss rate (DLR)

requires only the size of a frame and not the actual

data, a frame for the modeling purpose is repre-

sented by its serial number, type (I, B, or P), and

size in bytes after the MPEG encoding. While not

required by the MPEG standard, the underlying

GOP usually follows an (N ;M) cyclic format in

which the first frame of a GOP is an I frame, every
Mth frame is a P frame, and the rest are B frames.

For this study it is assumed that a video has been

encoded with a single GOP structure. The size of a

GOP is the sum of the sizes (in bytes) of all N
frames in the GOP. We denote successive GOPs in

a video trace by G1;G2; . . . ;Gng for our reference in

the paper, where ng denotes the number of GOPs.

For long-duration videos like full-length com-
mercial movies ng will typically be several tens to

as high as a few hundreds of thousands.

2.1. Formation of clips

A clip of length k, 0 < k6 ng, is any consecutive

sequence of k GOPs, that is, Giþ1;Giþ2; . . . ;Giþk for

some i, 06 i6 ðng � kÞ. We denote successive clips
by C1;C2; . . . and a set of clips by C. We use the

notation Gi 2 Cj to indicate Gi belongs to Cj,
lengthðCjÞ to indicate the number of GOPs in Cj,

and sizeðGiÞ to mean the sum of sizes in bytes of all

frames in GOP Gi.

We use a technique similar to moving averaging

and group similar-size GOPs to obtain a set of

video clips. Sizes of these clips depend on the
clustering of similar sized GOPs together––larger

the cluster higher the clip size. During clip con-

struction, let the average size of a GOP in the

partially formed clip of length k starting with Giþ1

be, clip avg ¼ ð
Pk

l¼1 sizeðGiþlÞÞ=k. The next GOP,

Giþkþ1, is included in the current partial clip if the

size of Giþkþ1 does not differ from clip_avg by more

than a user provided threshold value. The smaller
the value of threshold, the smaller the length of

each clip and consequently, the higher the total

number of clips formed. In this paper we have

made a detailed study of the effect of the value of

threshold on the effectiveness of segmentation. We

express the threshold value by a threshold factor

which is a multiple of the average size of B-frame

in the original video from which the model is de-
rived. For example, the average B-frame size in the

trace of the movie Crocodile Dundee is 4445.64

bytes. So, a threshold factor of 2 would mean the

actual value of threshold used is 2� 4445:82 ¼
8891:64 bytes. Normalizing the threshold value

with respect to frame-size rather than expressing it

as an absolute byte size makes the threshold pa-

rameter uniformly applicable to video traces irre-
spective of their resolutions. Computational

results (see Section 3) indicate the choice of

threshold is not difficult and a range of good

choices, namely [0.5, 2], exists.

2.2. Methods for identification of shot-classes

A shot-class of length k, kP 1, is a union of k
distinct, not necessarily consecutive, clips. We

represent shot-classes by S1; S2; . . . and Cj 2 Si de-
notes all GOPs belonging to clip Cj belong to shot-

class Si. Every clip belongs to one and only one

shot-class.

The challenges in constructing the shot-classes

are twofold––(i) how many shot-classes (n) to use

and (ii) how to partition the entire range of GOP
sizes into n such sub-intervals––one for each

shot-class so that each of these classes can be



Table 1

Number of GOPs in shot-classes

Shot class Number of GOP

EIL GIIL ENG

1 5825 2493 4155

2 16576 2434 4155

3 5076 4521 4155

4 1340 7940 4155

5 197 5915 4155

6 68 3290 4155

7 7 2496 4159
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modeled accurately. We have performed experi-

mentation with a wide ranging number of shot-

classes. It was found that too few (less than 5)

shot-classes fail to capture the detailed frame-size

variations in different segments of a video es-

sentially eliminating the intended benefits of
segmentation. On the other hand, too many

(more than 10) classes result in some classes

containing too few frames for the classification to

be of any statististical significance. Moreover, too

many classes give rise to too many modeling

parameters affecting the utility of the model in

practice. With extensive experimentations on

varying n we have observed that 5–10 shot-clas-
ses strike a balance and result in good models.

