TheJava
Virtual Machine
Specification

The Javd"” Series

Lisa Friendly, Series Editor
Bill Joy, Technical Advisor

The Java™ Programming Language
Ken Arnold and James Gosling
ISBN 0-201-63455-4

The Java™ Language Specification
James Gosling, Bill Joy, and Guy Steele
ISBN 0-201-63451-1

The Java™ Virtual Machine Specification
Tim Lindholm and Frank Yellin
ISBN 0-201-63452-X

The Java™ Application Programming Interface,
Volume 1: Core Packages

James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63453-8

The Java™ Application Programming Interface,
Volume 2: Window Toolkit and Applets

James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63459-7

The Java™ Tutorial: Object-Oriented Programming for the Internet
Mary Campione and Kathy Walrath
ISBN 0-201-63454-6

The Java™ Class Libraries: An Annotated Reference
Patrick Chan and Rosanna Lee
ISBN 0-201-63458-9

The Java™ FAQ: Frequently Asked Questions
Jonni Kanerva
ISBN 0-201-63456-2

TheJava
Virtual Machine
Specification

Tim Lindholm
Frank Yellin

A
vv

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts ¢ Harlow, England ¢« Menlo Park, California
Berkeley, California « Don Mills, Ontario « Sydney
Bonn « Amsterdam ¢ Tokyo ¢ Mexico City

Copyrightd 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under SUN's
intellectual property rights that are essential to practice this specification. This license
allows and is limited to the creation and distribution of clean room implementations of this
specification that (i) include a complete implementation of the current version of this spec-
ification without subsetting or supersetting, (ii) implement all the interfaces and function-
ality of the standardava* packages as defined by SUN, without subsetting or
supersetting, (iii) do not add any additional packages, classes or methodgta.the
packages (iv) pass all test suites relating to the most recent published version of this spec-
ification that are available from SUN six (6) months prior to any beta release of the clean
room implementation or upgrade thereto, (v) do not derive from SUN source code or
binary materials, and (vi) do not include any SUN binary materials without an appropriate
and separate license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun
Microsystems Computer Corporation logo, Java, JavaSoft, JavaScript and HotJava are
trademarks or registered trademarks of Sun Microsystems, Inc. &JISI4 registered
trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd. All other product names mentioned herein are the trademarks of their
respective owners.

THIS PUBLICATION IS PROVIDED “AS I1S” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Text printed on recycled and acid-free paper

ISBN 0-201-63452-X
1234567 89-MA-00999897
First printing, September1996

To Lucy, Beatrice, and Arnold —TL

To Mark —FY

"Table of Contents

Preface XV
1 Introduction. i 1
2 Java CoONCEPLS . .ottt e e 5

2.1 UNICOOE. . .t 5

2.2 ldentifiers 6

2.3 Literals . . . 6

24 Typesand Values e 6

24.1 Primitive Typesand Values. 7
24.2 Operatorson Integral Values. 8
2.4.3 Operators on Floating-Point Values 8
24.4 Operators oboolean Values. 9
245 Reference Types, Objects, and Reference Values. 9
2.4.6 The Clastbject 10
2.4.7 The ClasString i e 10
248 Operatorson Objects.t 10
25 Variables. 10
251 Initial Values of Variables L. 12
25.2 Variables Have Types, Objects Have Classes 13
2.6 Conversions and Promotionsttt 13
26.1 Identity CONVersionSot 14
2.6.2 Widening Primitive Conversions. 15
2.6.3 Narrowing Primitive Conversions. 15
264 Widening Reference Conversions. 16
2.6.5 Narrowing Reference Conversions 16
2.6.6 Assignment CONVErsioN.uuiinnn e, 17
2.6.7 Method Invocation Conversion., 18
2.6.8 Casting ConversionsSt 19
2.6.9 Numeric Promotion. 19
27 Namesand Packagesc.oitii i 20
270 NaAMES . .ot 20
2.7.2 Packages i 20
2.7.3 MeEMDEIS . .. 21
2.7.4 Package Members 21
275 TheMembersofaClassType............ccoiiiiii.. 21
2.7.6 The Members of an Interface Type 22
2777 The MembersofanArray Type 22

Vii

viii

THE JAVAM VIRTUAL MACHINE SPECIFICATION

2.7.8 Qualified Names and Access Control. 22
2.7.9 Fully Qualified Names 23
2.8 ClaSSES . i 24
281 Class Nameso e 24
2.8.2 Class Modifiers. e 24
2.8.3 Superclasses and Subclasses. 25
284 The ClassMembers 25
2.9 Fields e 26
291 Field Modifiers. 26
2.9.2 Initializationof Fields. 27
210 Methods. 27
2.10.1 Formal Parameterst 28
2.10.2 SigNAtUIe. . . .ttt 28
2.10.3 Method Modifiers. 28
2.11 Static Initializers 29
212 CONSIIUCIONS. . . .ottt e e e e 29
213 Interfaces e 30
2.13.1 Interface Modifiers. 31
2.13.2 Superinterfaces. 31
2.13.3 Interface Members 31
2.13.4 Interface (Constant) Fields. 31
2.13.5 |Interface (Abstract) Methods 32
2.13.6 Overriding, Inheritance, and Overloading in Interfaces. 32
2. 04 AITAYS .ottt 32
2141 Array TYPeS . oot 33
2.14.2 Array Variables. e 33
2143 Array Creation 34
2144 AMAY ACCESS . . .ottt 34
215 EXCEPLONS . . . oo 34
2.15.1 The Causesof Exceptions 35
2.15.2 Handlingan Exception., 36
2.15.3 The ExceptionHierarchy 38
2.15.4 The Classeéception andRuntimeException........... 38
216 EXECULION.t e 40
2.16.1 Virtual Machine Start-up 40
2.16.2 Loading.t 43
2.16.3 Linking: Verification, Preparation, and Resolution 43
2.16.4 Initialization 46
2.16.5 Detailed Initialization Procedure 47
2.16.6 Creation of New Class Instances 49
2.16.7 Finalization of Class Instances. 51
2.16.8 Finalization and Unloading of Classes and Interfaces........ 52
2.16.9 Virtual Machine Exit 52
217 Threads 53
Structure of the Java Virtual Machine 57
3.1 Data TYPES . . et 57
3.2 Primitive Typesand Values i 58
3.2.1 Integral Typesand Values. 58
3.2.2 Floating-Point Typesand Values 59
3.2.3 ThereturnAddress Typeand Values. 60
3.24 Therels Nboolean Type. 60

CONTENTS iX

3.3 Reference TypesandValues. 61
B4 WOIAS .« 61
35 RuntimeData Areast 61
351 Thepc Register. 61
3.5.2 JavaStack ... 62
3.5.3 Heap ... 63
354 Method Area i 63
3.55 Constant Pool 64
3.5.6 Native Method Stacks i 65
3.6 Frames 66
3.6.1 Local Variables 66
3.6.2 Operand Stackst 67
3.6.3 Dynamic Linking. 67
3.6.4 Normal Method Completion. 68
3.6.5 Abnormal Method Completion. 68
3.6.6 Additional Information L 68
3.7 Representation of Objects. 69
3.8 Special Initialization Methods 69
3.9 EXCEPUONS . ..o 69
3.10 TheclassFile Format. 70
3.11 Instruction Set SUMMaArYttt e e e 71
3.11.1 Types and the Java Virtual Machine 72
3.11.2 Load and Store Instructions. 74
3.11.3 Arithmetic Instructions i 75
3.11.4 Type Conversion Instructions 77
3.11.5 Object Creation and Manipulation 79
3.11.6 Operand Stack Management Instructions 79
3.11.7 Control Transfer Instructions 80
3.11.8 Method Invocation and Return Instructions 80
3.11.9 Throwing and Handling Exceptions 81
3.11.10 Implementinginally.ot 81
3.11.11 Synchronization. 81
3.12 Public Design, Private Implementation 81
4 TheclassFileFormat................ciiiiiiiinn .. 83
4.1 ClassFile o 84
4.2 Internal Form of Fully Qualified Class Names. 89
4.3 DESCIIPIOIS . o e e 89
43.1 Grammar Notation. 90
4.3.2 Field Descriptorso 90
4.3.3 Method DescCriptors.o e 91
4.4 Constant Pool e 92
4.4.1 CONSTANT _CTaSS « vttt ettt et ettt e e e e e e e e 93
442 CONSTANT_Fieldref, CONSTANT _Methodref, and
CONSTANT_InterfaceMethodref 94
4.4.3 CONSTANT _SEring ..ot it e e et et et e e 96
4,44 CONSTANT_Integer andCONSTANT_Float 96
4.4.5 CONSTANT_Long andCONSTANT _Double 97
4.4.6 CONSTANT_NameAndType iiiiiie it 99
4.4.7 CONSTANT_ULT8 e e e e e 100
A5 Fields 101
4.6 Methods 104

THE JAVAM VIRTUAL MACHINE SPECIFICATION

AttribUteS . . . 106
4.7.1 Defining and Naming New Attributes 107
4,7.2 SourceFileAttribute L 108
4.7.3 ConstantValue Attribute 109
474 Code Attribute. 110
4,75 Exceptions Attribute L 113
4.7.6 LineNumberTable Attribute 115
4.7.7 LocalvariableTable Attribute 116
Constraints on Java Virtual MachineCode 118
481 StaticConstraints 118
4.8.2 Structural Constraints. 121
Verification ofclass Files i 124
4.9.1 The Verification Process. 125
4.9.2 The Bytecode Verifier. 128
4.9.3 Long Integersand Doubles. 131
4.9.4 Instance Initialization Methods and Newly Created Objects. . 131
4.9.5 ExceptionHandlers L. 133
4.9.6 Exceptionsanttinally 133
Limitations of the Java Virtual Machine atithss File Format 136
Constant Pool Resolution 139
Class and Interface Resolution 140
5.1.1 Current Class or Interface Not Loaded by a Class Loader. ... 141
5.1.2 Current Class or Interface Loaded by a Class Loader 144
5.1.3 Array Classest 146
5.2 Field and Method Resolution. 147
5.3 Interface Method Resolution. 148
54 StringResolution. e 148
5.5 Resolution of Other Constant Pool Iltems 149
Java Virtual Machine Instruction Set 151
6.1 Assumptions: The Meaning of “Must” 151
6.2 Reserved OpCodesS 152
6.3 Virtual Machine Errors 152
6.4 The Java Virtual Machine Instruction Set 152
Compiling for the Java Virtual Machine. 339
7.1 Format of Examples. e e 340
7.2 Use of Constants, Local Variables, and Control Constructs 341
7.3 AthmMetic e 345
7.4 Accessingthe ConstantPool..................., 346
7.5 More Control Examples. 348
7.6 Receiving ArgumeNntsttt 351
7.7 Invoking Methods e 352
7.8 Workingwith Class Instances 354
7.9 AITAYS . oo 356
7.10 Compiling Switches. e 359
7.11 Operationsonthe Operand Stack 361
7.12 Throwing and Handlingxceptions. 362
7.13 Compilingfinally. e e e 366
7.14

Synchronization. 369

CONTENTS Xi

8 Threadsand LOCKS, 371
8.1 Terminology and Framework i 371
8.2 Execution Orderand Consistency, 373
8.3 RulesAboutVariables 374
8.4 Nonatomic Treatment of Double and Long Variables 376
85 Rules AboUtLOCKS. i 376
8.6 Rules About the Interaction of Locks and Variables 377
8.7 Rules for Volatile Variables 378
8.8 Prescient Store Operations e 378
8.9 DISCUSSION. . . ottt 379
8.10 Example: Possible Swap. 380
8.11 Example: Out-of-Order Writes. e 384
8.12 Threads. e 386
8.13 Locks and Synchronization 386
8.14 Wait Sets and Notification i 387

9 AnOptimizationc. i 389
9.1 Dynamic Linking via Rewriting. 389
9.2 The_quick Pseudo-instructions. 390

10 Opcode Mnemonicsby Opcode.coov.n.. 429

Series Foreword

About the Java Series

The Java Series books provide definitive reference documentation for Java program-
mers and end users. They are written by members of the Java team and published
under the auspices of JavaSoft, a Sun Microsystems business. The World Wide Web
allows Java documentation to be made available over the Internet, either by down-
loading or as hypertext. Nevertheless, the worldwide interest in Java technology led
us to write and publish these books to supplement all of the documentation at our
Web site.

To learn the latest about the Java Platform and Environment, or to download
the latest Java release, visit our World Wide Web sitegi: //java.sun.com.

For updated information about the Java Series, including sample code, errata, and
previews of forthcoming books, vigittp://java.sun.com/Series.

We would like to thank the Corporate and Professional Publishing Group at
Addison-Wesley for their partnership in putting together the Series. Our editor
Mike Hendrickson and his team have done a superb job of navigating us through
the world of publishing. Within Sun, the support of James Gosling, Ruth Henni-
gar, Jon Kannegaard, and Bill Joy ensured that this series would have the
resources it needed to be successful. In addition to the tremendous effort by indi-
vidual authors, many members of the JavaSoft team have contributed behind the
scenes to bring the highest level of quality and engineering to the books in the
Series. A personal note of thanks to my children Christopher and James for put-
ting a positive spin on the many trips to my office during the development of the
Series.

Lisa Friendly
Series Editor

Xiii

Preface

THIS book has been written as a complete specification for the Java Virtual
Machine. It is essential for compiler writers who wish to target a Java Virtual
Machine and for programmers who want to implement a compatible Java Vir-
tual Machine. It is also a definitive source for anyone who wants to know
exactly how the Java programming language works.

The Java Virtual Machine is an abstract design. This book serves as documen-
tation for a concrete implementation of Java (including Sun'’s) only as a blueprint
documents a house. Any implementation of Java must embody this specification
of the Java Virtual Machine, but is constrained by it only where absolutely neces-
sary.

This book describes Version 1.0.2 of the Java Virtual Machine, which is com-
patible with Version 1.0.2 of the Java programming language, as specifigd in
Java Language Specificatigaddison-Wesley, 1996). Future versions of the Java
Virtual Machine will be backward compatible with this specification.

We intend that this specification should sufficiently document the Java Virtual
Machine to make possible compatible clean-room implementations. Sun provides
tests which verify the proper operation of implementations of the Java Virtual
Machine. If you are considering constructing your own implementation, please
contact us at the email address below to obtain assistance to ensure the 100%
compatibility of your implementation.

Send comments on this specification or questions about implementing the
Java Virtual Machine to our electronic mail addregssi@java.sun. com.

The original Java Virtual Machine was designed by James Gosling in 1992. It
evolved to its present form through the direct and indirect efforts of many people,
spanning Sun’s Green Project, FirstPerson, Inc., the LiveOak project, Java Prod-
ucts Group, and JavaSoft. The authors are grateful to the many contributors.

This book began as internal project documentation. Kathy Walrath edited this
early work, helping to give the world its first look at the internals of Java. It was
then converted to HTML by Mary Campione and was made available on our Web
site before being expanded into book form.

XV

XVi PREFACE

The present document owes much to the support of the group led by General
Manager Ruth Hennigar and to the efforts of series editor Lisa Friendly and Mike
Hendrickson of Addison-Wesley. The many criticisms and suggestions received
from reviewers of early online drafts, as well as drafts of the book, improved its
quality immensely. We owe special thanks to Richard Tuck for his careful review
of the manuscript and to the authorsTdfe Java Language Specificatidor
allowing us to quote extensively from that book. Particular thanks to Bill Joy
whose comments, reviews, and guidance have contributed greatly to the complete-
ness and accuracy of this book.

Tim Lindholm

Frank Yellin

JavaSoft
June, 1996

References

IEEE Standard for Binary Floating-Point ArithmetiaNSI/IEEE Std. 754-1985.
Available from Global Engineering Documents, 15 Inverness Way East, Engle-
wood, Colorado 80112-5704 USA, +1 800 854 7179.

Hoare, C.A.RHints on Programming Language Desi@tanford University
Computer Science Department Technical Report No CS-73-403, December
1973. Reprinted in Sigact/Sigplan Symposium on Principles of Programming
Languages. Association for Computing Machinery, New York, October 1973.

The Unicode Standard: Worldwide Character EncodWeysion 1.0, Volume 1,
ISBN 0-201-56788-1, and Volume 2, ISBN 0-201-60845-6. Additional infor-
mation about Unicode 1.1 may be found#&t://unicode.org.

CHAPTER 1

Introduction

A Bit of History

JAVA is a general-purpose concurrent object-oriented programming language. Its
syntax is similar to C and C++, but it omits many of the features that make C and
C++ complex, confusing, and unsafe. Java was initially developed to address the
problems of building software for networked consumer devices. It was designed to
support multiple host architectures and to allow secure delivery of software compo-
nents. To meet these requirements, compiled Java code had to survive transport
across networks, operate on any client, and assure the client that it was safe to run.

The popularization of the World Wide Web made these attributes of Java
much more interesting. The Internet demonstrated how media-rich content could
be made accessible in simple ways. Web browsers such as Mosaic enabled mil-
lions of people to roam the Net and made Web surfing part of popular culture. At
last there was a medium where what you saw and heard was essentially the same
whether you were using a Mac, PC, or UNIX machine, and whether you were
connected to a high-speed network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web’s
HTML document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
all the features users wanted. Extensibility was the answer.

Sun’s HotJava browser showcases Java’s interesting properties by making it
possible to embed Java programs inside HTML pages. These programs, known as
applets are transparently downloaded into the HotJava browser along with the
HTML pages in which they appear. Before being accepted by the browser, applets
are carefully checked to make sure they are safe. Like HTML pages, compiled
Java programs are network- and platform-independent. Applets behave the same

THE JAVAM VIRTUAL MACHINE SPECIFICATION

way regardless of where they come from, or what kind of machine they are being
loaded into and run on.

With Java as the extension language, a Web browser is no longer limited to a
fixed set of capabilities. Programmers can write an applet once and it will run on
any machine, anywhere. Visitors to Java-powered Web pages can use content
found there with confidence that it will not damage their machine.

Java has demonstrated a new way to use the Internet to distribute software.
This new paradigm goes beyond browsers. We think it is an innovation with the
potential to change the course of computing.

The Java Virtual Machine

The Java Virtual Machine is the cornerstone of Sun’s Java programming language. It
is the component of the Java technology responsible for Java’s cross-platform deliv-
ery, the small size of its compiled code, and Java’s ability to protect users from mali-
cious programs.

The Java Virtual Machine is an abstract computing machine. Like a real com-
puting machine, it has an instruction set and uses various memory areas. It is rea-
sonably common to implement a programming language using a virtual machine;
the best-known virtual machine may be the P-Code machine of UCSD Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated its instruction set in software on a handheld
device that resembled a contemporary Personal Digital Assistant (PDA). Sun’s
current Java release, the Java Developer’s Kit (JDK) version 1.0.2, emulates the
Java Virtual Machine on Win32, MacOS, and Solaris platforms. However, the
Java Virtual machine does not assume any particular implementation technology
or host platform. It is not inherently interpreted, and it may just as well be
implemented by compiling its instruction set to that of a real CPU, as for a con-
ventional programming language. It may also be implemented in microcode, or
directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language,
only of a particular file format, the€lass file format. Aclass file contains Java
Virtual Machine instructions (doytecodesand a symbol table, as well as other
ancillary information.

INTRODUCTION 3

For the sake of security, the Java Virtual Machine imposes strong format and

structural constraints on the code ittass file. However, any language with
functionality that can be expressed in terms of a vdligs file can be hosted by

the Java Virtual Machine. Attracted by a generally available, machine-indepen-
dent platform, implementors of other languages are turning to the Java Virtual
Machine as a delivery vehicle for their languages. In the future, we will consider
bounded extensions to the Java Virtual Machine to provide better support for other
languages.

Summary of Chapters

The rest of this book is structured as follows:

Chapter 2 gives an overview of Java concepts and terminology necessary for
the rest of the book.

Chapter 3 gives an overview of the Java Virtual Machine.

Chapter 4 defines thelass file format, a platform- and implementation-
independent file format for compiled Java code.

Chapter 5 describes runtime management of the constant pool.

Chapter 6 describes the instruction set of the Java Virtual Machine, presenting
the instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives examples of compiling Java code into the instruction set of the
Java Virtual Machine.

Chapter 8 describes Java Virtual Machine threads and their interaction with
memory.

Chapter 9 describes an optimization used by Sun’s implementation of the Java
Virtual Machine. While not strictly part of the specification, it is a useful tech-
nique in itself, as well as an example of the sort of implementation technique
that may be employed within a Java Virtual Machine implementation.

Chapter 10 gives a table of Java Virtual Machine opcode mnemonics indexed
by opcode value.

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Use of Fonts

In this book, fonts are used as follows:

* A fixed width font is used for code examples written in Java, Java Virtual
Machine data types, exceptions, and errors.

« ltalic is used for Java Virtual Machine “assembly language,” its opcodes and
operands, as well as items in the Java Virtual Machine’s runtime data areas. It
is also used to introduce new terms, and simply for emphasis.

CHAPTER2

Java Concepts

THE Java Virtual Machine was designed to support the Java programming lan-
guage. Some concepts and vocabulary from the Java language are thus necessary
to understand the virtual machine. This chapter gives enough of an overview of
Java to support the discussion of the Java Virtual Machine to follow. Its material
has been condensed frobhe Java Language Specificatidsy James Gosling,
Bill Joy, and Guy Steele. For a complete discussion of the Java language, or for
details and examples of the material in this chapter, refer to that book. Readers
familiar with that book may wish to skip this chapter. Readers familiar with Java,
but not withThe Java Language Specificati@mould at least skim this chapter for
the terminology it introduces.

This chapter does not attempt to provide an introduction to or a full treatment of
the Java language. For an introduction to Java,TkeeJava Programming Lan-
guage by Ken Arnold and James Gosling.

2.1 Unicode

Java programs are written using theicodecharacter encoding, version 1.1.5, as
specified inThe Unicode Standard: Worldwide Character Encodivigysion 1.0,
Volume 1, ISBN 0-201-56788-1, and Volume 2, ISBN 0-201-60845-6, and the
update information about Unicode 1.1.5 availablétat //unicode.org. There
are a few minor errors in this update information; refefthe Java Language
Specificatiorfor corrections. Updates to the Unicode information published there
will be posted under the URkttp://java.sun.com/Series.

Except for comments and identifiers (§2.2) and the contents of character and
string literals (82.3), all input elements in a Java program are formed from
only ASClIcharacters. ASCIl (ANSI X3.4) is the American Standard Code for

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Information Interchange. The first 128 characters of the Unicode character
encoding are the ASCII characters.

2.2 ldentifiers

An identifier is an unlimited-length sequence of Unicddters anddigits, the

first of which must be a letter. Letters and digits may be drawn from the entire
Unicode character set, which supports most writing scripts in use in the world
today. This allows Java programmers to use identifiers in their programs that are
written in their native languages.

The Java methodharacter.isJavalLetter returnstrue when passed a
Unicode character that is considered to be a letter in Java identifiers. The Java
methodCharacter.isJavalLetterOrDigit returnstrue when passed a Uni-
code character that is considered to be a letter or digit in Java identifiers.

Two identifiers are the same only if they have the same Unicode character for
each letter or digit; identifiers that have the same external appearance may still be
different. An identifier must not be the same as a Java keyword or a boolean literal
(true or false).

2.3 Literals

A literal is the source code representation of a value of a primitive type (82.4.1),
the String type (82.4.7), or the null type (82.4). String literals and, more gener-
ally, strings that are the values of constant expressions, are “interned” so as to
share unique instances, using the meSwdng.intern.
The null type has one value, the null reference, denoted by theditéfal
Theboolean type has two values, denoted by the litetalse andfalse.

2.4 Types and Values

Java is astrongly typedlanguage, which means that every variable and every
expression has a type that is known at compile time. Types limit the values that a
variable (82.5) can hold or that an expression can produce, limit the operations
supported on those values, and determine the meaning of those operations. Strong
typing helps detect errors at compile time.

JAVA CONCEPTS 7

The types of the Java language are divided into two categporiiestive types
(82.4.1) andeference typef82.4.5). There is also a speaiaill type the type of
the expressionul1, which has no name. The null reference is the only possible
value of an expression of null type, and can always be converted to any reference
type. In practice, the Java programmer can ignore the null type and just pretend
thatnul1 is a special literal that can be of any reference type.