Seven shot-classes was found highly satisfactory

for all videos we considered. For the study re-

sults reported in this paper we have used seven

(n ¼ 7) shot-classes and three segmentation

techniques, namely EIL, ENG, and GIIL, re-

spectively. Our study revealed a simple and in-

tuitively appealing segmentation technique like
EIL produces rather poor results compared to

more sophisticated technique like GIIL.

In all three segmentation techniques discussed

in this paper, a clip is made to belong to a shot-

class if the average size of a GOP in this clip falls

in the interval for that shot-class. The choice of

intervals depends on the segmentation technique

as detailed below. The following three segmenta-
tion methods have been studied: (1) equal interval

lengths for all shot-classes (EIL), (2) equal num-

ber of GOPs in all shot-classes (ENG), and (3)

geometrically increasing interval lengths for shot

classes (GIIL). A relative comparison of these

technique exhibits the effect of segmentation in

modeling. Since GIIL is the best method we

found and would recommend for use we discussed
the other two techniques rather briefly. For the

purpose of classification we assume that gmin and

gmax denote the sizes of the smallest and the

largest GOPs in bytes in the whole video, re-

spectively.

2.2.1. Equal interval lengths for all shot-classes

(EIL)

In this method, the interval ½gmin; gmax� is divided
into n intervals of equal length. That is, the ith
shot-class, 16 i6 n, corresponds to the interval
½gminþði�1Þd;gminþ id�, where d ¼ðgmax�gminÞ=n
is the common difference of the arithmetic pro-

gression comprising the boundaries of successive

intervals. This method resulted in some shot-clas-

ses containing too few GOPs to make any statisti-

cal observation on those worth any significance.

For example, see Table 1 which shows that out of

29,089 GOPs in the video only 68 and 7 GOPs
belonged to shot-class 6 and 7, respectively. The

following two methods could eliminate its draw-

back.

2.2.2. Equal number of GOPs in all shot-classes

(ENG)

In this method, the interval ½gmin; gmax� is divided
into n intervals such that each interval contains the
same (or almost the same in case the total number

of GOPs is not an integral multiple of n) number

of GOPs. The shot-class boundaries in this method

are identified by sorting the GOP sizes in non-de-

creasing order and noting the sizes for boundary

values which meet the above requirement. This

resulted in a significant improvement over the EIL

technique.
However, it was observed a relatively small sub-

interval of the entire range of GOP sizes contained

a large fraction of all GOPs. This resulted in some

of the shot-classes being too close making their

inter-class separation less meaningful. Moreover, it

was observed that the presence of a few too small

and too large GOPs introduces undesirable biases

in any model unless those extreme sizes are treated
more like exceptions. The following technique at-

tempted to incorporate remedies for these draw-

backs.
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2.2.3. Geometrically increasing interval lengths for

shot-classes (GIIL)

In this technique, the smallest and the largest 1

percent GOPs are initially set aside as being too

extreme. Let the GOP sizes corresponding to these
1 and 99 percentile points be referred to by a and

b, respectively. The remaining interval of GOP

sizes, namely, ½a; b�, is partitioned into n sub-in-

tervals. The successive partitioning boundaries of

these intervals are made to increase in a geometric

progression with a as the first term and b ¼ arn as
the (nþ 1)th term. This results in n sub-intervals

½a; ar�; ½ar; ar2�; . . . ; ½arn�1; arn� where r ¼ eðln b�ln aÞ=n

is the common ratio of the geometric progression.

Since a, b, and n are known, r and hence the in-

tervals can be computed easily. The first (½a; ar�)
and the last (½arn�1; arn�) sub-intervals are now re-

defined as ½gmin; ar� and ½arn�1; gmax�, respectively to

reinclude the extreme GOPs initially kept aside

and so no data point gets excluded.

Having partitioned the GOPs into n (n ¼ 7 in
our study) shot-classes by any one of the parti-

tioning techniques described above, the I-, B-, and

P-frames in the GOPs of each shot-class Si,
16 i6 n, are separated to obtain three sets of

frames SiI, SiB, and SiP denoting the I-, B-, and P-

frames in Si, respectively. Thus, any of these shot-

class finding algorithms partitions the clips into n
shot-classes eventually separating all frames of the
video into 3n data sets. The technical strength of a

partitioning technique is decided on how accu-

rately these data sets can be modeled by standard

statistical distributions, which in turn could be

used to build accurate models for the whole video.
2 The authors thank Wu-Chi Feng for the MPEG traces.
3 The authors thank Oliver Rose for the MPEG traces.
3. Evaluation of the segmentation methods

We have presented three segmentation tech-

niques namely, EIL, ENG, and GIIL, respectively.

We first evaluate how ENG andGIIL segmentation
techniques separate the video frames into well be-

haved shot-classes. Next, frame sizes of two full-

length VBR video––one for each segmentation

method––are synthetically generated using the

model outlined in Section 3.1. To further validate

the effectiveness of the segmentation techniques

each synthetically generated VBR video has been
compared with the original video. Following stan-

dard techniques in the literature, we showQQ-plots,

and data-loss observed from simulation of leaky-

bucket for these comparisons. Experiments were

performed with MPEG-1 traces of full duration

commercial movies including Crocodile Dundee, 2

ET 2, Jurassic Park, 3 Starwars 3, Terminator II 3,

and The Silence of the Lambs 3 [14]. Most of these

movies corresponded to about 2 hours of real time.

Results reported in this paper are for the movie

Crocodile Dundee. Results for other movies being

similar have not been reported separately.

3.1. Markov-modulated gamma-based modeling of

full-length video traffic

For the evaluation of the proposed segmenta-

tion methods, we briefly recapitulate a modeling

technique proposed in [15,17]. In this model, (i) a

Markov chain generates the GOP sequence of the

synthetic video-trace, and (ii) axis-shifted Gamma

distributions are utilized to generate frame sizes.
The transition matrix of the Markov chain is ob-

tained from analysis of the segmented video. Thus,

for the same video two different segmentations

may result in two different transition matrices. The

number of states of the Markov chain is same as

the number of shot-classes generated during the

segmentation process. For this study we used se-

ven shot-classes and obtained twenty one I-, B-,
and P-frame-size distributions.

In the model a video segment in a shot-class is a

consecutive sequence of clips belonging to that

shot-class. The length of a segment is the number

of GOPs in the segment. It is known that a

Gamma distribution [2], or an exponential distri-

bution [8,15] can be used to estimate the length of

a video segment. For this study, we used only
exponentially distributed segment lengths. The

inter-shot class transition probabilities are ap-

proximated by normalized relative frequency of

transitions in the original video.

This model used the Markov chain approxi-

mated by the transition matrix for inter- and intra-
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state transitions while generating a trace. Each

shot-class corresponded to one state of the un-

derlying 7-state Markov chain. After all frames of

a GOP are generated following the Gamma dis-

tribution for the frames, the next state is deter-

mined by state transition matrix. The process is
repeated until the desired number of frames have

been generated. This state transition method gen-

erates video segments whose lengths are expo-

nentially distributed. The detailed model and

schemes for the generation of synthetic video trace

are available in [17].

3.2. Cumulative distribution of I-, B-, and P-frames

Figs. 1 and 2 show GIIL and ENG techniques

separate the I-, frames of the movie into seven

shot-classes. Separations of B-, and P-frame are

similar and have not been drawn separately. Table

2 shows the average frames sizes in the shot-classes

for GIIL and ENG. Similar nature of spread for I

and P frames despite the absolute difference in
their frame sizes in Table 2 indicates GOPs with

relatively larger I frames tend to have relatively

larger P frames as well.