Corresponding to the primitive types and reference types, there are two cate-
gories of data values that can be stored in variables, passed as arguments, returned
by methods, and operated upgmimitive values(82.4.1) andeference values
(82.4.5).

2.4.1 Primitive Types and Values

A primitive typeis a type that is predefined by the Java language and named by a
reserved keyword?rimitive valuesdo not share state with other primitive values.

A variable whose type is a primitive type always holds a primitive value of that
typel

The primitive types are thsolean typeand thenumeric typesThe numeric
types are thintegral typesand thefloating-point types.

The integral types areyte, short, int, andlong, whose values are 8-bit,
16-bit, 32-bit, and 64-bit signed two’s-complement integers, respectively, and
char, whose values are 16-bit unsigned integers representing Unicode characters
(82.1).

The floating-point typesre float, whose values are 32-bit IEEE 754 float-
ing-point numbers, andouble, whose values are 64-bit IEEE 754 floating-point
numbers as specified lEEE Standard for Binary Floating-Point Arithmetic
ANSI/IEEE Standard 754-1985 (IEEE, New York). The IEEE 754 standard
includes not only positive and negative sign—magnitude numbers, but also positive
and negative zeroes, positive and negatifiaities and a special Not-a-Number
(hereafter abbreviated NaN) value. The NaN value is used to represent the result
of certain operations such as dividing zero by zero.

Theboolean type has the truth valuesue andfalse.

1. Note that a local variable is not initialized on its creation, and is only considered to hold a value
once it is assigned to (§2.5.1).

THE JAVAM VIRTUAL MACHINE SPECIFICATION

2.4.2 Operators on Integral Values

Java provides a number of operators that act on integral values, including numerical
comparison (which results in a value of ty®1ean), arithmetic operators, incre-
ment and decrement, bitwise logical and shift operators, and numeric cast (82.6.8).

Operands of certain unary and binary operators are subject to numeric promo-
tion (82.6.9).

The built-in integer operators do not indicate overflow or underflow in any
way; they wrap around on overflow or underflow. The only integer operators that
can throw an exception are the integer divide and integer remainder operators,
which can throw aArithmeticException if the right-hand operand is zero.

Any value of any integral type may be cast to or from any numeric type. There
are no casts between integral types and thelypeean.

2.4.3 Operators on Floating-Point Values

Java provides a number of operators that act on floating-point values, including
numerical comparison (which results in a value of typelean), arithmetic
operators, increment and decrement, and numeric cast (82.6.8).

If at least one of the operands to a binary operator is of floating-point type,
then the operation is a floating-point operation, even if the other operand is inte-
gral. Operands of certain unary and binary operators are subject to numeric pro-
motion (82.6.9).

Operators on floating-point numbers behave exactly as specified by IEEE 754.
In particular, Java requires support of IEEE @&#ormalizedloating-point num-
bers andgradual underflowwhich make it easier to prove desirable properties of
particular numerical algorithms.

Java requires that floating-point arithmetic behave as if every floating-point
operator rounded its floating-point result to the result precisimxactresults
must be rounded to the representable value nearest to the infinitely precise result;
if the two nearest representable values are equally near, the one with its least sig-
nificant bit zero is chosen. This is the IEEE 754 standard’s default rounding mode
known asound-to-nearest

Java usesound-towards-zeranode when converting a floating-point value to
an integer (82.6.3). Round-towards-zero mode acts as though the number were trun-
cated, discarding the mantissa bits. Round-towards-zero chooses as its result the for-
mat’s value closest to and no greater in magnitude than the infinitely precise result.

JAVA CONCEPTS 9

Java floating-point operators produce no exceptions (82.15). An operation that
overflows produces a signed infinity; an operation that underflows produces a
signed zero; and an operation that has no mathematically definite result produces
NaN. All numeric operations (except for numeric comparison) with NaN as an
operand produce NaN as a result.

Any value of any floating-point type may be cast (§2.6.8) to or from any
numeric type. There are no casts between floating-point types and the type
boolean.

2.4.4 Operators onboolean Values

The boolean operators include relational operators and logical operators. Only
boolean expressions can be used in Java's control flow statements and as the first
operand of the conditional operatar. An integral valuex can be converted to a
value of typeboolean, following the C language convention that any nonzero
value istrue, by the expressior!=0. An object referencebj can be converted
to a value of typdoolean, following the C language convention that any refer-
ence other thanu11 is true, by the expressiosbj!=null.

There are no casts between the typelean and any other type.

2.4.5 Reference Types, Objects, and Reference Values

There are three kinds of reference typescthss type$82.8), thanterface types
(82.13), and thearray types(82.14). Anobjectis a dynamically created class
instance or an array. The reference values (ofterrgfetence} are pointersto
these objects and a special null reference, which refers to no object.

A class instance is explicitly created bglass instance creation expression
or by invoking thenewInstance method of clas€lass. An array is explicitly
created by aarray creation expressiorAn object is created in the Java heap, and
is garbage collected after there are no more references to it. Objects are never
reclaimed or freed by explicit Java language directives.

There may be many references to the same object. Most objects have state,
stored in the fields of objects that are instances of classes or in the variables that
are the components of an array object. If two variables contain references to the
same object, the state of the object can be modified using one variable’s reference
to the object, and then the altered state can be observed through the other vari-
able’s reference.

10

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Each object has an associdtmrk (§2.17, 88.13) that is used bynchronized
methods and by thgynchronized statement to provide control over concurrent
access to state by multiple threads (82.17, §8.12).

Reference types form a hierarchy. Each class type is a subclass of another
class type, except for the cladsject (§82.4.6), which is the superclass (§2.8.3) of
all other class types. All objects, including arrays, support the methods of class
Object. String literals (82.3) are references to instances of stassig (§2.4.7).

2.4.6 The Clas®bject

The standard clagibject is the superclass (§2.8.3) of all other classes. A vari-
able of typebject can hold a reference to any object, whether it is an instance of
a class or an array. All class and array types inherit the methods dficjass.

2.4.7 The Classtring

Instances of clasString represent sequences of Unicode characters (§2.1). A
String object has a constant, unchanging value. String literals (82.3) are refer-
ences to instances of clagsing.

2.4.8 Operators on Objects

The operators on objects include field access, method invocation, cast, string con-
catenation, comparison for equalityystanceof, and the conditional operater.

2.5 Variables

A variable is a storage location. It has an associated type, sometimes called its
compile-time typethat is either a primitive type (82.4.1) or a reference type
(82.4.5). A variable always contains a value that is assignment compatible
(82.6.6) with its type. A variable of a primitive type always holds a value of that
exact primitive type. A variable of reference type can hold either a null reference
or a reference to any object whose class is assignment compatible (82.6.6) with
the type of the variable.

Compatibility of the value of a variable with its type is guaranteed by the
design of the Java language because default values (82.5.1) are compatible and
all assignments to a variable are checked, at compile time, for assignment com-
patibility.

JAVA CONCEPTS 11

There are seven kinds of variables:

1. A class variablds a field of a class type declared using the keywaedic
(82.9.1) within a class declaration, or with or without the keyvegatctic in
an interface declaration. Class variables are created when the class or interface
is loaded (82.16.2) and are initialized on creation to default values (82.5.1).
The class variable effectively ceases to exist when its class or interface is
unloaded (82.16.8) after any necessary finalization of the class (82.16.8) has
been completed.

2. Aninstance variablés a field declared within a class declaration without using
the keywordstatic (82.9.1). If a clasg has a fielda that is an instance vari-
able, then a new instance variablis created and initialized to a default value
(82.5.1) as part of each newly created object of atagsof any class that is a
subclass of. The instance variable effectively ceases to exist when the object
of which it is a field is no longer referenced, after any necessary finalization of
the object (82.16.7) has been completed.

3. Array componentgare unnamed variables that are created and initialized to
default values (82.5.1) whenever a new object that is an array is created
(82.16.6). The array components effectively cease to exist when the array is no
longer referenced.

4. Method parametersame argument values passed to a method. For every param-
eter declared in a method declaration, a new parameter variable is created each
time that method is invoked. The new variable is initialized with the correspond-
ing argument value from the method invocation. The method parameter effec-
tively ceases to exist when the execution of the body of the method is complete.

5. Constructor parametersame argument values passed to a constructor. For
every parameter declared in a constructor declaration, a hew parameter vari-
able is created each time a class instance creation expression or explicit con-
structor invocation is evaluated. The new variable is initialized with the
corresponding argument value from the creation expression or constructor
invocation. The constructor parameter effectively ceases to exist when the exe-
cution of the body of the constructor is complete.

6. An exception-handler parameteariable is created each time an exception is
caught by aatch clause of ary statement (§2.15.2). The new variable is ini-
tialized with the actual object associated with the exception (82.15.3). The
exception-handler parameter effectively ceases to exist when execution of the
block associated with theatch clause (82.15.2) is complete.

12

THE JAVAM VIRTUAL MACHINE SPECIFICATION

7. Local variablesare declared by local variable declaration statements. When-
ever the flow of control enters a block ofaar statement, a new variable is cre-
ated for each local variable declared in a local variable declaration statement
immediately contained within that block 66r statement. The local variable
is not initialized, however, until the local variable declaration statement that
declares it is executed. The local variable effectively ceases to exist when the
execution of the block ofor statement is complete.

2.5.1 Initial Values of Variables
Every variable in a Java program must have a value before it is used:
» Each class variable, instance variable, and array component is initialized with

adefault valuevhen it is created:
= For typebyte, the default value is zero, that is, the valuélgfte) 0.
= For typeshort, the default value is zero, that is, the valuésfort)o.
= For typeint, the default value is zero, thatés,
= For typelong, the default value is zero, that ..
= For typefloat, the default value is positive zero, thawispf.
= For typedoube, the default value is positive zero, thatvisgd.
= For typechar, the default value is the null character, that i$,0000°'.
= For typeboolean, the default value igalse.
= For all reference types (§2.4.5), the default valusiig (82.3).

» Each method parameter (82.5) is initialized to the corresponding argument
value provided by the invoker of the method.

» Each constructor parameter (82.5) is initialized to the corresponding argument
value provided by an object creation expression or explicit constructor invoca-
tion.

* An exception-handler parameter (82.15.2) is initialized to the thrown object
representing the exception (§2.15.3).

» Alocal variable must be explicitly given a value before it is used, by either ini-
tialization or assignment.

JAVA CONCEPTS 13

2.5.2 Variables Have Types, Objects Have Classes

Every object belongs to some patrticular class. This is the class that was mentioned
in the class instance creation expression that produced the object, or the class
whose class object was used to invokerttigInstance method to produce the
object. This class is calletthe class of the object. An object is said to be an
instanceof its class and of all superclasses of its class. Sometimes the class of an
object is called its “runtime type,” but “class” is the more accurate term.

(Sometimes a variable or expression is said to have a “runtime type,” but that
is an abuse of terminology; it refers to the class of the object referred to by the
value of the variable or expression at run time, assuming that the value is not
null. Properly speaking, type is a compile-time notion. A variable or expression
has a type; an object or array has no type, but belongs to a class.)

The type of a variable is always declared, and the type of an expression can be
deduced at compile time. The type limits the possible values that the variable can
hold or the expression can produce at run time. If a runtime value is a reference
that is nothu11, it refers to an object or array that has a class (hot a type), and that
class will necessarily be compatible with the compile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces (§82.13). A variable or expres-
sion whose type is an interface type can reference any object whose class imple-
ments that interface.

Every array also has a class. The classes for arrays have strange names that
are not valid Java identifiers; for example, the class for an arriwtofompo-
nents has the nanf¢I”.

2.6 Conversions and Promotions

Conversionsmplicitly change the type, and sometimes the value, of an expression
to a type acceptable for its surrounding context. In some cases this will require a
corresponding action at run time to check the validity of the conversion or to
translate the runtime value of the expression into a form appropriate for the new
type.

Numeric promotionsare conversions that change an operand of a numeric
operation to a wider type, or both operands of a numeric operation to a common
type, so that an operation can be performed.

THE JAVAM VIRTUAL MACHINE SPECIFICATION
In Java, there are six broad kinds of conversions:

* Identity conversions
« Widening primitive conversions
< Narrowing primitive conversions
» Widening reference conversions
« Narrowing reference conversions
 String conversions
There are fiveonversion contexis which conversion expressions can occur.

Each context allows conversions in some of the above-named categories but not
others. The conversion contexts are:

» Assignment conversion (82.6.6), which converts the type of an expression to
the type of a specified variable. The conversions permitted for assignment
are limited in such a way that assignment conversion never causes an excep-
tion.

» Method invocation conversion (82.6.7), which is applied to each argument in a
method or constructor invocation, and, except in one case, performs the same
conversions that assignment conversion does. Method invocation conversion
never causes an exception.

 Casting conversion (82.6.8), which converts the type of an expression to a type
explicitly specified by a cast operator. It is more inclusive than assignment or
method invocation conversion, allowing any specific conversion other than a
string conversion, but certain casts to a reference type may cause an exception
at run time.

» String conversion, which allows any type to be converted tctyping (82.4.7).

* Numeric promotion, which brings the operands of a numeric operator to a
common type so that an operation can be performed.

String conversioronly applies to operands of the binargperator when one

of the arguments is &t ring; it will not be covered further.

2.6.1 Identity Conversions

A conversion from a type to that same type is permitted for any type.

JAVA CONCEPTS 15

2.6.2 Widening Primitive Conversions

The following conversions on primitive types are called wldening primitive
conversions

e byte toshort, int, lTong, float, ordouble
e shorttoint, long, float, ordoubTle

* char toint, long, float, ordouble

* int toTong, float, ordouble

* Tongtofloat ordouble

e float todouble

Widening conversions do not lose information about the sign or order of mag-
nitude of a numeric value. Conversions widening from an integral type to another
integral type and fronfloat to double do not lose any information at all; the
numeric value is preserved exactly. Conversion ofian or a Tong value to
float, or of along value todouble, may lose precision, that is, the result may
lose some of the least significant bits of the value; the resulting floating-point
value is a correctly rounded version of the integer value, using IEEE 754 round-
to-nearest mode (82.4.3).

According to this rule, a widening conversion of a signed integer value to an
integral type simply sign-extends the two’s-complement representation of the
integer value to fill the wider format. A widening conversion of a value of type
char to an integral type zero-extends the representation of the character value to
fill the wider format.

Despite the fact that loss of precision may occur, widening conversions
among primitive types never result in a runtime exception (§2.15).

2.6.3 Narrowing Primitive Conversions

The following conversions on primitive types are calbagdrowing primitive con-
versions

* bytetochar
e short tobyte orchar
e char tobyte orshort

* int tobyte, short, orchar

16

THE JAVAM VIRTUAL MACHINE SPECIFICATION

* Jong tobyte, short, char, orint
* float tobyte, short, char, int, or long

* double tobyte, short, char, int, Tong, or float

Narrowing conversions may lose information about the sign or order of magni-
tude, or both, of a numeric value (for example, narrowingranvalue32763 to
typebyte produces the value). Narrowing conversions may also lose precision.

A narrowing conversion of a signed integer to an integral type simply discards
all but then lowest-order bits, whene is the number of bits used to represent the
type. This may cause the resulting value to have a different sign than the input value.

A narrowing conversion of a character to an integral type likewise simply dis-
cards all but the lowest bits, whera is the number of bits used to represent the
type. This may cause the resulting value to be a negative number, even though
characters represent 16-bit unsigned integer values.

In a narrowing conversion of a floating-point number to an integral type, if the
floating-point number is NaN, the result of the conversiana$ the appropriate
type. If the floating-point number is too large to be represented by the integral
type, or is positive infinity, the result is the largest representable value of the inte-
gral type. If the floating-point number is too small to be represented, or is negative
infinity, the result is the smallest representable value of the integral type. Other-
wise, the result is the floating-point number rounded towards zero to an integer
value using IEEE 754 round-towards-zero mode (82.4.3)

A narrowing conversion fromdouble to float behaves in accordance with
IEEE 754. The result is correctly rounded using IEEE 754 round-to-nearest mode
(82.4.3). A value too small to be represented fikoat is converted to a positive
or negative zero; a value too large to be representedama is converted to a
positive or negative infinity. Alouble NaN is always converted tofdoat NaN.

Despite the fact that overflow, underflow, or loss of precision may occur, nar-
rowing conversions among primitive types never result in a runtime exception.

2.6.4 Widening Reference Conversions

Widening reference conversiongver require a special action at run time and
therefore never throw an exception at run time. Because they do not affect the Java
Virtual Machine, they will not be considered further.

2.6.5 Narrowing Reference Conversions

The following permitted conversions are calledriberowing reference conversians

JAVA CONCEPTS 17

» From any class type to any class typ&, provided thats is a superclass af.
(An important special case is that there is a narrowing conversion from the
class typ@bject to any other class type.)

» From any class typg to any interface typg, provided thas is notfinal and
does not implemerk. (An important special case is that there is a narrowing
conversion from the class typeject to any interface type.)

* From typeObject to any array type.
» From typeObject to any interface type.
» From any interface typeto any class typ& that is notfinal.

» From any interface type to any class typ& that isfinal, provided thatr
implementsJ.

* From any interface typeto any interface typ&, provided that is not a sub-
interface ofk and there is no method namesuch that andk both declare a
method namedh with the same signature but different return types.

* From any array typsc[] to any array typgc[], provided thatsc and7cC
are reference types and there is a permitted narrowing conversioséroon
TC.

Such conversions require a test at run time to find out whether the actual reference
value is a legitimate value of the new type. If it is not, the Java Virtual Machine
throws aClassCastException.

2.6.6 Assignment Conversion

Assignment conversiooccurs when the value of an expression is assigned to a
variable: the type of the expression must be converted to the type of the variable.
Assignment contexts allow the use of an identity conversion (82.6.1), a widening
primitive conversion (82.6.2), or a widening reference conversion (82.6.4). In
addition, a narrowing primitive conversion (82.6.3) may be used if all of the fol-
lowing conditions are satisfied:

» The expression is a constant expression of tyye
» The type of the variable Is/te, short, or char.

» The value of the expression is representable in the type of the variable.

18

THE JAVAM VIRTUAL MACHINE SPECIFICATION

If the type of the expression can be converted to the type of a variable by
assignment conversion, we say the expression (or its valasyignableto the
variable or, equivalently, that the type of the expressiassggnment compatible
with the type of the variable.

An assignment conversion never causes an exception. A value of primitive
type must not be assigned to a variable of reference type. A value of reference
type must not be assigned to a variable of primitive type. A value obtypean
can be assigned only to a variable to tgpelean. A value of the null type may
be assigned to any reference type.

Assignment of a value of compile-time reference tggsource) to a variable
of compile-time reference type(target) is permitted:

 If Sis a class type:

= If Tis a class type, thes must be the same class/@or S must be a sub-
class ofT.

= If Tis an interface type, thehimust implement interface

If sis an interface type:
= If Tis a class type, thenmust bedbject.

= If Tis an interface type, thehmust be the same interfacesaor T a super-
interface ofs.

If sis an array typsc[], that is, an array of components of tygie
= If Tis a class type, thenmust bedbject.
= If Tis an interface type, themmust beCloneabTe.

= If Tis an array type, namely, the type[], array of components of type,
then either

TC andsc must be the same primitive type, or

TC andsc are both reference types and tygeis assignable tac.

2.6.7 Method Invocation Conversion

Method invocation conversias applied to each argument value in a method or
constructor invocation: the type of the argument expression must be converted to
the type of the corresponding parameter. Method invocation contexts allow the

JAVA CONCEPTS 19

use of an identity conversion (82.6.1), a widening primitive conversion (82.6.2),
or a widening reference conversion (82.6.4). Method invocation conversions spe-
cifically do not include the implicit narrowing of integer constants that is part of
assignment conversion (82.6.6).

2.6.8 Casting Conversions

Casting conversionare more powerful than assignment or method invocation con-
versions applied to the operand of a cast operator: the type of the operand expression
must be converted to the type explicitly named by the cast operator. Casting contexts
allow the use of an identity conversion (82.6.1), a widening primitive conversion
(82.6.2), a narrowing primitive conversion (82.6.3), a widening reference conver-
sion (82.6.4), or a narrowing reference conversion (82.6.5). Thus, casting conver-
sions are more inclusive than assignment or method invocation conversions: a cast
can do any permitted conversion other than a string conversion.

Casting can convert a value of any numeric type to any other numeric type. A
value of typebooTlean cannot be cast to another type. A value of reference type
cannot be cast to a value of primitive type.

Some casts can be proven incorrect at compile time and result in a compile-
time error. Otherwise, either the cast can be proven correct at compile time, or a
runtime validity check is required. (S@#e Java Language Specificatifor
details.) If the value at run time is a null reference, then the cast is allowed. If the
check at run time fails, @ assCastException is thrown.

2.6.9 Numeric Promotion

Numeric promotions applied to the operands of an arithmetic operator. Numeric
promotion contexts allow the use of an identity conversion (82.6.1) or a widening
primitive conversion (82.6.2)

Numeric promotions are used to convert the operands of a numeric operator to
a common type where an operation can be performed. The two kinds of numeric
promotion arauinary numeric promotioandbinary numeric promotionThe anal-
ogous conversions in C are called “the usual unary conversions” and “the usual
binary conversions.” Numeric promotion is not a general feature of Java, but
rather a property of the specific definitions of built-in operators.

An operator that applies unary numeric promotion to a single operand of
numeric type converts an operand of tygee, short, or char to int, and oth-

20

THE JAVAM VIRTUAL MACHINE SPECIFICATION

erwise leaves the operand alone. The operands of the shift operators are pro-
moted independently using unary numeric promotions.

When an operator applies binary numeric promotion to a pair of nhumeric
operands, the following rules apply, in order, using widening conversion (82.6.2)
to convert operands as necessary:

If either operand is of typdoubTe, the other is converted touble.

Otherwise, if either operand is of typgoat, the other is converted fdoat.

Otherwise, if either operand is of typeng, the other is converted i@ng.

Otherwise, both operands are converted to fype

2.7 Names and Packages
2.7.1 Names

Namesare used to refer to entities declared in a Java program. A declared entity is
a package, type, member (field or method) of a type, parameter, or local variable.

A simplename is a single identifier (§2.Z)ualifiednames provide access to
members of packages and reference types. A qualified name (82.7.8) consists of a
name, a “.” token, and an identifier.

Not all identifiers in Java programs are part of a name. ldentifiers are also
used in declarations, where the identifier determines the name by which an entity
will be known, in field access expressions and method invocation expressions, and
in statement labels ardreak andcontinue statements which refer to statement

labels.

2.7.2 Packages

Java programs are organized setpaifkagesA package consists of a number of
compilation units and has an hierarchical hame. Packages are independently
developed, and each package has its own set of hames, which helps to prevent
name conflicts.

Each Java host determines how packages, compilation units, and subpackages
are created and stored; which top-level package names are in scope in a particular
compilation; and which packages are accessible. Packages may be stored in a
local file system, in a distributed file system, or in some form of database.

JAVA CONCEPTS 21

A package name component or class hame might contain a character that can-
not legally appear in a host file system’s ordinary directory or file name: for
instance, a Unicode character on a system that allows only ASCII characters in
file names.

A Java system must support at least one unnamed package; it may support
more than one unnamed package but is not required to do so. Which compilation
units are in each unnamed package is determined by the host system. Unnamed
packages are provided by Java principally for convenience when developing small
or temporary applications or when just beginning development.

An import declaration allows a type declared in another package to be known
by a simple name rather than by the fully qualified name (82.7.9) of the type. An
import declaration affects only the type declarations of a single compilation unit.
A compilation unit automatically imports each of thév 11 c type names declared
in the predefined packagava.lang.

2.7.3 Members

Packages and reference types haegbersThe members of a package (82.7.2)

are subpackages and all the class (82.8) and interface (82.13) types declared in all
the compilation units of the package. The members of a reference type are fields
(82.9) and methods (82.10).

2.7.4 Package Members

The members of a package aresitbpackageand types declared in the compila-
tion units of the package.

In general, the subpackages of a package are determined by the host system.
However, the standard packape/a always has the subpackagesg, util, io,
andnet. No two distinct members of the same package may have the same simple
name (82.7.1), but members of different packages may have the same simple
name.

2.7.5 The Members of a Class Type

The members of a class type (82.8) are fields (§2.9) and methods (§2.10). These
include members inherited from its direct superclass (82.8.3), if it has one, mem-
bers inherited from any direct superinterfaces (82.13.2), and any members

22

THE JAVAM VIRTUAL MACHINE SPECIFICATION

declared in the body of the class. There is no restriction against a field and a
method of a class type having the same simple name.

A class type may have two or more methods with the same simple name if
they have different numbers of parameters or different parameter types in at least
one parameter position. Such a method member name is saidvertmaded A
class type may contain a declaration for a method with the same name and the
same signature as a method that would otherwise be inherited from a superclass or
superinterface. In this case, the method of the superclass or superinterface is not
inherited. If the method not inheriteddbstract, the new declaration is said to
implementt; if it is notabstract, the new declaration is saiddwerrideit.

2.7.6 The Members of an Interface Type

The members of an interface type (82.13) are fields and methods. The members of
an interface are the members inherited from any direct superinterfaces (82.13.2)
and members declared in the body of the interface.

2.7.7 The Members of an Array Type

The members of an array type (82.14) are the members inherited from its super-
class, the clagibject (82.4.6), and the fieltength, which is a constanf{nal)
field of every array.

2.7.8 Qualified Names and Access Control

Qualified names (82.7.1) are a means of access to members of packages and refer-
ence types; related means of access include field access expressions and method
invocation expressions. All three are syntactically similar in that a “.” token
appears, preceded by some indication of a package, type, or expression having a
type and followed by an identifier that names a member of the package or type.
These are collectively known as constructsjisalified access

Java provides mechanisms for limiting qualified access, to prevent users of a
package or class from depending on unnecessary details of the implementation of
that package or class. Access control also applies to constructors.

Whether a package is accessible is determined by the host system.

JAVA CONCEPTS 23

A class or interface may be declarpdblic, in which case it may be
accessed, using a qualified name, by any Java code that can access the package in
which it is declared. A class or interface that is not declatddic may be
accessed from, and only from, anywhere in the package in which it is declared.

Every field or method of an interface mustgadi1ic. Every member of a
public interface is implicitly pub1ic, whether or not the keywordublic
appears in its declaration. If an interface isputilic, then every one of its fields
and methods must be explicitly declagd1ic. It follows that a member of an
interface is accessible if and only if the interface itself is accessible.

A field, method, or constructor of a class may be declared using at most one
of the public, private, or protected keywords. Apublic member may be
accessed by any Java code.pAivate member may be accessed only from
within the class that contains its declaration. A member that is not depldred
Tic, protected, orprivate is said to havelefault accesand may be accessed
from, and only from, anywhere in the package in which it is declared.

A protected member of an object may be accessed only by code responsible
for the implementation of that object. To be precige;etected member may be
accessed from anywhere in the package in which it is declared and, in addition, it
may be accessed from within any declaration of a subclass of the class type that
contains its declaration, provided that certain restrictions are obeyed.

2.7.9 Fully Qualified Names

Every package, class, interface, array type, and primitive type has a fully qualified
name. It follows that every type except the null type has a fully qualified name.

» The fully qualified name of a primitive type is the keyword for that primitive
type, namelpoolean, char, byte, short, int, Tong, float, ordouble.

» The fully qualified name of a named package that is not a subpackage of a
named package is its simple name.

» The fully qualified name of a named package that is a subpackage of another
named package consists of the fully qualified name of the containing package
followed by “.” followed by the simple (member) name of the subpackage.

* The fully qualified name of a class or interface that is declared in an unnamed
package is the simple name of the class or interface.

THE JAVAM VIRTUAL MACHINE SPECIFICATION

» The fully qualified name of a class or interface that is declared in a named
package consists of the fully qualified hame of the package followed'by *“
followed by the simple name of the class or interface.

» The fully qualified name of an array type consists of the fully qualified name

of the component type of the array type followed by

2.8 Classes

A class declaratiorspecifies a new reference type and provides its implementa-
tion. Each class is implemented as an extension or subclass of a single existing
class. A class may also implement one or more interfaces.

The body of a class declares members (fields and methods), static initializers,
and constructors.

2.8.1 Class Names

If a class is declared in a named package with the fully qualified Ratimen the
class has the fully qualified nanreldentifier. If the class is in an unnamed pack-
age, then the class has the fully qualified n&deatifier
Two classes are tlsame clasgand therefore theame typgif they are loaded by
the same class loader (82.16.2) and they have the same fully qualified name (82.7.9).

2.8.2 Class Modifiers

A class declaration may includéass modifiersA class may be declaredbliic,
as discussed in §2.7.8.

An abstract class is a class which is incomplete, or considered incomplete.
Only abstract classes may hawbstract methods (82.10.3), that is, methods
which are declared but not yet implemented.

A class can be declargdnal if its definition is complete and no subclasses
are desired or required. Becauséiaal class never has any subclasses, the meth-
ods of afinal class cannot be overridden in a subclass. A class cannot be both
final andabstract, because the implementation of such a class could never be
completed.

JAVA CONCEPTS 25

A class is declarepgub1ic to make its type available to packages other than
the one in which it is declared. fub1ic class is accessible from other packages,
using either its fully qualified name or a shorter name created typant decla-
ration (82.7.2), whenever the host permits access to its package. If a class lacks
the pub1ic modifier, access to the class declaration is limited to the package in
which it is declared.

2.8.3 Superclasses and Subclasses

The optionakxtends clause in a class declaration specifiesdinect superclass
of the current class, the class from whose implementation the implementation of
the current class is derived. A class is said to beegt subclas®f the class it
extends. Only the clas$bject (82.4.6) has no direct superclass. If ékeends
clause is omitted from a class declaration, then the superclass of the new class is
Object.

The subclasgelationship is the transitive closure of the direct subclass rela-
tionship. A classa is a subclass of a classif A is a direct subclass df, or if
there is a direct subclasf € and class\ is a subclass @&. ClassA is said to be
asuperclas®f classCc wheneverc is a subclass of.

2.8.4 The Class Members

The members of a class type include all of the following:

* Members inherited from its direct superclass (82.8.3), except inGtlasst,
which has no direct superclass.

» Members inherited from any direct superinterfaces (§2.13.2).

* Members declared in the body of the class.

Members of a superclass that are declareidiate are not inherited by sub-
classes of that class. Members of a class that are not dgatavede, protected,
or pub1ic are not inherited by subclasses declared in a package other than the one
in which the class is declared. Constructors (§2.12) and static initializers (§82.11) are
not members and therefore are not inherited.

26

THE JAVAM VIRTUAL MACHINE SPECIFICATION
2.9 Fields

The variables of a class type arefigdds Class §tatic) variables exist once per
class. Instance variables exist once per instance of the class. Fields may include
initializers and may be modified using various modifier keywords.

If the class declares a field with a certain name, then the declaration of that
field is said tohide any and all accessible declarations of fields with the same
name in the superclasses and superinterfaces of the class. A class inherits from its
direct superclass and direct superinterfaces all the fields of the superclass and
superinterfaces that are accessible to code in the class and are not hidden by a dec-
laration in the class. A hidden field can be accessed by using a qualified name (if it
is static) or by using a field access expression that contains a cast to a superclass
type or the keyworduper.

2.9.1 Field Modifiers

Fields may be declargaib1ic, protected, orprivate, as discussed in 82.7.8.

If a field is declaredtatic, there exists exactly one incarnation of the field,
no matter how many instances (possibly zero) of the class may eventually be cre-
ated. Astatic field, sometimes called @ass variable is incarnated when the
class is initialized (82.16.4).

A field that is not declaresitatic is called annstance variableWhenever a
new instance of a class is created, a new variable associated with that instance is
created for every instance variable declared in that class or in any of its super-
classes.

A field can be declareflinal, in which case its declarator must include a
variable initializer (82.9.2). Both class and instance variaBlestfc and non-
static fields) may be declaretinal. Once afinal field has been initialized, it
always contains the same value. If@nal field holds a reference to an object,
then the state of the object may be changed by operations on the object, but the
field will always refer to the same object.

Variables may be markedransient to indicate that they are not part of the
persistent state of an object. Thansient attribute can be used by a Java imple-
mentation to support special system servidé®w Java Language Specification
does not yet specify details of such services.

The Java language allows threads that access shared variables to keep pri-
vate working copies of the variables; this allows a more efficient implementa-
tion of multiple threads (82.17). These working copies need be reconciled with

JAVA CONCEPTS 27

the master copies in the shared main memory only at prescribed synchronization
points, namely when objects are locked or unlocked (82.17). As a rule, to ensure
that shared variables are consistently and reliably updated, a thread should
ensure that it has exclusive access to such variables by obtaining a lock that con-
ventionally enforces mutual exclusion for those shared variables.

Java provides a second mechanism that is more convenient for some purposes:
a field may be declaradlatile, in which case a thread must reconcile its work-
ing copy of the field with the master copy every time it accesses the variable.
Moreover, operations on the master copies of one or more volatile variables on
behalf of a thread are performed by the main memory in exactly the order that the
thread requested. Ainal field cannot also be declaredlatile.

2.9.2 Initialization of Fields

If a field declaration contains a variable initializer, then it has the semantics of an
assignment to the declared variable, and:

« If the declaration is for a class variable (that istat1ic field), then the vari-
able initializer is evaluated and the assignment performed exactly once, when
the class is initialized (§2.16.4).

« If the declaration is for an instance variable (that is, a field that istaef c),
then the variable initializer is evaluated and the assignment performed each
time an instance of the class is created.

2.10 Methods

A methoddeclares executable code that can be invoked, passing a fixed number of
values as arguments. Every method declaration belongs to some class. A class
inherits from its direct superclass (§2.8.3) and any direct superinterfaces (§2.13.2)
all the accessible methods of the superclass and superinterfaces, with one excep-
tion: if a name is declared as a method in the new class, then no method with the
same signature (82.10.2) is inherited. Instead, the newly declared method is said
to overrideany such method declaration. An overriding method must not conflict
with the definition that it overrides, for instance, by having a different return type.
Overridden methods of the superclass can be accessed using a method invocation
expression involving theuper keyword.

28

THE JAVAM VIRTUAL MACHINE SPECIFICATION

2.10.1 Formal Parameters

The formal parameter®f a method, if any, are specified by a list of comma-sepa-
rated parameter specifiers. Each parameter specifier consists of a type and an identi-
fier that specifies the name of the parameter. When the method is invoked, the values
of the actual argument expressions initialize newly created parameter variables
(82.5), each of the declared typefore execution of the body of the method.

2.10.2 Signature

Thesignatureof a method consists of the name of the method and the number and
type of formal parameters (82.10.1) to the method. A class may not declare two
methods with the same signature.

2.10.3 Method Modifiers

The access modifiepib1ic, protected, andprivate are discussed in §2.7.8.

An abstract method declaration introduces the method as a member, provid-
ing its signature (82.10.2), return type, aatows clause (if any), but does not
provide an implementation. The declaration of @stract method m must
appear within ambstract class (call ita). Every subclass of that is not itself
abstract must provide an implementation for. A method declaredbstract
cannot also be declaredivate, static, final, native, orsynchronized.

A method that is declarettatic is called aclass methodA class method is
always invoked without reference to a particular object. A class method may refer
to other fields and methods of the class by simple name only if they are class
methods and classtatic) variables.

A method that is not declarestatic is aninstance methadAn instance
method is always invoked with respect to an object, which becomes the current
object to which the keywordshis and super refer during execution of the
method body.

A method can be declareftinal to prevent subclasses from overriding or
hiding it. A private method and all methods declared ifiiaal class (§2.8.2)
are implicitly final, because it is impossible to override them. If a method is
final or implicitly final, a compiler or a runtime code generator can safely
“inline” the body of afinal method, replacing an invocation of the method with
the code in its body.

JAVA CONCEPTS 29

A synchronized method will acquire a monitor lock (82.17) before it exe-
cutes. For a classtfatic) method, the lock associated with the class object for
the method’s class is used. For an instance method, the lock associate with
(the object for which the method is invoked) is used. The same per-object lock is
used by theynchronized statement.

A method can be declaredtive to indicate that it is implemented in plat-
form-dependent code, typically written in another programming language such as
C, C++, or assembly language.

2.11 Static Initializers

Any static initializersdeclared in a class are executed when the class is initialized
(82.16.4) and, together with any field initializers (82.9.2) for class variables, may
be used to initialize the class variables of the class (82.16.4).

The static initializers and class variable initializers are executed in textual
order. They may not refer to class variables declared in the class whose declara-
tions appear textually after the use, even though these class variables are in scope.
This restriction is designed to catch, at compile time, most circular or otherwise
malformed initializations.

2.12 Constructors

A constructoris used in the creation of an object that is an instance of a class. The
constructor declaration looks like a method declaration that has no result type.
Constructors are invoked by class instance creation expressions (82.16.6), by the
conversions and concatenations caused by the string concatenation epearador

by explicit constructor invocations from other constructors; they are never invoked
by method invocation expressions.

Access to and inheritance of constructors are governed by the access modifi-
erspublic, protected, andprivate (82.7.8). Constructor declarations are not
members. They are never inherited and therefore are not subject to hiding or over-
riding.

If a constructor body does not begin with an explicit constructor invocation
and the constructor being declared is not part of the primordial @gest,
then the constructor body is implicitly assumed by the compiler to begin with a

30

THE JAVAM VIRTUAL MACHINE SPECIFICATION

superclass constructor invocatiosuper() ;”, an invocation of the constructor
of its direct superclass that takes no arguments.

If a class declares no constructors, theefault constructowhich takes no
arguments is automatically provided. If the class being decla@dljést, then
the default constructor has an empty body. Otherwise, the default constructor
takes no arguments and simply invokes the superclass constructor with no argu-
ments. If the class is declaredblic, then the default constructor is implicitly
given the access modifigiublic. Otherwise, the default constructor has the
default access implied by no access modifier (§2.7.8).

A class can be designed to prevent code outside the class declaration from
creating instances of the class by declaring at least one constructor, to prevent the
creation of an implicit constructor, and declaring all constructors pobete.

2.13 Interfaces

An interfaceis a reference type whose members are constantabaneact
methods. This type has no implementation, but otherwise unrelated classes can
implement it by providing implementations for #bstract methods. Java pro-
grams can use interfaces to make it unnecessary for related classes to share a com-
monabstract superclass or to add method®bgect.

An interface may be declared to balieect extensiorof one or more other
interfaces, meaning that it implicitly specifies all #iatract methods and con-
stants of the interfaces it extends, except for any constants that it may hide, and
perhaps adding newly declared members of its own.

A class may be declared directly implemenbne or more interfaces, mean-
ing that any instance of the class implements albtseract methods specified
by that interface. A class necessarily implements all the interfaces that its direct
superclasses and direct superinterfaces do. This (multiple) interface inheritance
allows objects to support (multiple) common behaviors without sharing any
implementation.

A variable whose declared type is an interface type may have as its value a
reference to an object that is an instance of any class that is declared to implement
the specified interface. It is not sufficient that the class happens to implement all
the abstract methods of the interface; the class or one of its superclasses must
actually be declared to implement the interface, or else the class is not considered
to implement the interface.

JAVA CONCEPTS 31

2.13.1 Interface Modifiers

An interface declaration may be preceded by the interface modiiets c and
abstract. The access modifieub1ic is discussed in (82.7.8). Every interface is
implicitly abstract. All members of interfaces are implicithpb1ic.

An interface cannot bé&inal, because the implementation of such a class
could never be completed.

2.13.2 Superinterfaces

If an extends clause is provided, then the interface being declared extends each
of the other named interfaces, and therefore inherits the methods and constants of
each of the other named interfaces. Any classithiatements the declared inter-

face is also considered to implement all the interfaces that this interface extends
and that are accessible to the class.

Theimplements clause in a class declaration lists the names of interfaces that
aredirect superinterfaceef the class being declared. All interfaces in the current
package are accessible. Interfaces in other packages are accessible if the host sys-
tem permits access to the package and the interface is dqulafdd.

An interface typex is asuperinterfaceof class typec if K is a direct super-
interface ofc; or if C has a direct superinterfag¢hat has< as a superinterface; or
if Kis a superinterface of the direct superclass.dk class is said tomplement
all its superinterfaces.

There is no analogue of the cladsgject for interfaces; that is, while every
class is an extension of cla@sject, there is no single interface of which all
interfaces are extensions.

2.13.3 Interface Members

The members of an interface are those members inherited from direct superinter-
faces and those members declared in the interface. The interface inherits, from the
interfaces it extends, all members of those interfaces, except for fields with the
same names as fields it declares.

Interface members are either fields or methods.

2.13.4 Interface (Constant) Fields

Every field declaration in the body of an interface is implicitlytic andfinal.
Interfaces do not have instance variables. Every field declaration in an interface is

32

THE JAVAM VIRTUAL MACHINE SPECIFICATION

itself implicitly public. A constant declaration in an interface must not include
either of the modifiersransient orvolatile.

Every field in the body of an interface must have an initialization expression,
which need not be a constant expression. The variable initializer is evaluated and
the assignment performed exactly once, when the interface is initialized (82.16.4).

2.13.5 Interface (Abstract) Methods

Every method declaration in the body of an interface is impliablytract.
Every method declaration in the body of an interface is implipithy i c.

A method declared in an interface must not be declaredic, because in
Javastatic methods cannot bebstract. A method declared in the body of an
interface must not be declaredtive or synchronized, because those keywords
describe implementation properties rather than interface properties; however, a
method declared in an interface may be implemented by a method that is declared
native or synchronized in a class that implements the interface. A method
declared in the body of an interface must not be decléredl; however, one
may be implemented by a method that is decldrech] in a class that imple-
ments the interface.

2.13.6 Overriding, Inheritance, and Overloading in Interfaces

If the interface declares a method, then the declaration of that method is said to
overrideany and all methods with the same signature in the superinterfaces of the
interface that would otherwise be accessible to code in this interface.

An interface inherits from its direct superinterfaces all methods of the super-
interfaces that are not overridden by a declaration in the interface.

If two methods of an interface (whether both declared in the same interface, or
both inherited by an interface, or one declared and one inherited) have the same
name but different signatures, then the method name is saicteitbeaded

2.14 Arrays

Javaarraysare objects, are dynamically created, and may be assigned to variables
of typeObject (82.4.6). All methods of clagbject may be invoked on an array.

An array object contains a number of variables. That number may be zero, in
which case the array is said todmapty The variables contained in an array have

JAVA CONCEPTS 33

no names; instead they are referenced by array access expressions that use non-
negative integer index values. These variables are callecbthponentof the
array. If an array hascomponents, we sayis thelengthof the array.

An array of zero components is not the same as the null reference (82.4).

2.14.1 Array Types

All the components of an array have the same type, calleztbthponent typef
the array. If the component type of an array,ithen the type of the array itself is
written T[].

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; this is called element typ@f the original array,
and the components at this level of the data structure are callelétinentof the
original array.

There is one situation in which an element of an array can be an array: if the
element type i®bject (82.4.6), then some or all of the elements may be arrays,
because every array object can be assigned to a variable Obtyae.

In Java, unlike C, an array ahar is not aString (82.4.6), and neither a
String nor an array othar is terminated by \u000o' (the NUL-character). A
JavaString object is immutable (its value never changes), while an arrayaof
has mutable elements.

The element type of an array may be any type, whether primitive or reference.
In particular, arrays with an interface type as the component type are supported;
the elements of such an array may have as their value a null reference or instances
of any class type that implements the interface. Arrays withbamract class
type as the component type are supported; the elements of such an array may have
as their value a null reference or instances of any subclass abthisact class
that is not itselabstract.

2.14.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of
array type does not create an array object or allocate any space for array compo-
nents. It creates only the variable itself, which can contain a reference to an array.

34

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Because an array’s length is not part of its type, a single variable of array type
may contain references to arrays of different lengths. Once an array object is cre-
ated, its length never changes. To make an array variable refer to an array of dif-
ferent length, a reference to a different array must be assigned to the variable.

If an array variables has typea[], whereA is a reference type, thencan
hold a reference to any array typEl, provideds can be assigned #(82.6.6).

2.14.3 Array Creation

An array is created by array creation expressioar anarray initializer.

2.14.4 Array Access

A component of an array is accessed usin@ragly access expressiomrrays
may be indexed bynt values;short, byte, or char values may also be used as
they are subjected to unary numeric promotion (82.6.9) and becamalues.

All arrays are 0-origin. An array with lengthcan be indexed by the integers
0 throughn — 1. All array accesses are checked at run time; an attempt to use an
index that is less than zero or greater than or equal to the length of the array causes
anArrayIndexOutOfBoundsException to be thrown.

2.15 Exceptions

When a Java program violates the semantic constraints of the Java language, a
Java Virtual Machine signals this error to the program ssxeeption An exam-
ple of such a violation is an attempt to index outside the bounds of an array. Java
specifies that an exception will be thrown when semantic constraints are violated
and will cause a nonlocal transfer of control from the point where the exception
occurred to a point that can be specified by the programmer. An exception is said
to bethrownfrom the point where it occurred and is said tcéeghtat the point
to which control is transferred. A method invocation that completes because an
exception causes transfer of control to a point outside the method is sai-to
plete abruptly.

Java programs can also throw exceptions explicitly, uslimgw statements.
This provides an alternative to the old-fashioned style of handling error conditions
by returning distinguished error values, such as the integer vhluéhere a neg-
ative value would not normally be expected.

JAVA CONCEPTS 35

Every exception is represented by an instance of theTtassable or one of
its subclasses; such an object can be used to carry information from the point at
which an exception occurs to the handler that catches it. Handlers are established by
catch clauses oftry statements. During the process of throwing an exception, a
Java Virtual Machine abruptly completes, one by one, any expressions, statements,
method and constructor invocations, static initializers, and field initialization expres-
sions that have begun but not completed execution in the current thread. This pro-
cess continues until a handler is found that indicates that it handles the thrown
exception by naming the class of the exception or a superclass of the class of the
exception. If no such handler is found, then the metha@ughtException is
invoked for theThreadGroup that is the parent of the current thread.

The Java exception mechanism is integrated with the Java synchronization
model (82.17), so that locks are properly releaseslyashronized statements
and invocations ofynchronized methods complete abruptly.

The specific exceptions covered in this section are that subset of the pre-
defined exceptions that can be thrown directly by the operation of the Java Virtual
Machine. Additional exceptions can be thrown by class library or user code; these
exceptions are not covered here. $he Java Language Specificatifor infor-
mation on all predefined exceptions.

2.15.1 The Causes of Exceptions
An exception is thrown for one of three reasons:
» An abnormal execution condition was synchronously detected by a Java Vir-
tual Machine. These exceptions are not thrown at an arbitrary point in the pro-

gram, but rather at a point where they are specified as a possible result of an
expression evaluation or statement execution:

= An operation that violates the normal semantics of the Java language, such
as indexing outside the bounds of an array.

= An error in loading or linking part of the Java program.

= Exceeding some limit on a resource, such as using too much memory.
* A throw statement was executed in Java code.
» An asynchronous exception occurred because:

= The methodtop of classThread was invoked, or

= An internal error has occurred in the virtual machine.

36

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Exceptions are represented by instances of the Thasgab1e and instances
of its subclasses. These classes are, collectivelgxtteption classes

2.15.2 Handling an Exception

When an exception is thrown, control is transferred from the code that caused the
exception to the nearest dynamically enclosiagch clause of ary statement
that handles the exception.

A statement or expression dynamically enclosetty a catch clause if it
appears within thery block of thetry statement of which theatch clause is a
part, or if the caller of the statement or expression is dynamically enclosed by the
catch clause.

Thecaller of a statement or expression depends on where it occurs:

« If within a method, then the caller is the method invocation expression that was
executed to cause the method to be invoked.

o If within a constructor or the initializer for an instance variable, then the
caller is the class instance creation expression or the method invocation of
newInstance that was executed to cause an object to be created.

« |f within a static initializer or an initializer for static variable, then the caller
is the expression that used the class or interface so as to cause it to be initialized.

Whether a particulatatch clausehandlesan exception is determined by
comparing the class of the object that was thrown to the declared type of the
parameter of theatch clause. Theatch clause handles the exception if the type
of its parameter is the class of the exception or a superclass of the class of the
exception. Equivalently, aatch clause will catch any exception object that is an
instanceof the declared parameter type.