3.3. QQ plots for visual inspection

The quartile–quartile (QQ) plot of two data-sets

is a well-known visual inspection method for ver-
ification of their similarity. In this method, for a
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given percentile rank (say, 10%), a pair of values of
data (say, h1293; 1243i) from two data-sets is ob-

tained. Usually, several pairs of values are col-

lected for desired range of percentile values, and

are plotted. If two data-sets are identical, a straight

line described by y ¼ x, is obtained. Thus, closer

the plot to the line y ¼ x, better the similarity be-

tween the data-sets. The plots in Figs. 3 and 4

depict the similarity of original VBR video data-
set with that synthetically generated using ENG

and GIIL with threshold factor of 1. The x- and y-
axis of the QQ plot corresponds to frame sizes in

the original trace and in the modeled trace, re-

spectively. A near-overlap of the QQ plot with the

y ¼ x line suggests the traffic models based on both

ENG and based on GIIL partitioning are quite

accurate. Of the two methods, GIIL is marginally
superior.

3.4. Leaky-bucket simulation for buffer overflow

loss observation

A QQ plot depicts global similarity of two data-

sets. However, if the elements of these two data

sets are ordered by frame index, as in case of actual
video frames, a QQ plot does not reveal any in-

formation about local distributions of the frames.

For instance, one dataset may have all the large

data values together, but another dataset may

have these large and small data values interleaved

and yet both may show identical QQ plots. For



Fig. 3. QQ plot for the whole movie generated using ENG

(threshold factor¼ 1).

Table 2

Average I-, B-, P-frame size in shot-classes

Frame type Shot class Average frame size (in bytes)

GIIL Difference ENG Difference

I 1 20166.73 21622.92

2 23968.30 3801.57 25998.68 4375.76

3 26583.57 2615.27 27889.70 1891.02

4 28692.57 2109 28963.41 1073.71

5 30803.21 2110.64 30147.70 1184.29

6 33915.01 3111.8 32213.62 2065.92

7 38915.22 5000.21 37236.78 5023.16

B 1 600.20 793.26

2 1217.59 617.39 1930.39 1137.13

3 2156.49 938.9 2913.41 983.02

4 3556.16 1399.67 3799.45 886.04

5 5372.35 1816.19 4830.36 1030.91

6 7604.58 2232.23 6372.85 1542.49

7 12055.55 4450.97 10557.03 4184.18

P 1 3204.32 3911.61

2 5269.39 2065.07 6809.16 2897.55

3 7212.75 1943.36 8324.93 1515.77

4 9158.11 1945.36 9482.27 1157.34

5 11580.79 2422.68 10852.80 1370.53

6 14593.84 3013.05 12919.13 2066.33

7 19786.70 5192.86 18085.89 5166.76

Fig. 4. QQ plot for the whole movie generated using GIIL

(threshold factor¼ 1).
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Fig. 7. Effect of threshold on I frame loss (drain rate factor¼ 4,

buffer¼ 20 ms).
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communication of VBR videos over B-ISDN,

temporal ordering of the frames plays a critical

role in DLR; for a given data transmission-rate,

occurrence of long runs of large-size frames

(known as burstiness) has higher DLR than the

absence of them. Hence, temporal burstiness of
original VBR video must be preserved in the

frame-size data generated by a good model. Most

commonly used test (see [18] for algorithmic ap-

proaches) for measuring this data size behavior is

leaky-bucket simulation where the data is passed

through a communication channel having a ge-

neric buffer with capacity c, and drain rate factor d.
For our study, buffer capacity is expressed in terms
of mean frame size of VBR source, and is inde-

pendent of d. So, for a 25-frames per second

source, c ¼ 20 ms corresponds to one half of a

mean frame size of the VBR video. The drain rate

factor d is the ratio of the number of bytes actually

drained (that is, transmitted) per second to the

average data rate of the incoming VBR video. A

drain rate factor of 1 or less would obviously cause
too much of data loss and is unlikely to be ever

used in practice. On the other hand, a high (say, 4

or more) drain rate factor would cause wastage of

channel capacity because of hardly any improve-

ment of video quality beyond such drain rates.