The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions and statements umrtiltah clause is encountered that
can handle the exception; execution then continues by executing the block of that
catch clause. The code that caused the exception is never resumed.

If no catch clause handling an exception can be found, then the current
thread (the thread that encountered the exception) is terminated, but only after all
finally clauses have been executed and the maihodughtException has
been invoked for th&hreadGroup that is the parent of the current thread.

In situations where it is desirable to ensure that one block of code is always
executed after another, even if that other block of code completes abruptly, a

JAVA CONCEPTS 37

try statement with &inally clause may be used. Iftay or catch block in a
try-finally or try-catch-finally statement completes abruptly, then the
finally clause is executed during propagation of the exception, even if no
matchingcatch clause is ultimately found. If &inally clause is executed
because of abrupt completion oty block and thefinally clause itself com-
pletes abruptly, then the reason for the abrupt completion ofthdlock is
discarded and the new reason for abrupt completion is propagated from there.
Most exceptions in Java occur synchronously as a result of an action by the
thread in which they occur, and at a point in the Java program that is specified to
possibly result in such an exception. An asynchronous exception is, by contrast, an
exception that can potentially occur at any point in the execution of a Java program.
Asynchronous exceptions are rare in Java. They occur only as a result of:

* An invocation of thestop methods of clashread or ThreadGroup.

* An InternalError in the Java Virtual Machine.

Thestop methods may be invoked by one thread to affect another thread or all the
threads in a specified thread group. They are asynchronous because they may
occur at any point in the execution of the other thread or threads. An
InternalError is considered asynchronous so that it may be handled using the
same mechanism that handles ¢lhep method, as will now be described.

Java permits a small but bounded amount of execution to occur before an
asynchronous exception is thrown. This delay is permitted to allow optimized
code to detect and throw these exceptions at points where it is practical to handle
them while obeying the semantics of the Java language.

A simple implementation might poll for asynchronous exceptions at the point of
each control transfer instruction. Since a Java program has a finite size, this provides a
bound on the total delay in detecting an asynchronous exception. Since no asynchro-
nous exception will occur between control transfers, the code generator has some
flexibility to reorder computation between control transfers for greater performance.

All exceptions in Java apgecise when the transfer of control takes place, all
effects of the statements executed and expressions evaluated before the point from
which the exception is thrown must appear to have taken place. No expressions,
statements, or parts thereof that occur after the point from which the exception is
thrown may appear to have been evaluated. If optimized code has speculatively
executed some of the expressions or statements which follow the point at which
the exception occurs, such code must be prepared to hide this speculative execu-
tion from the user-visible state of the Java program.

38

THE JAVAM VIRTUAL MACHINE SPECIFICATION

2.15.3 The Exception Hierarchy

The possible exceptions in a Java program are organized in a hierarchy of classes,

rooted at clasFhrowable, a direct subclass @bject. The classe&xception
andError are direct subclassesTfrowable. The clas®untimeException is a
direct subclass dfxception.

Java programs can use the preexisting exception classksoin statements,
or define additional exception classes, as subclas3@és@iable or of any of its

subclasses, as appropriate. To take advantage of Java's compile-time checking for
exception handlers, it is typical to define most new exception classes as checked

exception classes, specifically as subclassésafption that are not subclasses
of RuntimeException.

2.15.4 The ClasseBxception and RuntimeException

The clas€xception is the superclass of all the standard exceptions that ordinary
programs may wish to recover from.

The classRuntimeException is a subclass of clagxception. The sub-
classes ofRuntimeException are unchecked exception classes. Package
java.lang defines the following standard unchecked runtime exceptions:

* ArithmeticException: An exceptional arithmetic situation has arisen, such
as an integer division or remainder operation with a zero divisor.

* ArrayStoreException: An attempt has been made to store into an array com-

ponent a value whose class is not assignment compatible with the component

type of the array.

» ClassCastException: An attempt has been made to cast a reference to an
object to an inappropriate type.

e I1legalMonitorStateException: A thread has attempted to wait on or
notify other threads waiting on an object that it has not locked.

* IndexOutOfBoundsException: Either an index of some sort (such as to an
array, a string, or a vector) or a subrange, specified either by two index values
or by an index and a length, was out of range.

* NegativeArraySizeException: An attempt was made to create an array
with a negative length.

JAVA CONCEPTS 39

* NullPointerException: An attempt was made to use a null reference in a
case where an object reference was required.

» SecurityException: A security violation was detected.

The clas€rror and its standard subclasses are exceptions from which ordi-
nary programs are not ordinarily expected to recover. The Elass is a sepa-
rate subclass ofhrowable, distinct fromException in the class hierarchy, to
allow programs to use the idiom

} catch (Exception e) {

to catch all exceptions from which recovery may be possible without catching
errors from which recovery is typically not possible. Packgg@.1ang defines
all the error classes described here.

A Java Virtual Machine throws an object that is an instance of a subclass of
LinkageError when a loading (82.16.2), linking (82.16.3), or initialization
(82.16.4) error occurs:

» The loading process is described in (82.16.2). The eti@rssFormatError,
ClassCircularityError, andNoClassDefFoundError are described there.

* The linking process is described in (82.16.3). The linking errors (all sub-
classes ofncompatibleClassChangeError), namelyI1legalAccessError,
InstantiationError, NoSuchFieldError, andNoSuchMethodError, are
described there.

* The class verification process is described in (82.16.3). The verification failure
errorVerifyError is described there.

» The class preparation process is described in (82.16.3). The preparation error
described there ibstractMethodError.

» The class initialization process is described in (82.16.4). A virtual machine will
throw the erroExceptionInInitializerError if execution of a static ini-
tializer or of an initializer for atatic field (82.11) results in an exception that
is not anError or a subclass drror.

A Java Virtual Machine throws an object that is an instance of a subclass of
the classvirtualMachineError when an internal error or resource limitation

THE JAVAM VIRTUAL MACHINE SPECIFICATION

prevents it from implementing the semantics of the Java Language. This specifica-
tion defines the following virtual machine errors:

» InternalError: An internal error has occurred in a Java Virtual Machine,
because of a fault in the software implementing the virtual machine, a fault in
the underlying host system software, or a fault in the hardware. This error is
delivered asynchronously when it is detected and may occur at any point in a
Java program.

* OutOfMemoryError: A Java Virtual Machine has run out of either virtual or
physical memory, and the automatic storage manager was unable to reclaim
enough memory to satisfy an object creation request.

» StackOverflowError: A Java Virtual Machine has run out of stack space for
a thread, typically because the thread is doing an unbounded number of recur-
sive invocations as a result of a fault in the executing program.

* UnknownError: An exception or error has occurred but, for some reason, a
Java Virtual Machine is unable to report the actual exception or error.

2.16 Execution

This section specifies activities that occur during execution of a Java program. It is
organized around the life cycle of a Java Virtual Machine and of the classes, inter-
faces, and objects that form a Java program. It specifies the detailed procedures
used in starting up the virtual machine (82.16.1), class and interface type loading
(82.16.2), linking (82.16.3), and initialization (82.16.4). It then specifies the pro-
cedures for creation of new class instances (82.16.6). It concludes by describing
the unloading of classes (§2.16.8) and the procedure followed when a virtual
machine exits (82.16.9).

2.16.1 Virtual Machine Start-up

A Java Virtual Machine starts execution by invoking the mettade of some spec-

ified class, passing it a single argument, which is an array of strings. This causes
the specified class to be loaded (§82.16.2), linked (82.16.3) to other types that it uses,
and initialized (82.16.4). The methadin must be declaregublic, static, and

void.

JAVA CONCEPTS 41

The manner in which the initial class is specified to the Java Virtual Machine
is beyond the scope of this specification, but it is typical, in host environments that
use command lines, for the fully qualified name of the class to be specified as a
command-line argument and for subsequent command-line arguments to be used
as strings to be provided as the argument to the meihiod For example, in
Sun’s JDK implementation on UNIX, the command line

java Terminator Hasta la vista Baby!

will start a Java Virtual Machine by invoking the metiadn of classTerminator
(a class in an unnamed package), passing it an array containing the four strings
"Hasta", "1a", "vista", and"Baby!".

We now outline the steps the virtual machine may take to exeecténator,
as an example of the loading, linking, and initialization processes that are described
further in later sections.

The initial attempt to execute the methead n of classTerminator discovers
that the clasSerminator is not loaded—that is, the virtual machine does not cur-
rently contain a binary representation for this class. The virtual machine then uses
aClassLoader (82.16.2) to attempt to find such a binary representation. If this
process fails, an error is thrown. This loading process is described further in
(82.16.2).

After Terminator is loaded, it must be initialized befor&in can be
invoked, and a type (class or interface) must always be linked before it is initial-
ized. Linking involves verification, preparation, and (optionally) resolution. Link-
ing is described further in §2.16.3.

Verification checks that the loaded representatiomedfninator is well
formed, with a proper symbol table. Verification also checks that the code that
implementsTerminator obeys the semantic requirements of the Java Virtual
Machine. If a problem is detected during verification, an error is thrown. Verifica-
tion is described further in §2.16.3.

Preparation involves allocation of static storage and any data structures that are
used internally by the virtual machine, such as method tables. If a problem is detected
during preparation, an error is thrown. Preparation is described further in §2.16.3.

Resolution is the process of checking symbolic referencesTeominator
to other classes and interfaces, by loading the other classes and interfaces that are
mentioned and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implementa-
tion may resolve a symbolic reference from a class or interface that is being linked

42

THE JAVAM VIRTUAL MACHINE SPECIFICATION

very early, even to the point of resolving all symbolic references from the classes
and interfaces that are further referenced, recursively. (This resolution may result
in errors from further loading and linking steps.) This implementation choice rep-
resents one extreme and is similar to the kind of static linkage that has been done
for many years in simple implementations of the C language.

An implementation may instead choose to resolve a symbolic reference only
when it is actively used; consistent use of this strategy for all symbolic references
would represent the “laziest” form of resolution. In this caseeifninator had
several symbolic references to another class, the references might be resolved one
at a time—perhaps not at all, if these references were never used during execution
of the program.

The only requirement on when resolution is performed is that any errors
detected during resolution must be thrown at a point in the program where some
action is taken by the program that might, directly or indirectly, require linkage
to the class or interface involved in the error. In the “static” example implemen-
tation choice described earlier, loading and linking errors could occur before the
program is executed if they involved a class or interface mentioned in the class
Terminator or any of the further, recursively referenced classes and interfaces.
In a system that implemented the “laziest” resolution, these errors would be
thrown only when a symbolic reference is actively used.

The resolution process is described further in §2.16.3.

In our running example, the virtual machine is still trying to execute the
method main of clasSerminator. This is an attempted active use (82.16.4) of
the class, which is permitted only if the class has been initialized.

Initialization consists of execution of any class variable initializers and static ini-
tializers of the clas$Serminator, in textual order. But beforeerminator can be
initialized, its direct superclass must be initialized, as well as the direct superclass of
its direct superclass, and so on, recursively. In the simplestTeasdnator has
Object as its implicit direct superclass; if cladsject has not yet been initialized,
then it must be initialized befoi@rminator is initialized.

If classTerminator has another clastuper as its superclass, th&aper
must be initialized befor€erminator. This requires loading, verifying, and pre-
paringSuper, if this has not already been done, and, depending on the implemen-
tation, may also involve resolving the symbolic references fapar and so on,
recursively.

Initialization may thus cause loading, linking, and initialization errors, includ-
ing such errors involving other types.

JAVA CONCEPTS 43

The initialization process is described further in 82.16.4.

Finally, after completion of the initialization for classrminator (during
which other consequential loading, linking, and initializing may have occurred),
the methodhain of Terminator is invoked.

2.16.2 Loading

Loadingrefers to the process of finding the binary form of a class or interface type
with a particular name, perhaps by computing it on the fly, but more typically by
retrieving a binary representation previously computed from source code by a
compiler and constructing, from that binary fornGlass object to represent the
class or interface. The binary format of a class or interface is normaky dke

file format (see Chapter 4, “Thdass File Format”).

The loading process is implemented by the ctAssslLoader and its sub-
classes. Different subclasses@fssLoader may implement different loading
policies. In particular, a class loader may cache binary representations of classes
and interfaces, prefetch them based on expected usage, or load a group of related
classes together. These activities may not be completely transparent to a running
Java application if, for example, a newly compiled version of a class is not found
because an older version is cached by a class loader. It is the responsibility of a
class loader, however, to reflect loading errors only at points in the program where
they could have arisen without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the follow-
ing subclasses of classnkageError will be thrown at any point in the Java pro-
gram that (directly or indirectly) uses the type:

e ClassCircularityError: A class or interface could not be loaded because it
would be its own superclass or superinterface (82.13.2).

* ClassFormatError: The binary data that purports to specify a requested com-
piled class or interface is malformed.

* NoClassDefFoundError: No definition for a requested class or interface
could be found by the relevant class loader.

2.16.3 Linking: Verification, Preparation, and Resolution

Linking is the process of taking a binary form of a class or interface type and
combining it into the runtime state of the Java Virtual Machine, so that it can be

44

THE JAVAM VIRTUAL MACHINE SPECIFICATION

executed. A class or interface type is always loaded before it is linked. Three dif-
ferent activities are involved in linking: verification, preparation, and resolution
of symbolic references.

Java allows an implementation flexibility as to when linking activities (and,
because of recursion, loading) take place, provided that the semantics of the lan-
guage are respected, that a class or interface is completely verified and prepared
before it is initialized, and that errors detected during linkage are thrown at a point
in the program where some action is taken by the program that might require link-
age to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic refer-
ence in a class or interface individually, only when it is used (lazy or late resolu-
tion), or to resolve them all at once, for example, while the class is being verified
(static resolution). This means that the resolution process may continue, in some
implementations, after a class or interface has been initialized.

Verification ensures that the binary representation of a class or interface is
structurally correct. For example, it checks that every instruction has a valid oper-
ation code; that every branch instruction branches to the start of some other
instruction, rather than into the middle of an instruction; that every method is pro-
vided with a structurally correct signature; and that every instruction obeys the
type discipline of the Java language.

If an error occurs during verification, then an instance of the following sub-
class of classinkageError will be thrown at the point in the Java program that
caused the class to be verified:

» VerifyError: The binary definition for a class or interface failed to pass a set
of required checks to verify that it obeys the semantics of the Java language and
that it cannot violate the integrity of the Java Virtual Machine.

Preparationinvolves creating the static fields for a class or interface and ini-
tializing such fields to the standard default values (82.5.1). This does not require
the execution of any Java code; explicit initializers for static fields are executed as
part of initialization (82.16.4), not preparation.

Java implementations must detect the following error during preparation:

* AbstractMethodError: A class that is not declared to biestract has an
abstract method. This can occur, for example, if a method that is originally
notabstract is changed to babstract after another class that inherits the
now-abstract method declaration has been compiled.

JAVA CONCEPTS 45

Implementations of the Java Virtual Machine may precompute additional data
structures at preparation time in order to make later operations on a class or inter-
face more efficient. One particularly useful data structure is a “method table” or
other data structure that allows any method to be invoked on instances of a class
without requiring a search of superclasses at invocation time.

A Java binary file references other classes and interfaces and their fields,
methods, and constructors symbolically, using the fully qualified names (8§2.7.9)
of the other classes and interfaces. For fields and methods these symbolic refer-
ences include the name of the class or interface type which declares the field or
method, as well as the name of the field or method itself, together with appropriate
type information.

Before a symbolic reference can be used it must undezgolution
wherein a symbolic reference is checked to be correct and, typically, replaced
with a direct reference that can be more efficiently processed if the reference is
used repeatedly.

If an error occurs during resolution, then an instance of one of the following
subclasses of clagacompatibleClassChangeError, or of some other subclass,
or of IncompatibleClassChangeError itself (which is a subclass of the class
LinkageError) may be thrown at any point in the Java program that uses a sym-
bolic reference to the type:

» I1legalAccessError: A symbolic reference has been encountered that spec-
ifies a use or assignment of a field, or invocation of a method, or creation of an
instance of a class, to which the code containing the reference does not have
access because the field or method was declaredate, protected, or
default access (nptib11c), or because the class was not declaogdi c. This
can occur, for example, if a field that is originally declarellic is changed
to beprivate after another class that refers to the field has been compiled.

e InstantiationError: A symbolic reference has been encountered that is
used in a class instance creation expression, but an instance cannot be created
because the reference turns out to refer to an interface oabs&ract class.

This can occur, for example, if a class that is originally atsttract is
changed to babstract after another class that refers to the class in question
has been compiled.

* NoSuchFieldError: A symbolic reference has been encountered that refers to
a specific field of a specific class or interface, but the class or interface does not
declare a field of that name (it is specifically not sufficient for it simply to be

46

THE JAVAM VIRTUAL MACHINE SPECIFICATION

an inherited field of that class or interface). This can occur, for example, if a
field declaration was deleted from a class after another class that refers to the
field was compiled.

* NoSuchMethodError: A symbolic reference has been encountered that refers
to a specific method of a specific class or interface, but the class or interface
does not declare a method of that name and signature (it is specifically not suf-
ficient for it simply to be an inherited method of that class or interface). This
can occur, for example, if a method declaration was deleted from a class after
another class that refers to the method was compiled

2.16.4 |Initialization

Initialization of a class consists of executing its static initializers (82.11) and the
initializers for static fields (82.9.2) declared in the class. Initialization of an inter-
face consists of executing the initializers for fields declared in the interface
(82.13.4).

Before a class is initialized, its superclass must be initialized, but interfaces
implemented by the class need not be initialized. Similarly, the superinterfaces of
an interface need not be initialized before the interface is initialized.

A class or interface typ& will be initialized at its firstactive use which
occurs if:

» Tis a class and a method actually declared (rather than inherited from a
superclass) is invoked.

* Tis aclass and a constructor for class invoked.

« A nonconstant field declared in(rather than inherited from a superclass or
superinterface) is used or assigned. A constant field is one that is (explicitly or
implicitly) both final andstatic, and that is initialized with the value of a
compile-time constant expression. Java specifies that a reference to such a field
must be resolved at compile time to a copy of the compile-time constant value,
so uses of such field are never active uses.

All other uses of a type amassive uses

The intent here is that a type has a set of initializers that put it in a consistent
state, and that this state is the first state that is observed by other classes. The static
initializers and class variable initializers are executed in textual order and may not
refer to class variables declared in the class whose declarations appear textually
after the use, even though these class variables are in scope. This restriction is

JAVA CONCEPTS 47

designed to detect, at compile time, most circular or otherwise malformed initial-
izations.

Before a class is initialized its superclasses are initialized, if they have not
previously been initialized.

A reference to a field is an active use of only the class or interface that actu-
ally declares it, even though it might be referred to through the name of a subclass,
a subinterface, or a class that implements an interface.

Initialization of an interface does not, of itself, require initialization of any of
its superinterfaces.

2.16.5 Detailed Initialization Procedure

Because Java is multithreaded, initialization of a class or interface requires careful
synchronization, since some other thread may be trying to initialize the same class
or interface at the same time. There is also the possibility that initialization of a
class or interface may be requested recursively as part of the initialization of that
class or interface; for example, a variable initializer in clkagsight invoke a
method of an unrelated clags which might in turn invoke a method of class

The implementation of the Java Virtual Machine is responsible for taking care of
synchronization and recursive initialization by using the following procedure. It
assumes that th@ ass object has already been verified and prepared, and that the
Class object contains state that can indicates one of four situations:

» ThisClass object is verified and prepared but not initialized.

» ThisClass object is being initialized by some particular thrgad

» ThisClass object is fully initialized and ready for use.

» ThisClass object is in an erroneous state, perhaps because the verification or
preparation step failed, or because initialization was attempted and failed.

The procedure for initializing a class or interface is then as follows:

1. Synchronize on th€&lass object that represents the class or interface to be ini-
tialized. This involves waiting until the current thread can obtain the lock for
that object (88.13).

2. If initialization is in progress for the class or interface by some other thread,
thenwait on thisClass object (which temporarily releases the lock). When
the current thread awakens from il t, repeat this step.

48

3.

10.

11.

THE JAVAM VIRTUAL MACHINE SPECIFICATION

If initialization is in progress for the class or interface by the current thread,
then this must be a recursive request for initialization. Release the lock on the
Class object and complete normally.

. If the class or interface has already been initialized, then no further action is

required. Release the lock on ttiass object and complete normally.

. If theClass object is in an erroneous state, then initialization is not possible.

Release the lock on tli@ass object and throw BoClassDefFoundError.

. Otherwise, record the fact that initialization of ttileass object is now in

progress by the current thread and release the lock @ dke object.

. Next, if theClass object represents a class rather than an interface, and the

superclass of this class has not yet been initialized, then recursively perform
this entire procedure for the superclass. If necessary, verify and prepare the
superclass first. If the initialization of the superclass completes abruptly
because of a thrown exception, then lock @isss object, label it erroneous,
notify all waiting threads, release the lock, and complete abruptly, throwing the
same exception that resulted from initializing the superclass.

. Next, execute either the class variable initializers and static initializers of the

class, or the field initializers of the interface, in textual order, as though they
were a single block, except thétnal static variables and fields of inter-
faces whose values are compile-time constants are initialized first.

. If the execution of the initializers completes normally, then lockGhiss

object, label it fully initialized, notify all waiting threads, release the lock, and
complete this procedure normally.

Otherwise, the initializers must have completed abruptly by throwing some
exceptione. If the class oE is notError or one of its subclasses, then create
a new instance of the claBsceptionInInitializerError, with E as the
argument, and use this object in plac&af the following step. But if a new
instance oftxceptionInInitializerError cannot be created because an
OutOfMemoryError occurs, then instead use@rtOfMemoryError object in
place ofEe in the following step.

Lock theCTass object, label it erroneous, notify all waiting threads, release the
lock, and complete this procedure abruptly with reasonits replacement as
determined in the previous step.

JAVA CONCEPTS 49

In some early implementations of Java, an exception during class initializa-
tion was ignored, rather than causing ExeptionInInitializerError as
described here.

2.16.6 Creation of New Class Instances

A new class instance is explicitly created when one of the following situations
occurs:

» Evaluation of a class instance creation expression creates a new instance of the
class whose name appears in the expression.

» Invocation of themewInstance method of clas€lass creates a new instance
of the class represented by tbeass object for which the method was
invoked.

A new class instance may be implicitly created in the following situations:

» Loading of a class or interface that contaiss @ing literal may create a new
String object (82.4.7) to represent that literal. This may not occur if the same
String has previously been interned.

» Execution of a string concatenation operator that is not part of a constant
expression sometimes creates a rs@wing object to represent the result.
String concatenation operators may also create temporary wrapper objects for
a value of a primitive type (82.4.1).

Each of these situations identifies a particular constructor to be called with speci-
fied arguments (possibly none) as part of the class instance creation process.
Whenever a new class instance is created, memory space is allocated for it
with room for all the instance variables declared in the class type and all the
instance variables declared in each superclass of the class type, including all the
instance variables that may be hidden. If there is not sufficient space available to
allocate memory for the object, then creation of the class instance completes
abruptly with arOutOfMemoryError. Otherwise, all the instance variables in the
new object, including those declared in superclasses, are initialized to their default
values (82.5.1). Just before a reference to the newly created object is returned as

THE JAVAM VIRTUAL MACHINE SPECIFICATION

the result, the indicated constructor is processed to initialize the new object using
the following procedure:

1. Assign the arguments for the constructor to newly created parameter variables
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation of another
constructor in the same class (usitlg s), then evaluate the arguments and
process that constructor invocation recursively using these same five steps. If
that constructor invocation completes abruptly, then this procedure completes
abruptly for the same reason. Otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of another
constructor in the same class (usithds). If this constructor is for a class other
thanObject, then this constructor will begin with a explicit or implicit invoca-
tion of a superclass constructor (usinger). Evaluate the arguments and pro-
cess that superclass constructor invocation recursively using these same five
steps. If that constructor invocation completes abruptly, then this procedure com-
pletes abruptly for the same reason. Otherwise, continue with step 4.

4. Execute the instance variable initializers for this class, assigning their values to
the corresponding instance variables, in the left-to-right order in which they
appear textually in the source code for the class. If execution of any of these
initializers results in an exception, then no further initializers are processed and
this procedure completes abruptly with that same exception. Otherwise, con-
tinue with step 5. (In some early Java implementations, the compiler incor-
rectly omitted the code to initialize a field if the field initializer expression was
a constant expression whose value was equal to the default initialization value
for its type. This was a bug.)

5. Execute the rest of the body of this constructor. If that execution completes
abruptly, then this procedure completes abruptly for the same reason. Other-
wise, this procedure completes normally.

Unlike C++, the Java language does not specify altered rules for method dis-
patch during the creation of a new class instance. If methods are invoked that are
overridden in subclasses in the object being initialized, then these overriding
methods are used, even before the new object is completely created.

JAVA CONCEPTS 51

2.16.7 Finalization of Class Instances

The clas®bject has aprotected method calledinalize; this method can be
overridden by other classes. The particular definitiorfiefalize that can be
invoked for an object is called tfiealizer of that object. Before the storage for an
object is reclaimed by the garbage collector, the Java Virtual Machine will invoke
the finalizer of that object.

Finalizers provide a chance to free up resources (such as file descriptors or
operating system graphics contexts) that cannot be freed automatically by an
automatic storage manager. In such situations, simply reclaiming the memory
used by an object would not guarantee that the resources it held would be
reclaimed.

The Java language does not specify how soon a finalizer will be invoked,
except to say that it will happen before the storage for the object is reused. Also,
the Java language does not specify which thread will invoke the finalizer for any
given object. If an uncaught exception is thrown during the finalization, the excep-
tion is ignored and finalization of that object terminates.

Thefinalize method declared in clagbject takes no action. However, the
fact that clas®bject declares &inalize method means that th@nalize
method for any class can always invoke ftiealize method for its superclass,
which is usually good practice. (Unlike constructors, finalizers do not automati-
cally invoke the finalizer for the superclass; such an invocation must be coded
explicitly.)

For efficiency, an implementation may keep track of classes that do not over-
ride thefinalize method of clasebject, or override it in a trivial way, such as

protected void finalize() { super.finalize(); }

We encourage implementations to treat such objects as having a finalizer that is
not overridden, and to finalize them more efficiently.

The finalize method may be invoked explicitly, just like any other method.
However, doing so does not have any effect on the object’'s eventual automatic
finalization.

The Java Virtual Machine imposes no orderingfénalize method calls.
Finalizers may be called in any order, or even concurrently.

As an example, if a circularly linked group of unfinalized objects becomes
unreachable, then all the objects may become finalizable together. Eventually, the
finalizers for these objects may be invoked, in any order, or even concurrently

52

THE JAVAM VIRTUAL MACHINE SPECIFICATION

using multiple threads. If the automatic storage manager later finds that the
objects are unreachable, then their storage can be reclaimed.

2.16.8 Finalization and Unloading of Classes and Interfaces

A Java Virtual Machine may provide mechanisms whereby classes are finalized
and unloaded.The details of such mechanisms are not specified in the current
version ofThe Java Language Specificatidn general, groups of related class
and interface types will be unloaded together. This can be used, for example, to
unload a group of related types that have been loaded using a particular class
loader. Such a group might consist of all the classes implementing a single applet
in a Java-based browser such as HotJava, for example.

A class may not be unloaded while any instance of it is still reachable. A class
or interface may not be unloaded while tass object that represents it is still
reachable.

If a class declares a class methddssFinalize that takes no arguments,
and returns no result:

static void classFinalize() { . . . }

then this method will be invoked before the class is unloaded. Likgittad i ze
method for objects, this method will be automatically invoked only once. This
method may optionally be declarpdivate, protected, orpublic.

2.16.9 Virtual Machine Exit
A Java Virtual Machine terminates all its activity and exits when one of two things
happens:

« All the threads that are not daemon threads (8§2.17) terminate.

* Some thread invokes theit method of clasRuntime or classSystem and

the exit operation is permitted by the security manager.

A Java program can specify that the finalizers of all objects that have finalizers
that have not been automatically invoked are to be run before the virtual machine
exits. This is done by invoking the metheghFinalizersOnExit of the class

2- Class finalization and unloading are not implemented as of Sun’s JDK release 1.0.2.

JAVA CONCEPTS 53

System with the argumentrue.3 The default is to not run finalizers on exit, and
this behavior may be restored by invokinghFinalizersOnExit with the argu-
ment false. An invocation of therunFinalizersOnExit method is permitted
only if the caller is allowed texit, and is otherwise rejected by the security man-
ager.

2.17 Threads

While most of the preceding discussion is concerned only with the behavior of
Java code as executed by a single thread, each Java Virtual Machine can support
many threads of execution at once. These threads independently execute Java code
that operates on Java values and objects residing in a shared main memory.
Threads may be supported by having many hardware processors, by time-slicing a
single hardware processor, or by time-slicing many hardware processors.

Any thread may be marked aslaemon threadwhen code running in some
thread creates a nelhread object, that new thread is initially marked as a dae-
mon thread if and only if the creating thread is a daemon thread. A program can
change whether or not a particular thread is a daemon thread by calling the
setDaemon method in clasShread. The Java Virtual Machine initially starts up
with a single non-daemon thread which typically calls the methdd of some
class. The virtual machine may also create other daemon threads for internal pur-
poses. The Java Virtual Machine exits when all non-daemon threads have died
(82.16.9).

Java supports the coding of programs that, though concurrent, still exhibit
deterministic behavior, by providing mechanisms dgnchronizingthe concur-
rent activity of threads. To synchronize threads, Javamses#ors which are a
high-level mechanism for allowing only one thread at a time to execute a region of
code protected by the monitor. The behavior of monitors is explained in terms of
locks There is a lock associated with each object.

The synchronized statement performs two special actions relevant only to
multithreaded operation:

1. After computing a reference to an object but before executing its body, it locks
a lock associated with the object.

3 The methoctunFinalizersOnExit is not implemented in Sun’s JDK release 1.0.2.

54

THE JAVAM VIRTUAL MACHINE SPECIFICATION

2. After execution of the body has completed, either normally or abruptly, it unlocks
that same lock. As a convenience, a method may be deslareldronized,;
such a method behaves as if its body were containeslimcaronized state-
ment.

The methodsiait, notify, andnotifyAll of classObject support an effi-
cient transfer of control from one thread to another. Rather than simply “spinning”
(repeatedly locking and unlocking an object to see whether some internal state has
changed), which consumes computational effort, a thread can suspend itself using
wait until such time as another thread awakens it using fy or notifyAll.

This is especially appropriate in situations where threads have a producer—
consumer relationship (actively cooperating on a common goal) rather than a
mutual exclusion relationship (trying to avoid conflicts while sharing a common
resource).

As a thread executes code, it carries out a sequence of actions. A thread may
usethe value of a variable @ssignit a new value. (Other actions include arith-
metic operations, conditional tests, and method invocations, but these do not
involve variables directly.) If two or more concurrent threads act on a shared vari-
able, there is a possibility that the actions on the variable will produce timing-
dependent results. This dependence on timing is inherent in concurrent program-
ming and produces one of the few places in Java where the result of a program is
not determined solely bjhe Java Language Specification

Each thread has a working memory, in which it may keep copies of the values
of variables from the main memory that are shared between all threads. To access
a shared variable, a thread usually first obtains a lock and flushes its working
memory. This guarantees that shared values will thereafter be loaded from the
shared main memory to the working memory of the thread. By unlocking a lock, a
thread guarantees that the values held by the thread in its working memory will be
written back to the main memory.

The interaction of threads with the main memory, and thus with each other,
may be explained in terms of certain low-level actions. There are rules about the
order in which these actions may occur. These rules impose constraints on any
implementation of Java, and a Java programmer may rely on the rules to predict
the possible behaviors of a concurrent Java program. The rules do, however, inten-
tionally give the implementor certain freedoms. The intent is to permit certain
standard hardware and software techniques that can greatly improve the speed and
efficiency of concurrent code.

JAVA CONCEPTS 55
Briefly put, the important consequences of the rules are the following:

» Proper use of synchronization constructs will allow reliable transmission of
values or sets of values from one thread to another through shared variables.

* When a thread uses the value of a variable, the value it obtains is in fact a value
stored into the variable by that thread or by some other thread. This is true even
if the program does not contain code for proper synchronization. For example,
if two threads store references to different objects into the same reference
value, the variable will subsequently contain a reference to one object or the
other, not a reference to some other object or a corrupted reference value.
(There is a special exception foong anddouble values; see §8.4.)

* In the absence of explicit synchronization, a Java implementation is free to
update the main memory in an order that may be surprising. Therefore, the pro-
grammer who prefers to avoid surprises should use explicit synchronization.

The details of the interaction of threads with the main memory, and thus with
each other, are discussed in detail in Chapter 8, “Threads and Locks.”

CHAPTER3

Structure of the
Java Virtual Machine

THIS book specifies an abstract machine. It does not document any particular
implementation of the Java Virtual Machine, including Sun’s.

To implement the Java Virtual Machine correctly, you need only be able to
read the Javalass file format and correctly perform the operations specified
therein. Implementation details that are not part of the Java Virtual Machine’s
specification would unnecessarily constrain the creativity of implementors, and
will only be provided to make the exposition clearer. For example, the memory
layout of runtime data areas, the garbage-collection algorithm used, and any opti-
mizations of the bytecodes (for example, translating them into machine code) are
left to the discretion of the implementor.

3.1 Data Types

Like the Java language, the Java Virtual Machine operates on two kinds of types:
primitive typesandreference typesThere are, correspondingly, two kinds of values
that can be stored in variables, passed as arguments, returned by methods, and oper-
ated uponprimitive valuesandreference values

The Java Virtual Machine expects that nearly all type checking is done at
compile time, not by the Java Virtual Machine itself. In particular, data need not
be tagged or otherwise be inspectable to determine types. Instead, the instruc-
tion set of the Java Virtual Machine distinguishes its operand types using
instructions intended to operate on values of specific types. For instadde,
Tadd, fadd, anddadd are all Java Virtual Machine instructions that add two
numeric values, but they require operands whose typesnardong, float,

57

58

THE JAVAM VIRTUAL MACHINE SPECIFICATION

and double, respectively. For a summary of type support in the Java Virtual
Machine’s instruction set, see 83.11.1.

The Java Virtual Machine contains explicit support for objects. An object is
either a dynamically allocated class instance or an array. A reference to an
object is considered to have Java Virtual Machine typerence. Values of
type reference can be thought of as pointers to objects. More than one refer-
ence may exist to an object. Although the Java Virtual Machine performs opera-
tions on objects, it never addresses them directly. Objects are always operated
on, passed, and tested via values of typerence.

3.2 Primitive Types and Values

The primitive data types supported by the Java Virtual Machine aneutheric
typesand thereturnAddress type. The numeric types consist of thiegral types

* byte, whose values are 8-bit signed two’s-complement integers

* short, whose values are 16-bit signed two’s-complement integers

 1int, whose values are 32-bit signed two’s-complement integers

* Tong, whose values are 64-bit signed two’s-complement integers

« char, whose values are 16-bit unsigned integers representing Unicode version

1.1.5 characters (82.1)

and thdloating-point types

e float, whose values are 32-bit IEEE 754 floating-point numbers

« double, whose values are 64-bit IEEE 754 floating-point numbers

The values of theeturnAddress type are pointers to the opcodes of Java
Virtual Machine instructions. Only theeturnAddress type is not a Java lan-

guage type.
3.2.1 Integral Types and Values

The values of the integral types of the Java Virtual Machine are the same as those for
the integral types of the Java language (82.4.1):

STRUCTURE OF THE JAVA VIRTUAL MACHINE 59

* Forbyte, from 128 to 127 (-2’ to 2'—1), inclusive
« Forshort, from 32768 to 32767 (-2'° to 21°-1), inclusive
« Forint, from 2147483648 t0 2147483647 (-2 to 221-1), inclusive

« Forlong, from -9223372036854775808 t09223372036854775807 (X3 to
253_1), inclusive

» Forchar, from '\ueeeo"' to '\uffff'; char is unsigned, sO\uffff' rep-
resents5535 when used in expressions, nat —

3.2.2 Floating-Point Types and Values

The values of the floating-point types of the Java Virtual Machine are the same as
those for the floating-point types of the Java language (82.4.1). The floating-point
typesfloat anddouble represent single-precision 32-bit and double-precision 64-
bit format IEEE 754 values as specified&iE Standard for Binary Floating-Point
Arithmetig ANSI/IEEE Std. 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative sign—magni-
tude numbers, but also positive and negative zeroes, positive and netative
ties and a specidllot-a-Numbei(hereafter abbreviated NaN) value that is used to
represent the result of certain operations such as dividing zero by zero. Such val-
ues exist for bothloat anddouble types.

The finite nonzero values of tyg@oat are of the forns- m- 2% wheresis
+1 or —1,m s a positive integer less thaA*2ande is an integer between —149
and 104, inclusive. The largest positive finite floating-point literal of fjpat is
3.40282347e+38F. The smallest positive nonzero floating-point literal of type
float is1.40239846e—45F.

The finite nonzero values of tygeuble are of the forns- m- 2°, wheres is
+1 or —1,m s a positive integer less thaf®2ande is an integer between —1075
and 970, inclusiveThe largest positive finite floating-point literal of type doubTle
iI51.79769313486231570e+308. The smallest positive nonzero floating-point lit-
eral of type double is 4.94065645841246544e—324.

Floating-point positive zero and floating-point negative zero compare as
equal, but there are other operations that can distinguish them; for example, divid-
ing 1.0 by 0.0 produces positive infinity, but dividirng. 0 by -0.0 produces neg-
ative infinity.

60

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Except for NaN, floating-point values amedered When arranged from
smallest to largest, they are negative infinity, negative finite values, negative zero,
positive zero, positive finite values, and positive infinity.

NaN isunordered so numerical comparisons have the value false if either or
both of their operands are NaN. A test for numerical equality has the value false if
either operand is NaN, and a test for numerical inequality has the value true if
either operand is NaN. In particular, a test for numerical equality of a value
against itself has the value false if and only if the value is NaN.

IEEE 754 defines a large number of distinct NaN values but fails to specify
which NaN values are produced in various situations. To avoid portability prob-
lems, the Java Virtual Machine coalesces these NaN values together into a single
conceptual NaN value.

3.2.3 ThereturnAddress Type and Values

ThereturnAddress type is used by the Java Virtual Machineis ret, andjsr_w
instructions. The values of theturnAddress type are pointers to the opcodes
of Java Virtual Machine instructions. Unlike the numeric primitive types, the
returnAddress type does not correspond to any Java data type.

3.2.4 There Is Noboolean Type

Although Java defines lsooTlean type, the Java Virtual Machine does not have
instructions dedicated to operationsba1ean values. Instead, a Java expression
that operates oboolean values is compiled to use thet data type to represent
boolean variables.

Although the Java Virtual Machine has support for the creation of arrays of
type booTlean (see the description of tmewarray instruction), it does not have
dedicated support for accessing and modifying elementsoofean arrays.
Arrays of typeboolean are accessed and modified usingtiee array instruc-
tions’

For more information on the treatmentbafolean values in the Java Virtual
Machine, see Chapter 7, “Compiling for the Java Virtual Machine.”

L In Sun’s JDK 1.0.2 releaskgolean arrays are effectivelgyte arrays, using 8 bits per boolean
element.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 61
3.3 Reference Types and Values

There are three kinds ekference types: class types, interface types, and array
types, whose values are references to dynamically created class instances, arrays, or
class instances or arrays that implement interfacesfArence value may also be

the special null reference, a reference to no object, which will be denoted here by
null1. Thenul1 reference initially has no runtime type, but may be cast to any type
(82.4).

3.4 Words

No mention has been made of the storage requirements for values of the various
Java Virtual Machine types, only the ranges those values may take. The Java Vir-
tual Machine does not mandate the size of its data types. Instead, the Java Virtual
Machine defines an abstract notion of/ard that has a platform-specific size. A
word is large enough to hold a value of tyyyee, char, short, int, float, ref-

erence, Or returnAddress, or to hold a native pointer. Two words are large
enough to hold values of the larger typbsyg anddouble. Java’s runtime data
areas are all defined in terms of these abstract words.

A word is usually the size of a pointer on the host platform. On a 32-bit plat-
form, a word is 32 bits, pointers are 32 bits, dadgs anddoub1es naturally take
up two words. A naive 64-bit implementation of the Java Virtual Machine may
waste half of a word used to store a 32-bit datum, but may also be able to store all
of along or adoubTle in one of the two words allotted to it.

The choice of a specific word size, although platform-specific, is made at the
implementation level, not as part of the Java Virtual Machine’s design. It is not
visible outside the implementation or to code compiled for the Java Virtual
Machine.

Throughout this book, all references to a word datum are to this abstract
notion of a word.

3.5 Runtime Data Areas

3.5.1 Thepc Register

A Java Virtual Machine can support many threads of execution at once (82.17).
Each Java Virtual Machine thread has its @wrfprogram counter) register. At any

62

THE JAVAM VIRTUAL MACHINE SPECIFICATION

point, each Java Virtual Machine thread is executing the code of a single method,
the current method (83.6) for that thread. If that method isatdtve, thepc regis-

ter contains the address of the Java Virtual Machine instruction currently being exe-
cuted. If the method currently being executed by the threakis e, the value of

the Java Virtual Machinejsc register is undefined. The Java Virtual Machipe’s
register is one word wide, the width guaranteed to hotdtairnAddress or a

native pointer on the specific platform.

3.5.2 Java Stack

Each Java Virtual Machine thread (82.17) has a pridea stackcreated at the

same time as the thread. A Java stack stores Java Virtual Machine frames (83.6).
The Java stack is equivalent to the stack of a conventional language such as C: it
holds local variables and partial results, and plays a part in method invocation and

return. Because the stack is never manipulated directly except to push and pop
frames, it may actually be implemented as a heap, and Java frames may be heap
allocated. The memory for a Java stack does not need to be contiguous.

The Java Virtual Machine specification permits Java stacks to be of either a
fixed or a dynamically varying size. If the Java stacks are of a fixed size, the size
of each Java stack may be chosen independently when that stack is created. A Java
Virtual Machine implementation may provide the programmer or the user control
over the initial size of Java stacks, as well as, in the case of dynamically expand-
ing or contracting Java stacks, control over the maximum and minimum Java stack
sizes.

The following exceptional conditions are associated with Java stacks:

« If the computation in a thread requires a larger Java stack than is permitted, the
Java Virtual Machine throwsStackOverflowError.

 If Java stacks can be dynamically expanded, and Java stack expansion is
attempted but insufficient memory can be made available to effect the expan-
sion, or if insufficient memory can be made available to create the initial Java
stack for a new thread, the Java Virtual Machine throw8uaf0fMemory-
Error.

In Sun’s JDK 1.0.2 implementation of the Java Virtual Machine, the Java stacks
are discontiguous and are independently expanded as required by the computation.
The Java stacks do not contract, but are reclaimed when their associated thread ter-
minates or is killed. Expansion is subject to a size limit for any one Java stack. The

STRUCTURE OF THE JAVA VIRTUAL MACHINE 63

Java stack size limit may be set on virtual machine start-up usingdbs’ ‘flag.
The Java stack size limit can be used to limit memory consumption or to catch run-
away recursions.

3.5.3 Heap

The Java Virtual Machine hashaapthat is shared among all threads (82.17). The
heap is the runtime data area from which memory for all class instances and arrays
is allocated.

The Java heap is created on virtual machine start-up. Heap storage for objects
is reclaimed by an automatic storage management system (typiagdisbage
collecton; objects are never explicitly deallocated. The Java Virtual Machine
assumes no particular type of automatic storage management system, and the stor-
age management technique may be chosen according to the implementor’s system
requirements. The Java heap may be of a fixed size, or may be expanded as
required by the computation and may be contracted if a larger heap becomes
unnecessary. The memory for the Java heap does not need to be contiguous.

A Java Virtual Machine implementation may provide the programmer or the
user control over the initial size of the heap, as well as, if the heap can be dynami-
cally expanded or contracted, control over the maximum and minimum heap size.

The following exceptional condition is associated with the Java heap:

« If a computation requires more Java heap than can be made available by the
automatic storage management system, the Java Virtual Machine throws an
OutOfMemoryError.

Sun’s JDK 1.0.2 implementation of the Java Virtual Machine dynamically
expands its Java heap as required by the computation, but never contracts its heap.
Its initial and maximum sizes may be specified on virtual machine start-up using
the “-ms” and “-mx” flags, respectively.

3.5.4 Method Area

The Java Virtual Machine hasraethod areathat is shared among all threads
(82.17). The method area is analogous to the storage area for compiled code of a
conventional language, or to the “text” segment in a UNIX process. It stores per-
class structures such as the constant pool, field and method data, and the code for
methods and constructors, including the special methods (83.8) used in class and
instance initialization and interface type initialization.

64

THE JAVAM VIRTUAL MACHINE SPECIFICATION

The method area is created on virtual machine start-up. Although the method
area is logically part of the garbage-collected heap, simple implementations may
choose to neither garbage collect nor compact it. This version of the Java Virtual
Machine specification does not mandate the location of the method area or the
policies used to manage compiled code. The method area may be of a fixed size,
or may be expanded as required by the computation and may be contracted if a
larger method area becomes unnecessary. The memory for the method area does
not need to be contiguous.

A Java Virtual Machine implementation may provide the programmer or the
user control over the initial size of the method area, as well as, in the case of a vary-
ing-size method area, control over the maximum and minimum method area size.

The following exceptional condition is associated with the method area:

* If memory in the method area cannot be made available to satisfy an allocation
request, the Java Virtual Machine throwsdamOfMemoryError.

Sun’s JDK 1.0.2 implementation of the Java Virtual Machine dynamically
expands its method are as required by the computation, but never contracts. No
user control over the maximum or minimum size of the method area is provided.

3.5.5 Constant Pool

A constant poolis a per-class or per-interface runtime representation of the
constant_poo] table in a Javalass file (§84.4). It contains several kinds of con-
stants, ranging from numeric literals known at compile time to method and field ref-
erences that must be resolved at run time. The constant pool serves a function
similar to that of a symbol table for a conventional programming language,
although it contains a wider range of data than a typical symbol table.

Each constant pool is allocated from the Java Virtual Machine’'s method area
(83.5.4). The constant pool for a class or interface is created when @ldava
file for the class or interface is successfully loaded (82.16.2) by a Java Virtual
Machine.

The following exceptional condition is associated with the creation of the
constant pool for a class or interface:

* When loading alass file, if the creation of the constant pool requires more
memory than can be made available in the method area of the Java Virtual
Machine, the Java Virtual Machine throwsCartOfMemoryError.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 65

Constant pool resolution, a runtime operation performed on entries in the con-
stant pool, has its own set of associated exceptions. See Chapter 5 for information
about the runtime management of the constant pool.

3.5.6 Native Method Stacks

An implementation of the Java Virtual Machine may use conventional stacks, collo-
quially called “C stacks,” to supparative methods, methods written in languages
other than Java. A native method stack may also be used to implement an emulator
for the Java Virtual Machine’s instruction set in a language such as C. Implementa-
tions that do not supportitive methods, and that do not themselves rely on con-
ventional stacks, need not supply native method stacks. If supplied, native method
stacks are typically allocated on a per thread basis when each thread is created.

The Java Virtual Machine specification permits native method stacks to be of
either a fixed or a dynamically varying size. If the native method stacks are of a
fixed size, the size of each native method stack may be chosen independently
when that stack is created. In any case, a Java Virtual Machine implementation
may provide the programmer or the user control over the initial size of the native
method stacks. In the case of varying-size native method stacks, it may also make
available control over the maximum and minimum method stack sizes.

The following exceptional conditions are associated with Java stacks:

« If the computation in a thread requires a larger native method stack than is per-
mitted, the Java Virtual Machine throwsS®ackOverflowError.

« If native method stacks can be dynamically expanded, and native method
stack expansion is attempted but insufficient memory can be made available,
or if insufficient memory can be made available to create the initial native
method stack for a new thread, the Java Virtual Machine throwaian
OfMemoryError.