Drain rate factors in the range [2,4] are often used

in practice. The results included in the paper be-

long to this range. Algorithmic approaches pro-
posed in [18] may be followed for studying more

detailed impact of drain rates and burstiness on

loss patterns.

Due to their relatively larger sizes I-frames un-

like B- and P-frames are more likely to be affected

or lost during transmission. Moreover, the nature

of MPEG compression/decompression algorithms

suggests the loss of I-frames is far more crucial
than the loss of B- or P-frames for the visual

quality of received video.

Figs. 5–7 show the percentages of I-frames af-

fected in the original video and also in the syn-

thetic videos generated by the two models. One

model uses ENG as its segmentation method and

generates a full-length video using the parameters

of the original video as discussed in Section 3.1.
Results for various values of the threshold factor

used in segmentation are shown. The other model
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uses GIIL instead of ENG as its segmentation

technique. Figs. 8 and 9 show the percentages of

all rather than only I-frames affected and data loss.

The closer the plot for a segmentation method

(labeled ENG and GIIL) to that of the original

video (labeled ORG) the better the method. For
example, the horizontal line labeled ORG in Fig. 5

shows about 85% of I-frames of the original movie

are affected when the full movie is transmitted over

a communication channel whose capacity corre-

sponds to a drain rate factor of 2 with 20 ms

buffer. This is constant because it has nothing to

do with the threshold. The curves for ENG and
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GIIL show the percentages of I-frames affected for

various threshold values used in these segmenta-

tion techniques. Figs. 6 and 7 show this compari-

son for a drain rate factor of 3 and 4, respectively.

The plots indicate GIIL method is very good for a

wide range of drain rate factors, that is, commu-
nication channel capacities. It may be noted we

have observed that for a practical drain rate fac-

tor, say one in the range 2 to 4, there is hardly any

loss of B- or P-frames in either the original or the

synthetically generated traces and so these plots

haven�t been shown separately. Fig. 8, for an ex-

ample, shows the percentages of all, that is I-, B-,

and P-frames taken together, affected for a drain
rate factor of 3. Since the movie under consider-

ation has a (6,3) cyclic format, the number of I-

frames is 1
6
th of all frames and the comparison of

Fig. 8 (showing about 3% overall frames affected)

with Fig. 6 (showing about 18% I-frames affected)

reveals almost all frames affected are I-frames.

Whereas Figs. 5–8 show the percentages of the

number of frames affected, that is, frames partly or
fully lost, Fig. 9 depicts the actual percentages of

data loss of the original and the generated movies.

It again shows the model using either ENG or

GIIL very closely mimics the original movie for a

wide range of threshold and GIIL still exhibits its

superiority over ENG. All these plots showing the

leaky-bucket simulation results indicate there is a

wide range, say ½0:5; 2�, of threshold factors over
which GIIL results in very good model of VBR

video. So, the choice of a threshold is not that

crucial and a value close to the average size of B-

frame can be used to get a good model. It may be

noted the choice of a threshold decides clip for-

mation which ultimately decides segmentation and

Gamma model parameters. So, it�s important to

choose a workable threshold value. Figs. 5 and 6
indicate the range ½0:5; 2� of threshold values for

which the model (and hence data loss patterns) is

quite accurate and that values beyond 2.5 should

not be used.
4. Discussion and conclusions

A long-duration VBR video trace such as a

commercial movie contains several hundreds of
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thousands of frames having intricate variations in

their sizes. Any successful characterization of this

frame-size behavior needs to address how to par-

tition these frames into statistically characterizable

segments. The two major issues in segmentation

are the selection of the number of segments called
shot-classes, and a formulation of criteria follow-

ing which the frames can be partitioned into those

shot-classes so that I-, B-, and P-type frame-size

variation in each shot-class can be statistically

modeled. Segmentation plays a key role in the

development of frame-size-based traffic models

used for understanding the effect of data loss

during transmission of MPEG-compressed VBR
video over broadband links. The limited success of

past efforts in frame-size-based modeling of full-

length VBR video is due to the complex nature of

variations in frame-size data in an unsegmented

long-duration trace. Three different compression

techniques applied to I-, P-, and B-frames produce

different amounts of compression. Moreover, dif-

ferent segments of a lengthy video produce frames
of different sizes because of composition or content

of picture, and due to temporal similarity of ad-

jacent pictures.