Sun’s JDK 1.0.2 implementation of the Java Virtual Machine allocates fixed-
size native method stacks of a single size. The size of its native method stacks may
be set on virtual machine start-up using thes” flag. The native method stack
size limit can be used to limit memory consumption or to catch runaway recur-
sions innative methods.

Sun’s implementation doew®t currently check for native method stack over-
flow.

66

THE JAVAM VIRTUAL MACHINE SPECIFICATION
3.6 Frames

A Java Virtual Machindrameis used to store data and partial results, as well as to
perform dynamic linking, to return values for methods, and to dispatch exceptions.

A new frame is created each time a Java method is invoked. A frame is
destroyed when its method completes, whether that completion is normal or abnor-
mal (by throwing an exception). Frames are allocated from the Java stack (83.5.2) of
the thread creating the frame. Each frame has its own set of local variables (83.6.1)
and its own operand stack (83.6.2). The memory space for these structures can be
allocated simultaneously, since the sizes of the local variable area and operand
stack are known at compile time and the size of the frame data structure depends
only upon the implementation of the Java Virtual Machine.

Only one frame, the frame for the executing method, is active at any pointin a
given thread of control. This frame is referred to asdingent frame and its
method is known as thrurrent methodThe class in which the current method is
defined is thecurrent class Operations on local variables and the operand stack
always are with reference to the current frame.

A frame ceases to be current if its method invokes another method or if its
method completes. When a method is invoked, a new frame is created and
becomes current when control transfers to the new method. On method return, the
current frame passes back the result of its method invocation, if any, to the previ-
ous frame. The current frame is then discarded as the previous frame becomes the
current one. Java Virtual Machine frames may be naturally thought of as being
allocated on a stack, with one stack per Java thread (82.17), but they may also be
heap allocated.

Note that a frame created by a thread is local to that thread and cannot be
directly referenced by any other thread.

3.6.1 Local Variables

On each Java method invocation, the Java Virtual Machine allocates a Java frame
(83.6), which contains an array of words known atoital variables Local vari-
ables are addressed as word offsets from the base of that array.

Local variables are always one word wide. Two local variables are reserved
for eachlong or double value. These two local variables are addressed by the
index of the first of the variables.

For example, a local variable with indexand containing a value of typeu-
b1e actually occupies the two words at local variable indicasdn+1. The Java

STRUCTURE OF THE JAVA VIRTUAL MACHINE 67

Virtual Machine does not requireto be even. (In intuitive implementation terms,
64-bit values need not be 64-bit aligned in the local variables array.) Implementors
are free to decide the appropriate way to divide a 64-bit data value between two
local variables.

3.6.2 Operand Stacks

On each Java method invocation, the Java Virtual Machine allocates a Java frame
(83.6), which contains aoperand stackMost Java Virtual Machine instructions
take values from the operand stack of the current frame, operate on them, and return
results to that same operand stack. The operand stack is also used to pass arguments
to methods and receive method results.

For example, theadd instruction adds twdnt values together. It requires
that theint values to be added be the top two words of the operand stack, pushed
there by previous instructions. Both of thet values are popped from the oper-
and stack. They are added, and their sum is pushed back onto the stack. Subcom-
putations may be nested on the operand stack, resulting in values that can be used
by the encompassing computation.

Each entry on the operand stack is one word wide. Values of tgpgsand
double are pushed onto the operand stack as two words. The Java Virtual Machine
does not require 64-bit values on the operand stack to be 64-bit aligned. Imple-
mentors are free to decide the appropriate way to divide a 64-bit data value
between two operand stack words.

Values from the operand stack must be operated upon in ways appropriate to
their types. It is incorrect, for example, to push twa values and then treat them
as along, or to push twdloat values then add them with &uld instruction. A
small number of Java Virtual Machine instructions (thg instructions and
swap) operate on runtime data areas as raw values of a given width without regard
to type; these instructions must not be used to break up or rearrange the words of
64-bit data. These restrictions on operand stack manipulation are enforced, in the
Sun implementation, by theé ass file verifier (84.9).

3.6.3 Dynamic Linking

A Java Virtual Machine frame contains a reference to the constant pool for the
type of the current method to suppdytnamic linkingof the method code. The

class file code for a method refers to methods to be invoked and variables to be
accessed via symbolic references. Dynamic linking translates these symbolic

68

THE JAVAM VIRTUAL MACHINE SPECIFICATION

method references into concrete method references, loading classes as necessary
to resolve as-yet-undefined symbols, and translates variable accesses into appro-
priate offsets in storage structures associated with the runtime location of these
variables.

This late binding of the methods and variables makes changes in other classes
that a method uses less likely to break this code.

3.6.4 Normal Method Completion

A method invocatiomompletes normallif that invocation does not cause an excep-
tion (82.15, 83.9) to be thrown, either directly from the Java Virtual Machine or as a
result of executing an explicithrow statement. If the invocation of the current
method completes normally, then a value may be returned to the invoking method.
This occurs when the invoked method executes one of the return instructions
(83.11.8), the choice of which must be appropriate for the type of the value being
returned (if any).

The Java Virtual Machine frame is used in this case to restore the state of the
invoker, including its local variables and operand stack, with the program counter
of the invoker appropriately incremented to skip past the method invocation
instruction. Execution then continues normally in the invoking method’s frame
with the returned value (if any) pushed onto the operand stack of that frame.

3.6.5 Abnormal Method Completion

A method invocatiorompletes abnormally execution of a Java Virtual Machine
instruction within the method causes the Java Virtual Machine to throw an exception
(82.15, 83.9), and that exception is not handled within the method. Evaluation of an
explicit throw statement also causes an exception to be thrown and, if the exception
is not caught by the current method, results in abnormal method completion. A
method invocation that completes abnormally never returns a value to its invoker.

3.6.6 Additional Information

A Java Virtual Machine frame may be extended with additional implementation-
specific information, such as debugging information.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 69
3.7 Representation of Objects

The Java Virtual Machine does not require any particular internal structure for
objects. In Sun’s current implementation of the Java Virtual Machine, a reference to
a class instance is a pointer tbhandlethat is itself a pair of pointers: one to a table
containing the methods of the object and a pointer tathes object that repre-
sents the type of the object, and the other to the memory allocated from the Java
heap for the object data.

Other Java Virtual Machine implementations may use techniques such as inline
caching rather than method table dispatch, and they may or may not use handles.

3.8 Special Initialization Methods

At the level of the Java Virtual Machine, every constructor (82.12) appears as an
instance initialization methothat has the special naménit>. This name is
supplied by a Java compiler. Because the namét> is not a valid identifier, it
cannot be used directly by a Java programmer. Instance initialization methods
may only be invoked within the Java Virtual Machine byithekespecial instruc-
tion, and they may only be invoked on uninitialized class instances. An instance
initialization method takes on the access permissions (82.7.8) of the constructor
from which it was derived.

At the level of the Java Virtual Machine, a class or interface is initialized
(82.16.4) by invoking itslass or interface initialization methadth no arguments.
The initialization method of a class or interface has the special aaihiait>.
This name is supplied by a Java compiler. Because the aahieit> is not a
valid identifier, it cannot be used directly by a Java programmer. Class and interface
initialization methods are invoked implicitly by the Java Virtual Machine; they are
never invoked directly from Java code or directly from any Java Virtual Machine
instruction, but are only invoked indirectly as part of the class initialization process.

3.9 Exceptions

In general, throwing an exception results in an immediate dynamic transfer of control
that may exit multiple Java statements and multiple constructor invocations, static
and field initializer evaluations, and method invocations untdaach clause
(82.15.2) is found that catches the thrown value.

70

THE JAVAM VIRTUAL MACHINE SPECIFICATION

If no suchcatch clause is found in the current method, then the current
method invocation completes abnormally (83.6.5). Its operand stack and local
variables are discarded and its frame is popped, reinstating the frame of the invok-
ing method. The exception is then rethrown in the context of the invoker’s frame,
and so on continuing up the method invocation chain. If no suitalleh clause
is found before the top of the method invocation chain is reached, the execution of
the thread that threw the exception is terminated.

At the level of the Java Virtual Machine, eacttch clause describes the Java
Virtual Machine instruction range for which it is active, describes the types of
exceptions that it is to handle, and gives the address of the code to handle it. An
exception matches@tch clause if the instruction that caused the exception is in
the appropriate instruction range, and the exception type is the same type as or a
subclass of the class of exception that ¢hech clause handles. If a matching
catch clause is found, the system branches to the specified handler. If no handler
is found, the process is repeated until all the nesiedh clauses of the current
method have been exhausted.

The order of theatch clauses in the list is important. The Java Virtual Machine
execution continues at the first matchiratch clause. Because Java code is struc-
tured, it is always possible to arrange all the exception handlers for one method in a
single list. For any possible program counter value, this list can be searched to find
the proper exception handler, that is, the innermost exception handler that both con-
tains the program counter value and can handle the exception being thrown.

If there is no matchingatch clause, the current method is said to have an
uncaught exception. The execution state of the invoker, the method that invoked
this method, is restored. The propagation of the exception continues as though the
exception had occurred in the invoker at the instruction that invoked the method
actually raising the exception.

Java supports more sophisticated forms of exception handling through its
try-finally andtry-catch-finally statements. In such forms, thénally
statement is executed even if no matchiagch clause is found. The way the
Java Virtual Machine supports implementation of these forms is discussed in
Chapter 7, “Compiling for the Java Virtual Machine.”

3.10 Theclass File Format

Compiled code to be executed by the Java Virtual Machine is stored in a binary file
which has a platform-independent format, ¢fiass file format. Given the aims of
the Java Virtual Machine, the definition of this file format is of importance equal to

STRUCTURE OF THE JAVA VIRTUAL MACHINE 71

its other components. Théass file format precisely defines the contents of such a
file, including details such as byte ordering that might be taken for granted in a plat-
form-specific object file format.

Chapter 4, “The1ass File Format,” covers thelass file format in detail.

3.11 Instruction Set Summary

A Java Virtual Machine instruction consists of a one-geodespecifying the
operation to be performed, followed by zero or naperandssupplying arguments
or data that are used by the operation. Many instructions have no operands and con-
sist only of an opcode.

Ignoring exceptions, the inner loop of the Java Virtual Machine execution is
effectively

do {
fetch an opcode;
if (operands) fetch operands;
execute the action for the opcode;
} while (there is more to do);

The number and size of the additional operands are determined by the opcode.
If an additional operand is more than one byte in size, then it is stotsgh in
endian order—high-order byte first. For example, an unsigned 16-bit index into
the local variables is stored as two unsigned biyyésl andbyte2 such that its
value is

(bytel << 8) | byte2

The bytecode instruction stream is only single-byte aligned. The two exceptions are
the tableswitch andlookupswitch instructions, which are padded to force internal
alignment of some of their operands on 4-byte boundaries.

The decision to limit the Java Virtual Machine opcode to a byte and to
forego data alignment within compiled code reflects a conscious bias in favor of
compactness, possibly at the cost of some performance in naive implementa-
tions. A one-byte opcode precludes certain implementation techniques that
could improve the performance of a Java Virtual Machine emulator, and it limits
the size of the instruction set. Not assuming data alignment means that immedi-
ate data larger than a byte must be constructed from bytes at run time on many
machines.

72

THE JAVAM VIRTUAL MACHINE SPECIFICATION

3.11.1 Types and the Java Virtual Machine

Most of the instructions in the Java Virtual Machine instruction set encode type
information about the operations they perform. For instancd]ddee instruction
loads the contents of a local variable, which must bemanonto the operand stack.
Thefload instruction does the same withfdoat value. The two instructions may
have identical implementations, but have distinct opcodes.

For the majority of typed instructions, the instruction type is represented
explicitly in the opcode mnemonic by a lettefor anint operation] for Tong, s
for short, b for byte, ¢ for char, f for float, d for double, anda for refer-
ence. Some instructions for which the type is unambiguous do not have a type let-
ter in their mnemonic. For instanc&raylength always operates on an object that
is an array. Some instructions, suchget®, an unconditional control transfer, do
not operate on typed operands.

Given the Java Virtual Machine’s one-byte opcode size, encoding types into
opcodes places pressure on the design of its instruction set. If each typed instruc-
tion supported all of the Java Virtual Machine’s runtime data types, there would be
more instructions than could be represented in a byte. Instead, the instruction set
of the Java Virtual Machine provides a reduced level of type support for certain
operations. In other words, the instruction set is intentionally not orthogonal. Sep-
arate instructions can be used to convert between unsupported and supported data
types as necessary.

Table 3.1 summarizes the type support in the instruction set of the Java Virtual
Machine. Only instructions that exist for multiple types are listed. A specific
instruction, with type information, is built by replacing then the instruction
template in the opcode column by the letter in the type column. If the type column
for some instruction template and type is blank, then no instruction exists support-
ing that type of operation. For instance, there is a load instruction fori type
iload, but there is no load instruction for typete.

Note that most instructions in Table 3.1 do not have forms for the integral
typesbyte, char, andshort. When writing to its local variables or operand
stacks, the Java Virtual Machine internally sign-extends values ofhypesnd
short to typeint, and zero-extends values of tyger to typeint. Thus, most
operations on values of typegte, char, andshort are correctly performed by
instructions operating on values of typet. The Java Virtual Machine also
treats values of Java typeolean specially, as noted in §3.2.4.

STRUCTURE OF THE JAVA VIRTUAL MACHINE

opcode byte |short|int Tong |[float|double|char |reference
Tipush bipush | sipush

Tconst iconst Iconst |fconst | dconst aconst
Tload iload lload |fload |dload aload
Tstore istore Istore |fstore |dstore astore
Tinc iinc

Taload baload |saload |iaload laload |faload |daload |caload |aload
Tastore bastore | sastore | iastore lastore | fastore | dastore |castore | aastore
Tadd iadd ladd |[fadd |dadd

Tsub isub Isub [fsub |dsub

Tmul imul Imul |fmul |dmul

Tdiv idiv Idiv |[fdiv |ddiv

Trem irem Irem |frem |drem

Tneg ineg Ineg |fneg |dneg

Tshl ishl Ishl

Tshr ishr Ishr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor Ixor

i2T i2b i2s i2l i2f i2d

12T 12i 12f 12d

f2T f2i f2l f2d

d2T1 d2i d2l da2f

Temp Icmp

Templ fcmpl | dempl

Tempg fcmpg | dempg

if_ TcmpOP if_icmpOP if_ acmpOP
Treturn ireturn Ireturn | freturn|dreturn areturn

Table 3.1 Type support in the Java Virtual Machine instruction set

74

THE JAVAM VIRTUAL MACHINE SPECIFICATION

The mapping between Java storage types and Java Virtual Machine computa-

tational types is summarized by Table 3.2.

Java (Storage) Type Size in Bits Computational Type
byte 8 int

char 16 int

short 16 int

int 32 int

Tong 64 Tong

float 32 float

double 64 double

Table 3.2 Storage types and computational types

The exception to this mapping is in the case of arrays. Arrays of type
boolean, byte, char, andshort can be directly represented by the Java Virtual
Machine. Arrays of typeyte, char, andshort are accessed using instructions
specialized to those types. Arrays of tyelean are accessed usingyte

array instructions.

The remainder of this chapter summarizes the Java Virtual Machine instruc-

tion set.

3.11.2 Load and Store Instructions

The load and store instructions transfer values between the Java Virtual Machine’s
local variables and operand stack:

e Load a local variable onto the operand staitkad, iload_<n>, lload,
lload_<n>, fload, fload_<n>, dload, dload_<n>, aload, aload <n>.

« Store a value from the operand stack into a local variadtbee, istore_<n>,
Istore, Istore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore_<n>.

» Load a constant onto the operand staddpush, sipush, Idc, Idc_w, ldc2_w,
aconst_null, iconst_m1, iconst_<i>, lconst_<I>, fconst_<f>, dconst_<d>.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 75

» Gain access to more local variables using a wider index, or to a larger immedi-
ate operandwide.

Instructions that access fields of objects and elements of arrays also transfer data to
and from the operand stack (83.6.2).

Instruction mnemonics shown above with trailing letters between angle brack-
ets (for instancejload_<n>) denote families of instructions (with members
iload_0, iload_1, iload_2, andiload_3 in the case oiload_<n>). Such families of
instructions are specializations of an additional generic instructicad)(that
takes one operand. For the specialized instructions the operand is implicit and
does not need to be stored or fetched. The semantics are otherwise the same
(iload_0 means the same thingiésd with the operan@). The letter between the
angle brackets specifies the type of the implicit operand for that family of instruc-
tions: for<n> a natural number, foti> anint, for <I> along, for <f> afloat,
and for<d> a double. Forms for typeint are used in many cases to perform
operations on values of typgte, char, andshort (83.11.1).

This notation for instruction families is used through®be Java Virtual
Machine Specificatian

3.11.3 Arithmetic Instructions

The arithmetic instructions compute a result that is typically a function of two val-
ues on the operand stack, pushing the result back on the operand stack. There are
two main kinds of arithmetic instructions, those operating on integer values and
those operating on floating-point values. Within each of these kinds, the arithmetic
instructions are specialized to Java Virtual Machine numeric types. There is no
direct support for integer arithmetic tyte, short, andchar types (83.11.1);

those operations are handled by instructions operating onitywpenteger and
floating-point instructions also differ in their behavior on overflow, underflow, and
divide-by-zero. The arithmetic instructions are as follows:

* Add: iadd, ladd, fadd, dadd.

e Subtractisub, Isub, fsub, dsub.

o Multiply: imul, Imul, fmul, dmul.
+ Divide: idiv, Idiv, fdiv, ddiv.

 Remainderirem, Irem, frem, drem.

76

THE JAVAM VIRTUAL MACHINE SPECIFICATION

* Negateineg, Ineg, fneg, dneg.

« Shift: ishl, ishr, iushr, Ishl, Ishr, lushr.
» Bitwise OR:ior, lor.

« Bitwise AND:iand, land.

* Bitwise exclusive ORixor, Ixor.

» Local variable incrementinc.

The semantics of the Java operators on integer and floating-point values
(82.4.2, 82.4.3) are directly supported by the semantics of the Java Virtual
Machine instruction set.

The Java Virtual Machine does not indicate overflow or underflow during
operations on integer data types. The only integer operations that can throw an
exception are the integer divide instructioi$ andldiv) and the integer remain-
der instructionsitem andlrem), which throw amrithmeticException if the
divisor is zero.

Java Virtual Machine operations on floating-point numbers behave exactly as
specified in IEEE 754. In particular, the Java Virtual Machine requires full support
of IEEE 754denormalizedloating-point numbers angtadual underflowwhich
make it easier to prove desirable properties of particular numerical algorithms.

The Java Virtual Machine requires that floating-point arithmetic behave as if
every floating-point operator rounded its floating-point result to the result preci-
sion.Inexactresults must be rounded to the representable value nearest to the infi-
nitely precise result; if the two nearest representable values are equally near, the
one with its least significant bit zero is chosen. This is the IEEE 754 standard’s
default rounding mode, known emund-to-nearest

The Java Virtual Machine usamind-towards-zeravhen converting a floating-
point value to an integer. This results in the number being truncated; any bits of the
significand that represent the fractional part of the operand value are discarded.
Round-towards-zero chooses as its result the type’s value closest to, but no greater
in magnitude than, the infinitely precise result.

The Java Virtual Machine’s floating-point operators produce no exceptions.
An operation that overflows produces a signed infinity, an operation that under-
flows produces a signed zero, and an operation that has no mathematically definite
result produces NaN. All numeric operations with NaN as an operand produce
NaN as a result.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 77

3.11.4 Type Conversion Instructions

The type conversion instructions allow conversion between Java Virtual Machine
numeric types. These may be used to implement explicit conversions in user code, or
to mitigate the lack of orthogonality in the instruction set of the Java Virtual Machine.

The Java Virtual Machine directly supports the following widening numeric
conversions, a subset of Java’s widening primitive conversions (82.6.2):

* int toTong, float, ordouble
* Tongtofloat ordouble

e float todouble

The widening numeric conversion instructionsiatei2f, i2d, 12f, 12d, andf2d.
The mnemonics for these opcodes are straightforward given the naming conventions
for typed instructions and the punning use of 2 to mean “to.” For instand@dthe
instruction converts afint value to adouble. Widening numeric conversions do
not lose information about the overall magnitude of a numeric value. Indeed, con-
versions widening from thént type to thelong type and fronfloat to double
do not lose any information at all; the numeric value is preserved exactly. Conver-
sion of anint or along value tofloat, or of along value todouble, may lose
precision that is, may lose some of the least significant bits of the value; the
resulting floating-point value is a correctly rounded version of the integer value,
using IEEE 754 round-to-nearest mode.

According to this rule, a widening numeric conversion ofian to along
simply sign-extends the two’s-complement representation ofrthevalue to fill
the wider format. A widening numeric conversion oftar to an integral type
zero-extends the representation of ¢her value to fill the wider format.

Despite the fact that loss of precision may occur, widening numeric conver-
sions never result in a runtime exception.

Note that widening numeric conversions do not exist from integral bypes
char, andshort to typeint. As noted in 83.11.1, values of tybgte, char, and
short are internally widened to typet, making these conversions implicit.

The Java Virtual Machine also directly supports the following narrowing
numeric conversions, a subset of Java’s narrowing primitive conversions (82.6.3):

* int tobyte, short, orchar

* Tongtoint

78

THE JAVAM VIRTUAL MACHINE SPECIFICATION

e float toint or long

¢ double toint, Tong, orfloat

The narrowing numeric conversion instructionsidtei2c, i2s, 12i, f2i, f21,
dzi, d2I, andd2f. A narrowing numeric conversion can result in a value of dif-
ferent sign, or of a different order of magnitude, or both; they may thereby lose
precision.

A narrowing numeric conversion of amt or long to an integral typer
simply discards all but the lowest-order bits, wherg is the number of bits used
to represent typ&. This may cause the resulting value not to have the same sign
as the input value.

In a narrowing numeric conversion of a floating-point value to an integral type
7, whereT is eitherint or Tong, the floating-point value is converted to typas
follows:

* If the floating-point value is NaN, the result of the conversion isranor
Tong 0.

» Otherwise, if the value of the floating-point value is greater than or equal to the
smallest value and less than or equal to the largest value representable in type
T, then the floating-point value is rounded to an integer valumunding
towards zero using IEEE 754 round-towards-zero mode. Then there are two
cases:

= If Tis Tong and this integer value can be represented Em@, then the
result is thelong valuev.

« If Tis of typeint and this integer value can be represented da@grthen
the result is theént valuev.

* Otherwise either:

= The value must be too small (a negative value of large magnitude or negative
infinity), and the result is the smallest representable value ofityp@r
Tong.

= The value must be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value ofityper
Tong.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 79

A narrowing numeric conversion frodeuble to f1oat behaves in accordance
with IEEE 754. The result is correctly rounded using IEEE 754 round-to-nearest
mode. A value too small to be represented fikoat is converted to a positive or
negative zero of typ€loat; a value too large to be represented &ésoat is con-
verted to a positive or negative infinity. dbuble NaN is always converted to a
float NaN.

Despite the fact that overflow, underflow, or loss of precision may occur,
narrowing conversions among numeric types never result in a runtime
exception.

3.11.5 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java Virtual Machine
creates and manipulates class instances and arrays using distinct sets of
instructions:

» Create a new class instanoew.

« Create a new arrayewarray, anewarray, multianewarray.

» Access fields of classest@tic fields, known as class variables) and fields of
class instances (natatic fields, known as instance variablegtfield, put-
field, getstatic, putstatic.

» Load an array component onto the operand sbatdad, caload, saload, iaload,
laload, faload, daload, aaload.

 Store a value from the operand stack as an array compbastote, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

» Get the length of arrayrraylength.

» Check properties of class instances or arriangsanceof, checkcast.

3.11.6 Operand Stack Management Instructions

A number of instructions are provided for the direct manipulation of the operand
stack:pop, pop2, dup, dup2, dup_x1, dup2_x1, dup_x2, dup2_x2, swap.

80

THE JAVAM VIRTUAL MACHINE SPECIFICATION

3.11.7 Control Transfer Instructions

The control transfer instructions conditionally or unconditionally cause the Java Vir-
tual Machine to continue execution with an instruction other than the one following
the control transfer instruction. They are:

» Conditional branchifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if icmpne, if_icmplt, if_icmpgt, if_icmple, if_icmpge, if_acmpeq, if _acmpne,
Icmp, fcmpl, fcmpg, dempl, dempg.

» Compound conditional branctableswitch, lookupswitch.

» Unconditional branchgoto, goto_w, jsr, jsr_w, ret.

The Java Virtual Machine has distinct sets of instructions to conditionally
branch on comparison with data ©oft, Tong, float, double, andreference
types. Comparison with datalefte, char, andshort types is done using amt
comparison instruction (83.11.1). Because of this added emphaisis oompar-
isons, the Java Virtual Machine includes a larger complement of conditional
branch instructions for typént than for other types. The Java Virtual Machine
has distinct conditional branch instructions that test for the null reference, and
thus is not required to specify a concrete valuaddn (83.3).

All int andlong conditional control transfer instructions perform signed
comparisons. Floating-point comparison is performed in accordance with IEEE
754.

3.11.8 Method Invocation and Return Instructions

Four instructions invoke methods:

 Invoke an instance method of an object, dispatching on the (virtual) type of the
object:invokevirtual. This is the normal method dispatch in Java.

 Invoke a method that is implemented by an interface, searching the methods
implemented by the particular runtime object to find the appropriate method:
invokeinterface.

 Invoke an instance method requiring special handling, either an instance ini-
tialization method<init>, a private method, or a superclass method:
invokespecial.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 81
* Invoke a classs(tatic) method in a named clasavokestatic.

The method return instructions, which are distinguished by return typiectaire
(used to return values of typsyte, char, short, or int), lreturn, freturn,
dreturn, andareturn. In addition, thereturn instruction is used to return from
methods declared to beid.

3.11.9 Throwing and Handling Exceptions

An exception is thrown programmatically using #tlerow instruction. Exceptions
can also be thrown by various Java Virtual Machine instructions if they detect an
abnormal condition.

3.11.10 Implementingfinally

The implementation of th€inally keyword uses thgsr, jsr_w, andret instruc-
tions. See Section 4.9.6, “Exceptions &idally” and Section 7.13, “Compiling
finally.

3.11.11 Synchronization

The Java Virtual Machine supports method- and block-level synchronization using a
single mechanism (monitors) in different ways. Synchronized methods are handled
as part of method invocation and return (see Section 3.11.8, “Method Invocation and
Return Instructions”). Synchronization of code blocks, however, has explicit support

in the instruction setnonitorenter, monitorexit.

3.12 Public Design, Private Implementation

Thus far this book has sketched the public view of the Java Virtual Machine: the
class file format and the instruction set. These components are vital to the plat-
form- and implementation-independence of the Java Virtual Machine. The imple-
mentor may prefer to think of them as a means to securely communicate fragments
of programs between two platforms, rather than as a blueprint to be followed
exactly.

It is important to understand where the line between the public design and the
private implementation lies. The Java Virtual Machine must be able taTeas

82

THE JAVAM VIRTUAL MACHINE SPECIFICATION

files, and it must exactly implement the semantics of the Java Virtual Machine
code therein. One way of doing this is to take this document as a specification and
to implement that specification literally. But it is also perfectly feasible and desir-
able for the implementor to modify or optimize the implementation within the
constraints of this specification. So long asdhess file format can be read, and

the semantics of its code are maintained, the implementor may implement these
semantics in any way. What is “under the hood” is the implementor’s business, as
long as the correct external interface is carefully maintained.

The implementor can use this flexibility to tailor Java Virtual Machine imple-
mentations for high performance, low memory use, or portability. What makes
sense in a given implementation depends on the goals of that implementation. The
range of implementation options includes the following:

 Verifying properties of Java Virtual Machine code at linking time (82.16.3) to
reduce the need for runtime checks while ensuring that the code is safe and that
the semantics of the Java language are preserved (as done by18sa'le
verifier; see Section 4.9, “Verification ofass Files”).

» Translating the Java Virtual Machine code at load time or during execution (the
subject of Chapter 9, “An Optimization”) into the instruction set of another vir-
tual machine.

» Translating the Java Virtual Machine code at load time or during execution into
the native instruction set of the host CPU (sometimes referredJissan-
Timeor JIT code generation).

The existence of a precisely defined virtual machine and object file format need not
significantly restrict the creativity of the implementor. The Java Virtual Machine is
designed to support many different implementations, providing new and interesting
solutions while retaining compatibility between implementations.

2. There are some exceptions: debuggers and JIT code generators can require access to elements of
the Java Virtual Machine that are normally considered to be “under the hood.” Sun is working with
other Java Virtual Machine implementors and tools vendors to standardize interfaces to the Java
Virtual Machine for use by such tools.

CHAPTER I

Theclass File Format

THIS chapter describes the Java Virtual Machimhess file format. Eacltlass

file contains one Java type, either a class or an interface. Compliant Java Virtual
Machine implementations must be capable of dealing wiitilalis files that con-

form to the specification provided by this book.

A class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit, and 64-
bit quantities are constructed by reading in two, four, and eight consecutive 8-
bit bytes, respectively. Multibyte data items are always stored in big-endian
order, where the high bytes come first. In Java, this format is supported by inter-
faces java.io.DataInput and java.io.DataOutput and classes such as
java.io.DataInputStream andjava.io.DataOutputStream.

This chapter defines its own set of data types representingclasa
file data: The types1, u2, andu4 represent an unsigned one-, two-, or four-
byte quantity, respectively. In Java, these types may be read by methods such
as readUnsignedByte, readUnsignedShort, and readInt of the interface
java.io.Datalnput.

The Javaclass file format is presented using pseudostructures written in a C-
like structure notation. To avoid confusion with the fields of Java Virtual Machine
classes and class instances, the contents of the structures describing the Java
class file format are referred to @@ms Unlike the fields of a C structure, suc-
cessive items are stored in the Javass file sequentially, without padding or
alignment.

Variable-sizedtables consisting of variable-sized items, are used in several
class file structures. Although we will use C-like array syntax to refer to table
items, the fact that tables are streams of varying-sized structures means that it is
not possible to directly translate a table index into a byte offset into the table.

Where we refer to a data structure as an array, it is literally an array.

83

84

THE JAVAM VIRTUAL MACHINE SPECIFICATION

4.1 C(ClassFile

A class file contains a singl€lassFi1e structure:

ClassFile {

}

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];
u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

The items in th&€lassFile structure are as follows:

magic

Themagic item supplies the magic number identifying tass
file format; it has the valuéxCAFEBABE.

minor_version, major_version

The values of th@inor_version andmajor_version items are
the minor and major version numbers of the compiler that
produced thig1ass file. An implementation of the Java Virtual
Machine normally supportsiass files having a given major
version number and minor version numb&through some
particularminor_version.

If an implementation of the Java Virtual Machine supports some
range of minor version numbers andlass file of the same

THE cTass FILE FORMAT

major version but a higher minor version is encountered, the Java
Virtual Machine must not attempt to run the newer code.
However, unless the major version number differs, it will be
feasible to implement a new Java Virtual Machine that can run
code of minor versions up to and including that of the newer
code.

A Java Virtual Machine must not attempt to run code with a
different major version. A change of the major version number
indicates a major incompatible change, one that requires a
fundamentally different Java Virtual Machine.

In Sun’s Java Developer’s Kit (JDK) 1.0.2 release, documented
by this book, the value afajor_version is45. The value of
minor_version is 3. Only Sun may define the meaning of new
class file version numbers.

constant_poo]_count

The value of the&onstant_pool_count item must be greater
than zero. It gives the number of entries indbestant_pool
table of theclass file, where theconstant_pool entry at index
zero is included in the count but is not present in the
constant_poo]l table of the class file. Aonstant_pool index
is considered valid if it is greater than zero and less than
constant_poo]_count.

constant_pool[]

Theconstant_pool is a table of variable-length structures
(84.4) representing various string constants, class names, field
names, and other constants that are referred to within the
ClassFile structure and its substructures.

The first entry of theonstant_poo1 table,constant_poo1[@],
is reserved for internal use by a Java Virtual Machine
implementation. That entry it present in thelass file. The
first entry in theclass file is constant_pool1[1].

Each of theconstant_poo1 table entries at indicasthrough
constant_pool_count-1 is a variable-length structure (84.4)
whose format is indicated by its first “tag” byte.

THE JAVAM VIRTUAL MACHINE SPECIFICATION

access_flags

The value of thaccess_flags item is a mask of modifiers used
with class and interface declarations. Beeess_flags
modifiers are shown in Table 4.1.

Flag Name Value | Meaning Used By

ACC_PUBLIC 0x0001 | Ispublic; may be accessedClass, interface
from outside its package.

ACC_FINAL 0x0010 | Is final; no subclasses Class
allowed.

ACC_SUPER 0x0020 | Treat superclass methods | Class, interface
specially ininvokespecial.

ACC_INTERFACE| 0x0200 | Is an interface. Interface

ACC_ABSTRACT | 0x0400 | Is abstract; may not be Class, interface
instantiated.

Table 4.1Class access and modifier flags

An interface is distinguished by #€C_INTERFACE flag being
set. IFACC_INTERFACE is not set, this class file defines a class, not
an interface.

Interfaces may only use flags indicated in Table 4.1 as used by
interfaces. Classes may only use flags indicated in Table 4.1 as
used by classes. An interface is implicibstract (82.13.1); its
ACC_ABSTRACT flag must be set. An interface cannotfbeal;

its implementation could never be completed (82.13.1) if it were,
so it could not have itsCC_FINAL flag set.

The flagsACC_FINAL andACC_ABSTRACT cannot both be set for a
class; the implementation of such a class could never be
completed (8§2.8.2).

The setting of thaCC_SUPER flag directs the Java Virtual
Machine which of two alternative semantics foritgokespecial
instruction to express; it exists for backward compatibility for
code compiled by Sun’s older Java compilers. All new
implementations of the Java Virtual Machine should implement
the semantics fanvokespecial documented in Chapter 6, “Java
Virtual Machine Instruction Set.” All new compilers to the Java
Virtual Machine’s instruction set should set #t&€_SUPER flag.

THE cTass FILE FORMAT

Sun’s older Java compilers gener@tassFile flags with
ACC_SUPER unset. Sun’s older Java Virtual Machine
implementations ignore the flag if it is set.

All unused bits of theccess_f1ags item, including those not
assigned in Table 4.1, are reserved for future use. They should be
set to zero in generatedass files and should be ignored by Java
Virtual Machine implementations.

this_class

The value of thehis_class item must be a valid index into the
constant_poo]l table. Theconstant_pool entry at that index
must be &ONSTANT_Class_info (84.4.1) structure representing
the class or interface defined by thisss file.

super_class

For a class, the value of theper_class item either must be
zero or must be a valid index into thenstant_pooT table. If
the value of theuper_class item is nonzero, the
constant_pool entry at that index must be a
CONSTANT_Class_info (84.4.1) structure representing the
superclass of the class defined by tfisss file. Neither the
superclass nor any of its superclasses mayflie# class.

If the value ofsuper_class is zero, then thislass file must
represent the clagava.lang.0Object, the only class or
interface without a superclass.

For an interface, the value sfiper_class must always be a
valid index into theconstant_poo1 table. Theconstant_pool
entry at that index must beCANSTANT_Class_info structure
representing the clagava.lang.0Object.

interfaces_count

The value of thénterfaces_count item gives the number of
direct superinterfaces of this class or interface type.

interfaces[]

Each value in thénterfaces array must be a valid index into
theconstant_pool table. Theconstant_pool entry at each
value ofinterfaces[i], whereo < i <interfaces_count,

88

THE JAVAM VIRTUAL MACHINE SPECIFICATION

must be &ONSTANT_Class_info (84.4.1) structure representing
an interface which is a direct superinterface of this class or
interface type, in the left-to-right order given in the source for the

type.
fields_count

The value of thefields_count item gives the number of
field_info structures in théields table. Thefield_info
(84.5) structures represent all fields, both class variables and
instance variables, declared by this class or interface type.

fields[]

Each value in théields table must be a variable-length
field_info (84.5) structure giving a complete description of a
field in the class or interface type. Thie1ds table includes only
those fields that are declared by this class or interface. It does not
include items representing fields that are inherited from
superclasses or superinterfaces.

methods_count

The value of th@ethods_count item gives the number of
method_info structures in theethods table.

methods[]

Each value in theethods table must be a variable-length
method_info (84.6) structure giving a complete description of and
Java Virtual Machine code for a method in the class or interface.

Themethod_info structures represent all methods, both instance
methods and, for classes, classaftic) methods, declared by

this class or interface type. Thethods table only includes

those methods that are explicitly declared by this class. Interfaces
have only the single methed11init>, the interface initialization
method (83.8). Thaethods table does not include items
representing methods that are inherited from superclasses or
superinterfaces.

attributes_count

The value of thattributes_count item gives the number of
attributes (84.7) in thettributes table of this class.

THE cTass FILE FORMAT 89

attributes[]

Each value of thettributes table must be a variable-length
attribute structure. AlassFile structure can have any number
of attributes (84.7) associated with it.

The only attribute defined by this specification for the
attributes table of aClassFile structure is th€ourceFile
attribute (84.7.2).

A Java Virtual Machine implementation is required to silently
ignore any or all attributes in thetributes table of a
ClassFile structure that it does not recognize. Attributes not
defined in this specification are not allowed to affect the
semantics of thelass file, but only to provide additional
descriptive information (84.7.1).

4.2 Internal Form of Fully Qualified Class Names

Class names that appeardhass file structures are always represented in a
fully qualified form (82.7.9). These class names are always represented as
CONSTANT_Utf8_info (84.4.7) structures, and they are referenced from those
CONSTANT_NameAndType_info (84.4.6) structures that have class names as part
of their descriptor (84.3), as well as from @INSTANT_Class_info (84.4.1)
structures.

For historical reasons the exact syntax of fully qualified class names that
appear inclass file structures differs from the familiar Java fully qualified class
name documented in §2.7.9. In the internal form, the ASCII perlotsthat nor-
mally separate the identifiers (82.2) that make up the fully qualified name are
replaced by ASCII forward slashe'sy/(). For example, the normal fully qualified
name of clasShread is java.lang.Thread. In the form used in descriptors in
class files, a reference to the name of clagsead is implemented using a
CONSTANT_Utf8_info structure representing the stritifava/Tang/Thread".

4.3 Descriptors

A descriptor is a string representing the type of a field or method.

90

THE JAVAM VIRTUAL MACHINE SPECIFICATION

4.3.1 Grammar Notation

Descriptors are specified using a grammar. This grammar is a set of productions that
describe how sequences of characters can form syntactically correct descriptors of
various types. Terminal symbols of the grammar are showalid fixed-width

font. Nonterminal symbols are shownitalic type. The definition of a nonterminal

is introduced by the name of the nonterminal being defined, followed by a colon.
One or more alternative right-hand sides for the nonterminal then follow on suc-
ceeding lines. A nonterminal symbol on the right-hand side of a production that is
followed by an asterisk (*) represents zero or more possibly different values pro-
duced from that nonterminal, appended without any intervening space.

4.3.2 Field Descriptors

A field descriptorepresents the type of a class or instance variable. It is a series of
characters generated by the grammar:

FieldDescriptor:
FieldType
ComponentType:
FieldType

FieldType:
BaseType
ObjectType
ArrayType

BaseType:

B

W uaumkHTTOoN

Y4
ObjectType:

L <classname> ;
ArrayType:

[ComponentType

The characters dBaseTypetheL and; of ObjectType and the[of Array-
Typeare all ASCII characters. Thelassname> represents a fully qualified class

THE c7ass FILE FORMAT 91

name, for instancejava.lang.Thread. For historical reasons it is stored in a
class file in a modified internal form (84.2).
The meaning of the field types is as follows:

B byte signed byte

C char character

D double double-precision IEEE 754 float
F float single-precision IEEE 754 float
I int integer

J Tong long integer

L<classhame>; an instance of the class

S short signed short

Z boolean true orfalse

L one array dimension

For example, the descriptor of ant instance variable is simply The descriptor

of an instance variable of ty@bject is Ljava/lang/Object;. Note that the

internal form of the fully qualified class name for clalsgect is used. The descrip-
tor of an instance variable that is a multidimensidoab1e array,

double d[]1[]1[];

LC[D

4.3.3 Method Descriptors
A parameter descriptarepresents a parameter passed to a method:

ParameterDescriptor:
FieldType

A method descriptorepresents the parameters that the method takes and the
value that it returns:

MethodDescriptor:
(ParameterDescriptor ReturnDescriptor

A return descriptorepresents the return value from a method. It is a series of
characters generated by the grammar:

ReturnDescriptor:
FieldType
%

The charactey indicates that the method returns no value (its return type is
void). Otherwise, the descriptor indicates the type of the return value.

92

THE JAVAM VIRTUAL MACHINE SPECIFICATION

A valid Java method descriptor must represent 255 or fewer words of method
parameters, where that limit includes the wordtiets in the case of instance
method invocations. The limit is on the number of words of method parameters
and not on the number of parameters themselves; parameters dbiypand
double each use two words.

For example, the method descriptor for the method

Object mymethod(int i, double d, Thread t)

(IDLjava/lang/Thread;)Ljava/lang/Object;

Note that internal forms of the fully qualified class nameshekad andObject
are used in the method descriptor.

The method descriptor fonymethod is the same whetheiymethod is
static or is an instance method. Although an instance method is pesied
reference to the current class instance, in addition to its intended parameters,
that fact is not reflected in the method descriptor. (A referene@ito is not
passed to atatic method.) The reference this is passed implicitly by the
method invocation instructions of the Java Virtual Machine used to invoke
instance methods.

4.4 Constant Pool

All constant_poo1 table entries have the following general format:

cp_info {

ul tag;

ul infol[];
}

Each item in theonstant_poo1 table must begin with a 1-byte tag indicating the
kind of cp_info entry. The contents of thafo array varies with the value eag.

The valid tags and their values are listed in Table 4.2. Each tag byte must be fol-
lowed by two or more bytes giving information about the specific constant. The for-
mat of the additional information varies with the tag value.

THE cTass FILE FORMAT

Constant Type Value
CONSTANT_Class 7
CONSTANT_Fieldref 9
CONSTANT_Methodref 10
CONSTANT_InterfaceMethodref 11
CONSTANT_String 8
CONSTANT_Integer 3
CONSTANT_Float 4
CONSTANT_Long 5
CONSTANT_DoubTe 6
CONSTANT_NameAndType 12
CONSTANT_Utf8 1

Table 4.2 Constant pool tags

4.4.1 CONSTANT_Class
The CONSTANT_Class_info structure is used to represent a class or an interface:

CONSTANT_Class_info {
ul tag;
u2 name_index;

}
The items of th€ONSTANT_Class_info structure are the following:
tag
The tag item has the valueONSTANT_Class (7).
name_1index

The value of th@ame_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index
must be &ONSTANT_Utf8_info (84.4.7) structure representing a
valid fully qualified Java class name (82.8.1) that has been
converted to thelass file’s internal form (84.2).

94

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Because arrays are objects, the opcadewarray andmultianewarray can
reference array “classes” VIEONSTANT_Class_info (84.4.1) structures in the
constant_pool table. In this case, the name of the class is the descriptor of the array
type. For example, the class nhame representing a two-dimensiaratay type;

int[][]

[[T
The class name representing the type array of Tlagsad;

Thread[]

[Ljava.lang.Thread;

A valid Java array type descriptor must have 255 or fewer array dimensions.

4.4.2 CONSTANT_Fieldref, CONSTANT _Methodref, and
CONSTANT_InterfaceMethodref

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fieldref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_Methodref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

3

CONSTANT_InterfaceMethodref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

THE cTass FILE FORMAT

The items of these structures are as follows:

tag

Thetag item of aCONSTANT_Fieldref_info structure has the
valueCONSTANT _Fieldref (9).

Thetag item of aCONSTANT_Methodref_info structure has the
valueCONSTANT _Methodref (10).

Thetag item of aCONSTANT_InterfaceMethodref_info
structure has the valNSTANT_InterfaceMethodref (11).

class_index

The value of the1ass_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index
must be &ONSTANT_Class_info (84.4.1) structure representing

the class or interface type that contains the declaration of the field

or method.

Theclass_index item of aCONSTANT_Fieldref_info or a
CONSTANT _Methodref_info structure must be a class type, not
an interface type. The€lass_index item of a
CONSTANT_InterfaceMethodref_info structure must be an
interface type that declares the given method.

name_and_type_index

The value of th@ame_and_type_index item must be a valid

index into theconstant_pool table. Theconstant_pool entry
at that index must be@NSTANT_NameAndType_info (84.4.6)
structure. Thisonstant_pool entry indicates the name and
descriptor of the field or method.

If the name of the method ofCANSTANT _Methodref_info or
CONSTANT_InterfaceMethodref_info begins with a <'
("\ueo3c"), then the name must be one of the special internal
methods (83.8), eithetinit> or<clinit>. In this case, the
method must return no value.

95

96 THE JAVAM VIRTUAL MACHINE SPECIFICATION

4.4.3 CONSTANT_String

The CONSTANT_String_info structure is used to represent constant objects of the
typejava.lang.String:

CONSTANT_String_info {
ul tag;
u2 string_index;

}
The items of th€ONSTANT_String_info structure are as follows:
tag

Thetag item of theCONSTANT_String_info structure has the
valueCONSTANT_String (8).

string_index

The value of thetring_index item must be a valid index into
theconstant_pool table. Theconstant_pool entry at that
index must be 8ONSTANT_Utf8_info (84.4.3) structure
representing the sequence of characters to which the
java.lang.String object is to be initialized.

4.4.4 CONSTANT_Integer and CONSTANT_Float

The CONSTANT_Integer_info and CONSTANT_Float_info structures represent
four-byte numericint andfloat) constants:

CONSTANT_Integer_info {

ul tag;
u4 bytes;
}
CONSTANT_Float_info {
ul tag;
u4 bytes;
}

The items of these structures are as follows:
tag

Thetag item of theCONSTANT_Integer_info structure has the
valueCONSTANT _Integer (3).

THE cTass FILE FORMAT

Thetag item of theCONSTANT_Float_info structure has the
valueCONSTANT _Float (4).

bytes

4.4.5

Thebytes item of theCONSTANT_Integer_info structure
contains the value of thmt constant. The bytes of the value are
stored in big-endian (high byte first) order.

Thebytes item of theCONSTANT_Float_info structure contains
the value of the1oat constant in IEEE 754 floating-point
“single format” bit layout. The bytes of the value are stored in
big-endian (high byte first) order, and are first converted into an
int argument. Then:

« Ifthe argument i8x7f800000, thefloat value will be positive
infinity.

* If the argument i®9xff800000, thefloat value will be nega-
tive infinity.

* If the argument is in the ran@&7f800001 through

Ox7 T ff orinthe rang@xff800001 throughoxffffffff,
the float value will be NaN.

« In all other cases, lat, e, andm be three values that might be
computed by

int s = ((bytes >> 31) ==0) ? 1 : -1;
int e = ((bytes >> 23) & 0xff);
intm= (e ==0) ?

(bytes & Ox7fffff) << 1 :
(bytes & Ox7fffff) | 0x800000;

Then thefl1oat value equals the result of the mathematical
expressions [m (12— 150

CONSTANT_Long and CONSTANT _Doub1le

The CONSTANT_Long_info and CONSTANT_Double_info represent eight-byte
numeric {ong anddouble) constants:

97

98

THE JAVAM VIRTUAL MACHINE SPECIFICATION

CONSTANT_Long_info {
ul tag;
u4 high_bytes;
u4 low_bytes;

}

CONSTANT_DoubTe_info {
ul tag;
u4 high_bytes;
u4 Tow_bytes;

}

All eight-byte constants take up two entries in tib@stant_pool table of
the class file, as well as in the in-memory version of the constant pool that is
constructed when aclass file is read. If a CONSTANT_Long_info or
CONSTANT_Double_info structure is the item in theonstant_pool table at
index n, then the next valid item in the pool is located at index2. The
constant_pool indexn+1 must be considered invalid and must not be &sed.
The items of these structures are as follows:

tag

Thetag item of theCONSTANT_Long_1info structure has the
valueCONSTANT_Long (5).