In this paper, we have proposed and evaluated

three segmentation methods. We have used QQ

plots to show visual similarity of model generated

synthetic VBR video data-sets with the data-set of

the original video used for constructing the model.
Similarity of local burstiness of model-generated

and original VBR video traces have been validated

using the leaky-bucket simulation technique. The

synthetic traces were generated following the

proposed segmentation methods described in Sec-

tion 2. The recommended segmentation technique,

named GIIL, uses a user-chosen threshold. The

choice of this threshold has been discussed and it
was seen a wide range of workable threshold val-

ues exists.

The results indicate segmentation of a long-

duration video in seven shot classes based on

geometrically separated shot-class boundaries is

very effective in modeling segment-based frame-

size behavior. The findings also strengthen our

earlier work on segmentation-based approach to-
wards developing frame-size traffic models [15,17].

The authors are now working towards applying
this segmentation approach in modeling multi-

plexed videos.
References

[1] K. Chandra, A.R. Reibman, Modeling one- and two-layer

variable bit rate video, IEEE/ACM Trans. Network. 7 (3)

(1999) 398–413.

[2] A.M. Dawood, M. Ghanbari, Content-based MPEG video

traffic modeling, IEEE Trans. Multimedia 1 (1) (1999) 77–

87.

[3] M. Frey, S. Nguyen-Quang, A gamma-based framework

for modeling variable-rate MPEG video sources: The GOP

GBAR model, IEEE/ACM Trans. Network. 8 (6) (2000)

710–719.

[4] D.P. Heyman, The GBAR source model for VBR video

conferences, IEEE/ACM Trans. Network. 5 (4) (1997)

554–560.

[5] D.P. Heyman, A. Tabatabai, T.V. Lakshman, Statistical

analysis and simulation study of video teleconferencing

traffic in ATM, IEEE Trans. Circ. Syst. Video Technol. 2

(1992) 49–59.

[6] Y. Iraqi, R. Boutaba, Supporting MPEG video VBR traffic

in wireless networks, Comput. Commun. 24 (2001) 1188–

1201.

[7] M. Krunz, R. Sass, H. Hughes, Statistical characteristics

and multiplexing of MPEG streams, in: Proceedings of the

IEEE INFOCOM 1995, 1995, pp. 455–462.

[8] M. Krunz, S.K. Tripathi, Scene-based characterization of

VBR MPEG-compressed video traffic, in: Proceedings of

the 1997 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems,

1997, pp. 192–202.

[9] D.M. Lucantoni, M.F. Neuts, A.R. Reibman, Methods for

performance evaluation of VBR video traffic models,

IEEE/ACM Trans. Network. 2 (2) (1994) 176–180.

[10] P. Manzoni, P. Cremonesi, G. Serazzi, Workload models

of VBR video traffic and their use in resource allocation

policies, IEEE/ACM Trans. Network. 7 (3) (1999) 387–

397.

[11] B. Melamed, D.E. Pendarakis, Modeling full-length VBR

video using markov-renewal-modulated TES models, J.

Selected Areas Commun. 16 (5) (1998) 600–611.

[12] M. Nomura, T. Fuji, N. Ohta, Basic characteristics of

variable rate video coding in ATM environment, J.

Selected Areas Commun. 7 (1989) 752–760.

[13] Q. Ren, H. Kobayashi, Diffusion approximation modeling

for markov modulated bursty traffic and its applications to

bandwidth allocation in ATM networks, J. Selected Areas

Commun. 16 (5) (1998) 679–691.

[14] O. Rose, Statistical properties of MPEG video traffic and

their impact on traffic modeling in ATM systems, in:

Proceedings of the 20th Annual Conference on Local Area

Networks, 1995, pp. 397–406.

[15] U.K. Sarkar, S. Ramakrishnan, D. Sarkar, Modeling full-

length video using markov-modulated gamma-based



188 U.K. Sarkar et al. / Computer Networks 44 (2004) 177–188
framework, in: Proceedings of IEEE Globecom 2001,

Multimedia QoS/Video Applications, 2001, pp. 1–5.

[16] U.K. Sarkar, S. Ramakrishnan, D. Sarkar, Segmenting

full-length VBR video into shots for modeling with

markov-modulated gamma-based framework, in: Internet

and Multimedia Systems II, Proceedings of SPIE, vol.

4519, 2001, pp. 191–202.

[17] U.K. Sarkar, S. Ramakrishnan, D. Sarkar, Modeling full-

length video using markov-modulated gamma-based

framework, IEEE/ACM Trans. Network 11 (4) (2003)

638–649.

[18] C. Tryfonas, A. Varma, S. Varma, Efficient algorithms for

computation of the burstiness curve of video sources, in:

Proceedings of International Teletraffic Congress (ITC-16)

99, 1999.

[19] J.-L. Wu, Y.-W. Chen, K.-C. Jiang, Two models for

variablebit rate MPEG sources, IEICE Trans. Commun.

E78-B (1995) 737–745.

Uttam K. Sarkar received his B.Tech.,
M.Tech., and Ph.D. degrees from the
Department of Computer Science and
Engineering of the Indian Institute of
Technology, Kharagpur. His current
research interests include Video Traffic
Modeling, Multimedia Systems, and
Combinatorial Algorithms. He is
presently an Associate Professor at the
Indian Institute of Management Cal-
cutta. His e-mail address is uttam@ii-
mcal.ac.in.
Subramanian Ramakrishnan received
his B.Stat. (Honours), M.Stat., and
Ph.D. degrees in 1974, 1975, and 1982
respectively from the Indian Statistical
Institute, Calcutta, India. Since then
he has been a faculty member at the
University of Miami where he is cur-
rently an Associate Professor in the
Department of Mathematics. His re-
search interests include the founda-
tions of probability theory and
stochastic processes, theory of gam-
bling, and more recently, discrete-time
queueing networks and theoretical
computer science. His e-mail address is ramakris@math.mi-
ami.edu.
Dilip Sarkar (SM�96) received his
B.Tech. from the Indian Institute of
Technology Kharagpur, M.S. from the
Indian Institute of Science Bangalore,
and Ph.D. from the University of
Central Florida. He is an Associate
Professor of Computer Science at the
University of Miami, Coral Gables.
His research interests include VBR
video traffic modeling, multimedia
communication over broadband and
wireless networks, middleware and
Web computing, design and analysis of
algorithms, parallel and distributed
processing. He is a senior member of the IEEE, a member of
IEEE Computer Society and the Association for Computing
Machinery. His e-mail address is sarkar@cs.miami.edu.

mail to: mailto:uttam@iimcal.ac.in
mail to: mailto:uttam@iimcal.ac.in
mail to: mailto:ramakris@math.miami.edu
mail to: mailto:ramakris@math.miami.edu
mail to: mailto:sarkar@cs.miami.edu

	Study of long-duration MPEG-trace segmentation methods for developing frame-size-based traffic models
	Introduction
	Two categories of traffic model
	Segmentation of a long-duration video trace
	Outline of the paper

	VBR video segmentation methods
	Formation of clips
	Methods for identification of shot-classes
	Equal interval lengths for all shot-classes (EIL)
	Equal number of GOPs in all shot-classes (ENG)
	Geometrically increasing interval lengths for shot-classes (GIIL)


	Evaluation of the segmentation methods
	Markov-modulated gamma-based modeling of full-length video traffic
	Cumulative distribution of I-, B-, and P-frames
	QQ plots for visual inspection
	Leaky-bucket simulation for buffer overflow loss observation

	Discussion and conclusions
	References