Thetag item of theCONSTANT _Double_info structure has the
valueCONSTANT _DoubTe (6).

high_bytes, Tow_bytes

The unsignedhigh_bytes andlow_bytes items of the
CONSTANT_Long structure together contain the value of theg
constant ({ong)high_bytes << 32) +Tow_bytes, where the
bytes of each diigh_bytes andlow_bytes are stored in big-
endian (high byte first) order.

Thehigh_bytes andlow_bytes items of the

CONSTANT _DoubTe_info structure contain thdéouble value in
IEEE 754 floating-point “double format” bit layout. The bytes of
each item are stored in big-endian (high byte first) order. The
high_bytes andlow_bytes items are first converted intdlang
argument. Then:

1.

In retrospect, making eight-byte constants take two constant pool entries was a poor choice.

THE cTass FILE FORMAT

* If the argument i®9x7180000000000000L, thedouble value
will be positive infinity.

* If the argument i9xff80000000000000L, thedouble value
will be negative infinity.

« Ifthe argument is in the ran@e7ff0000000000001L through
ox7fFFFFfFFffffffL orin the range

0xfTf0000000000001L throughoxffffffffffffffffL, the
double value will be NaN.

« In all other cases, lat e, andm be three values that might be
computed from the argument:

int s = ((bits >> 63) ==0) ? 1 : -1;
int e = (int) ((bits >> 52) & Ox7ffL);
long m = (e == 0) ?
(bits & OxfffffffffffffL) << 1 :
(bits & OXFFFffffFfffffL) | 0x10000000000000L ;

Then the floating-point value equals thaib1e value of the
mathematical expressiariim (12~ 1075

4.4.6 CONSTANT_NameAndType

The CONSTANT_NameAndType_info structure is used to represent a field or
method, without indicating which class or interface type it belongs to:

CONSTANT_NameAndType_info {
ul tag;
u2 name_index;
u2 descriptor_index;

}
The items of th€ONSTANT_NameAndType_info structure are as follows:
tag

Thetag item of theCONSTANT_NameAndType_info structure has
the valueCONSTANT _NameAndType (12).

name_index

The value of th@ame_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index

99

100 THE JAVAM VIRTUAL MACHINE SPECIFICATION

must be ZONSTANT_Utf8_info (84.4.7) structure representing a
valid Java field name or method name (82.7) stored as a simple
(not fully qualified) name (82.7.1), that is, as a Java identifier.

descriptor_index

The value of thélescriptor_index item must be a valid index
into theconstant_poo1 table. Theconstant_pool entry at that
index must be 8ONSTANT_Utf8_info (84.4.7) structure
representing a valid Java field descriptor (84.3.2) or method
descriptor (84.3.3).

4.47 CONSTANT_Utf8

The CONSTANT_Utf8_info structure is used to represent constant string values.

UTF-8 strings are encoded so that character sequences that contain only non-
null ASCII characters can be represented using only one byte per character, but
characters of up to 16 bits can be represented. All characters in the range
'\u0ool' to '\ueo7F' are represented by a single byte:

0] bits 0-7 |

The seven bits of data in the byte give the value of the character represented. The
null character (\u0000') and characters in the raneu0080' to '\uo7FF' are
represented by a pair of byteandy:

x:[1]1]0| bits6-10 |y:|1]0] bits0-5 |

The bytes represent the character with the vaku& @x1f) << 6) + (y & 0x3f).
Characters in the rang&u0800"' to '\uFFFF' are represented by three bytes
X, y, andz:

x:[1][1]|1]0]bits12-15]y:[1]0| bits6-11 |z[1|0] bits0-5 |

The character with the valuec& 0xf) << 12) + ((y & 0x3f) << 6) + (z & 0x3f) is
represented by the bytes.

The bytes of multibyte characters are stored incthess file in big-endian
(high byte first) order.

THE cl1ass FILE FORMAT 101

There are two differences between this format and the “standard” UTF-8 for-
mat. First, the null byt€byte)0 is encoded using the two-byte format rather than
the one-byte format, so that Java Virtual Machine UTF-8 strings never have
embedded nulls. Second, only the one-byte, two-byte, and three-byte formats are
used. The Java Virtual Machine does not recognize the longer UTF-8 formats.

For more information regarding the UTF-8 format, Biée System Safe UCS
Transformation Format (FSS_UTFX/Open Preliminary Specification, X/Open
Company Ltd., Document Number: P316. This information also appears in ISO/
IEC 10646, Annex P.

The CONSTANT_Utf8_info structure is

CONSTANT_Utf8_info {
ul tag;
u2 Tlength;
ul bytes[length];
3

The items of th€ONSTANT_Utf8_info structure are the following:
tag

Thetag item of theCONSTANT_Utf8_info structure has the
valueCONSTANT_Utf8 (1).

Tength

The value of thdength item gives the number of bytes in the
bytes array (not the length of the resulting string). The strings in
the CONSTANT_Utf8_info structure are not null-terminated.

bytes[]

Thebytes array contains the bytes of the string. No byte may
have the valu€byte)® or (byte)0xfo-(byte)oxff.

45 Fields

Each field is described by a variable-len§ile1d_info structure. The format of
this structure is

102 THE JAVAM VIRTUAL MACHINE SPECIFICATION

field_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}
The items of theie1d_1info structure are as follows:
access_flags

The value of thaccess_flags item is a mask of modifiers used
to describe access permission to and properties of a field. The
access_flags modifiers are shown in Table 4.3.

Flag Name Value | Meaning Used By

ACC_PUBLIC 0x0001| Ispublic; may be accessed fromAny field
outside its package.

ACC_PRIVATE 0x0002| Isprivate; usable only within | Class field
the defining class.

ACC_PROTECTED| 0x0004 | Is protected; may be accessed Class field
within subclasses.

ACC_STATIC 0x0008| Isstatic. Any field

ACC_FINAL 0x0010| Isfinal; no further overriding of Any field
assignment after initialization.

ACC_VOLATILE | 0x0040| Isvolatile; cannot be cached Class field
ACC_TRANSIENT| 0x0080| Istransient; notwritten or reaﬁr Class field

by a persistent object manager.

Table 4.3Field access and modifier flags

Fields of interfaces may only use flags indicated in Table 4.3 as
used by any field. Fields of classes may use any of the flags in
Table 4.3.

All unused bits of thaccess_fTags item, including those not
assigned in Table 4.3, are reserved for future use. They should be
set to zero in generatedass files and should be ignored by Java
Virtual Machine implementations.

Class fields may have at most one of flags_PUBLIC,
ACC_PROTECTED, andACC_PRIVATE set (82.7.8). A class field
may not have bothCC_FINAL andACC_VOLATILE set (§2.9.1).

THE cTass FILE FORMAT

Each interface field is implicitlytatic andfinal (82.13.4) and
must have both it&CC_STATIC andACC_FINAL flags set. Each
interface field is implicithypub1ic (82.13.4) and must have its
ACC_PUBLIC flag set.

name_index

The value of theame_index item must be a valid index into

the constant_pool table. Theconstant_pool entry at that

index must be &ONSTANT_Utf8_info (84.4.7) structure

which must represent a valid Java field name (82.7) stored as a
simple (not fully qualified) name (82.7.1), that is, as a Java
identifier.

descriptor_index

The value of thélescriptor_index item must be a valid index
into theconstant_pool table. Theconstant_pool entry at that
index must be GONSTANT_Utf8 (84.4.7) structure which must
represent a valid Java field descriptor (84.3.2).

attributes_count

The value of theattributes_count item indicates the number
of additional attributes (84.7) of this field.

attributes[]

Each value of thettributes table must be a variable-length
attribute structure. A field can have any number of attributes
(84.7) associated with it.

The only attribute defined for thetributes table of a
field_info structure by this specification is the
ConstantValue attribute (84.7.3).

A Java Virtual Machine implementation must recognize
ConstantValue attributes in thettributes table of a
field_info structure. A Java Virtual Machine implementation is
required to silently ignore any or all other attributes in the
attributes table that it does not recognize. Attributes not
defined in this specification are not allowed to affect the
semantics of thelass file, but only to provide additional
descriptive information (84.7.1).

103

104

46 Methods

THE JAVAM VIRTUAL MACH

INE SPECIFICATION

Each method, and each instance initialization methiod t>, is described by a
variable-lengtmethod_info structure. The structure has the following format:

method_info {
u2
u2
u2
u2

access_flags;
name_index;
descriptor_index;
attributes_count;

attribute_info attributes[attributes_count];

}

The items of theethod_info structure are as follows:

access_flags

The value of thaccess_f1lags item is a mask of modifiers used to
describe access permission to and properties of a method or instance
initialization method (83.8). Theccess_f1ags modifiers are

shown in Table 4.4.

Flag Name Value | Meaning Used By

ACC_PUBLIC 0x0001| Ispublic; may be accessedAny method
from outside its package.

ACC_PRIVATE 0x0002| Isprivate; usable only | Class/instance
within the defining class.| method

ACC_PROTECTED 0x0004| Isprotected; may be Class/instance
accessed within sub- method
classes.

ACC_STATIC 0x0008| Isstatic. Class/instance

method

ACC_FINAL 0x0010| Is final; no overriding is| Class/instance
allowed. method

ACC_SYNCHRONIZED| 0x0020| Is synchronized; wrap | Class/instance
use in monitor lock. method

ACC_NATIVE 0x0100| Isnative; implementedin Class/instance
a language other than Javanethod

ACC_ABSTRACT 0x0400| Isabstract; no imple- | Any method

mentation is provided.

Table 4.4Method access and modifier flags

THE cl1ass FILE FORMAT 105

Methods in interfaces may only use flags indicated in Table 4.4 as
used by any method. Class and instance methods (82.10.3) may
use any of the flags in Table 4.4. Instance initialization methods
(83.8) may only usaCC_PUBLIC, ACC_PROTECTED, and
ACC_PRIVATE.

All unused bits of thaccess_flags item, including those not
assigned in Table 4.4, are reserved for future use. They should be
set to zero in generatedass files and should be ignored by Java
Virtual Machine implementations.

At most one of the flageCC_PUBLIC, ACC_PROTECTED, and
ACC_PRIVATE may be set for any method. Class and instance
methods may not uge€C_ABSTRACT together withACC_FINAL,
ACC_NATIVE, or ACC_SYNCHRONIZED (that is,native and
synchronized methods require an implementation). A class or
instance method may not useC_PRIVATE with ACC_ABSTRACT
(that is, gprivate method cannot be overridden, so such a
method could never be implemented or used). A class or instance
method may not us&CC_STATIC with ACC_ABSTRACT (that is, a
static method is implicitlyfinal and thus cannot be
overridden, so such a method could never be implemented or
used).

Class and interface initialization methods (83.8), that is, methods
named<clinit>, are called implicitly by the Java Virtual
Machine; the value of theirccess_flags item is ignored.

Each interface method is implicithbstract, and so must
have itsACC_ABSTRACT flag set. Each interface method is
implicitly public (82.13.5), and so must have M&_PUBLIC
flag set.

name_index

The value of th@ame_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index
must be a&lONSTANT_Utf8_info (84.4.7) structure representing
either one of the special internal method names (83.8), either
<init> or<clinit>, or a valid Java method name (82.7), stored
as a simple (not fully qualified) name (82.7.1).

106

THE JAVAM VIRTUAL MACHINE SPECIFICATION

descriptor_index

The value of thélescriptor_index item must be a valid index
into theconstant_poo1 table. Theconstant_pool entry at that
index must be 8ONSTANT_Utf8_info (84.4.7) structure
representing a valid Java method descriptor (84.3.3).

attributes_count

The value of thettributes_count item indicates the number
of additional attributes (84.7) of this method.

attributes[]

4.7

Each value of thattributes table must be a variable-length
attribute structure. A method can have any number of optional
attributes (84.7) associated with it.

The only attributes defined by this specification for the
attributes table of anethod_info structure are théode
(84.7.4) andExceptions (84.7.5) attributes.

A Java Virtual Machine implementation must recogriaee
(84.7.4) andtxceptions (84.7.5) attributes. A Java Virtual
Machine implementation is required to silently ignore any or all
other attributes in thettributes table of anethod_info

structure that it does not recognize. Attributes not defined in this
specification are not allowed to affect the semantics ofthes

file, but only to provide additional descriptive information
(84.7.1).

Attributes

Attributes are used in th€lassFile (84.1),field_info (84.5),method_info
(84.6), andCode_attribute (84.7.4) structures of thelass file format. All
attributes have the following general format:

attribute_info {
u2 attribute_name_index;
u4 attribute_length;
ul info[attribute_length];

THE cl1ass FILE FORMAT 107

For all attributes, thattribute_name_index must be a valid unsigned 16-
bit index into the constant pool of the class. Tdunstant_pool entry at
attribute_name_index must be alONSTANT_Utf8 (84.4.7) string representing
the name of the attribute. The value of theribute_Tlength item indicates the
length of the subsequent information in bytes. The length does not include the ini-
tial six bytes that contain thettribute_name_index andattribute_length
items.

Certain attributes are predefined as part ofcfheess file specification. The
predefined attributes are tlurceFile (84.7.2), ConstantValue (84.7.3),
Code (84.7.4),Exceptions (84.7.5),LineNumberTable (84.7.6), andLocal-
VariableTable (84.7.7) attributes. Within the context of their use in this specifi-
cation, that is, in thettributes tables of the1ass file structures in which they
appear, the names of these predefined attributes are reserved.

Of the predefined attributes, tlt®ede, ConstantValue, and Exceptions
attributes must be recognized and correctly readdiass file reader for correct
interpretation of thelass file by a Java Virtual Machine. Use of the remaining
predefined attributes is optionaltdass file reader may use the information they
contain, and otherwise must silently ignore those attributes.

4.7.1 Defining and Naming New Attributes

Compilers for Java source code are permitted to define andlawit files contain-

ing new attributes in thettributes tables ofclass file structures. Java Virtual
Machine implementations are permitted to recognize and use new attributes found
in the attributes tables ofclass file structures. However, all attributes not
defined as part of this Java Virtual Machine specification must not affect the seman-
tics of class or interface types. Java Virtual Machine implementations are required
to silently ignore attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debugging is
permitted. Because Java Virtual Machine implementations are required to ignore
attributes they do not recognizd,ass files intended for that particular Java Vir-
tual Machine implementation will be usable by other implementations even if
those implementations cannot make use of the additional debugging information
that theclass files contain.

Java Virtual Machine implementations are specifically prohibited from throw-
ing an exception or otherwise refusing to u3aess files simply because of the
presence of some new attribute. Of course, tools operatingaas files may not
run correctly if giverclass files that do not contain all the attributes they require.

108 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Two attributes that are intended to be distinct, but that happen to use the same
attribute name and are of the same length, will conflict on implementations that
recognize either attribute. Attributes defined other than by Sun must have names
chosen according to the package naming convention defindthdyava Lan-
guage SpecificatioriFor instance, a new attribute defined by Netscape might have
the name'COM.Netscape.new-attribute".

Sun may define additional attributes in future versions okftdss file spec-
ification.

4.7.2 SourceFile Attribute

The SourceFile attribute is an optional fixed-length attribute in heributes

table of theClassFile (84.1) structure. There can be no more than one

SourceFile attribute in theattributes table of a givel@lassFile structure.
TheSourceFile attribute has the format

SourceFile_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 sourcefile_index;

}
The items of th&ourceFile_attribute structure are as follows:
attribute_name_index

The value of thattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be@NSTANT_Utf8_info (84.4.7) structure
representing the strintSourceFile".

attribute_length

The value of thattribute_Tlength item of a
SourceFile_attribute structure must be.

sourcefile_index

The value of thaourcefile_index item must be a valid index
into theconstant_poo1 table. The constant pool entry at that
index must be 8ONSTANT_Utf8_info (84.4.7) structure
representing the string giving the name of the source file from
which thisclass file was compiled.

THE c1ass FILE FORMAT 109

Only the name of the source file is given bysherceFile
attribute. It never represents the name of a directory containing
the file or an absolute path name for the file. For instance, the
SourceFiTe attribute might contain the file nanieo. java but

not the UNIX pathname’home/1indho1m/foo.java.

4.7.3 ConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute used in theributes
table of thefield_info (84.5) structures. AonstantValue attribute represents
the value of a constant field that must be (explicitly or implicéhgti c; that is, the
ACC_STATIC bit (8Table 4.3) in th&Tags item of thefield_info structure must
be set. The field is not required to Binal. There can be no more than one
ConstantValue attribute in theattributes table of a giverfield_info struc-
ture. The constant field represented by fitield_info structure is assigned the
value referenced by i®nstantValue attribute as part of its initialization (82.16.4).

Every Java Virtual Machine implementation must recog@etantValue
attributes.

TheConstantValue attribute has the format

ConstantValue_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 constantvalue_index;

}
The items of th€onstantValue_attribute structure are as follows:
attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be@NSTANT_Utf8_info (84.4.7) structure
representing the strintfonstantVvalue".

attribute_length

The value of thattribute_Tlength item of a
ConstantValue_attribute structure must be.

constantvalue_index

The value of theonstantvalue_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry

110

THE JAVAM VIRTUAL MACHINE SPECIFICATION

at that index must give the constant value represented by this
attribute.

Theconstant_pool entry must be of a type appropriate to the
field, as shown by Table 4.5.

Field Type Entry Type

Tong CONSTANT_Long
float CONSTANT_Float
double CONSTANT _Double

int, short, char, byte, boolean | CONSTANT_Integer

java.lang.String CONSTANT_String

Table 4.5Constant value attribute types

4.7.4 Code Attribute

The Code attribute is a variable-length attribute used indhbeributes table of
method_info structures. ACode attribute contains the Java Virtual Machine
instructions and auxiliary information for a single Java method, instance initializa-
tion method (83.8), or class or interface initialization method (83.8). Every Java Vir-
tual Machine implementation must recogriiaéle attributes. There must be exactly
oneCode attribute in eachethod_info structure.

TheCode attribute has the format

Code_attribute {

u2
u4
u2
u2
u4
ul
u2

{

}
u2

attribute_name_index;
attribute_length;
max_stack;
max_locals;
code_Tlength;
code[code_length];
exception_table_length;

u2 start_pc;

u2 end_pc;

u2 handler_pc;

u2 catch_type;

exception_table[exception_table_length];
attributes_count;

attribute_info attributes[attributes_count];

THE cTass FILE FORMAT

The items of th€ode_attribute structure are as follows:
attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be@NSTANT_Utf8_info (84.4.7) structure
representing the strintfode".

attribute_length

The value of thattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

max_stack

The value of th@ax_stack item gives the maximum number of
words on the operand stack at any point during execution of this
method.

max_locals

The value of themax_Tocals item gives the number of local
variables used by this method, including the parameters passed to
the method on invocation. The index of the first local variable is

0. The greatest local variable index for a one-word value is
max_locals-1. The greatest local variable index for a two-word
value ismax_locals-2

code_length

The value of theode_1ength item gives the number of bytes in
the code array for this method. The value @fde_1ength must
be greater than zero; thede array must not be empty.

code[]

The code array gives the actual bytes of Java Virtual Machine
code that implement the method.

When thecode array is read into memory on a byte addressable
machine, if the first byte of the array is aligned on a 4-byte
boundary, theableswitch andlookupswitch 32-bit offsets will be
4-byte aligned; refer to the descriptions of those instructions for
more information on the consequencesafe array alignment.

The detailed constraints on the contents okt array are
extensive and are given in a separate section (84.8).

111

112 THE JAVAM VIRTUAL MACHINE SPECIFICATION

exception_table_length

The value of thexception_table_length item gives the
number of entries in thexception_table table.

exception_tablel[]

Each entry in thexception_table array describes one
exception handler in theode array. Eactexception_table
entry contains the following items:

start_pc, end_pc

The values of the two itenssart_pc andend_pc indicate
the ranges in theode array at which the exception handler
is active. The value aftart_pc must be a valid index into
the code array of the opcode of an instruction. The value of
end_pc either must be a valid index into thede array of

the opcode of an instruction, or must be equal to
code_1length, the length of theode array. The value of
start_pc must be less than the valueeafl_pc.

Thestart_pc is inclusive anégnd_pc is exclusive; that is,
the exception handler must be active while the program
counter is within the intervabfart_pc, end_pc).?

handler_pc

The value of théandler_pc item indicates the start of the
exception handler. The value of the item must be a valid
index into thecode array, must be the index of the opcode of
an instruction, and must be less than the value of the
code_length item.

catch_type

If the value of thecatch_type item is nonzero, it must be a
valid index into theconstant_pooT table. The
constant_pool entry at that index must be a

2. The fact thaend_pc is exclusive is an historical mistake in the Java Virtual Machine: if the Java
Virtual Machine code for a method is exactly 65535 bytes long and ends with an instruction that
is one byte long, then that instruction cannot be protected by an exception handler. A compiler
writer can work around this bug by limiting the maximum size of the generated Java Virtual
Machine code for any method, instance initialization method, or static initializer (the size of any
code array) to 65534 bytes.

THE cl1ass FILE FORMAT 113

CONSTANT_Class_info (84.4.1) structure representing a
class of exceptions that this exception handler is designated
to catch. This class must be the claissowable or one of

its subclasses. The exception handler will be called only if
the thrown exception is an instance of the given class or one
of its subclasses.

If the value of thecatch_type item is zero, this exception
handler is called for all exceptions. This is used to
implementfinally (see Section 7.13, “Compiling
finally”).

attributes_count

The value of thettributes_count item indicates the number
of attributes of th&€ode attribute.

attributes[]

Each value of thattributes table must be a variable-length
attribute structure. Aode attribute can have any number of
optional attributes associated with it.

Currently, theLineNumberTable (84.7.6) and
LocalvariableTable (84.7.7) attributes, both of which contain
debugging information, are defined and used witlt¢lde attribute.

A Java Virtual Machine implementation is permitted to silently
ignore any or all attributes in thetributes table of aCode
attribute. Attributes not defined in this specification are not
allowed to affect the semantics of thikass file, but only to
provide additional descriptive information (84.7.1).

4.7.5 Exceptions Attribute

The Exceptions attribute is a variable-length attribute used in dheributes
table of anethod_info (84.6) structure. ThExceptions attribute indicates which
checked exceptions a method may throw. There must be exactixofetions
attribute in eachethod_info structure.

TheExceptions attribute has the format

114 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Exceptions_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_exceptions;
u2 exception_index_table[number_of_exceptions];

3
The items of th&xceptions_attribute structure are as follows:
attribute_name_index

The value of thattribute_name_index item must be a valid
index into theconstant_poo1 table. Theconstant_pool entry
at that index must be tH@®NSTANT_Utf8_info (84.4.7)
structure representing the stritgxceptions".

attribute_length

The value of thattribute_Tlength item indicates the attribute
length, excluding the initial six bytes.

number_of_exceptions

The value of th@umber_of_exceptions item indicates the
number of entries in thexception_index_table.

exception_index_table[]

Each nonzero value in th&ception_index_table array must
be a valid index into theonstant_poo1 table. For each table
item, if exception_index_table[7] != 0, whered < i<
number_of_exceptions, then theconstant_poo1 entry at
indexexception_index_table[i] must be a
CONSTANT_Class_info (84.4.1) structure representing a class
type that this method is declared to throw.

A method should only throw an exception if at least one of the following three
criteria is met:
* The exception is an instanceRaihtimeException or one of its subclasses.
» The exception is an instancem®fror or one of its subclasses.

* The exception is an instance of one of the exception classes specified in the
exception_index_table above, or one of their subclasses.

The above requirements are not currently enforced by the Java Virtual
Machine; they are only enforced at compile time. Future versions of the Java
language may require more rigorous checkingtofows clauses when classes
are verified.

THE cl1ass FILE FORMAT 115

4.7.6 LineNumberTable Attribute

The LineNumberTable attribute is an optional variable-length attribute in the
attributes table of aCode (84.7.4) attribute. It may be used by debuggers to
determine which part of the Java Virtual Machinee array corresponds to a given
line number in the original Java source fileLiheNumberTable attributes are
present in thattributes table of a givertode attribute, then they may appear in
any order. Furthermore, multiple neNumberTab1e attributes may together repre-
sent a given line of a Java source file; thatiagNumberTable attributes need not
be one-to-one with source lings.

TheLineNumberTable attribute has the format

LineNumberTable_attribute {
u2 attribute_name_index;
u4 attribute_Tlength;
u2 Tine_number_table_Tlength;
{ u2 start_pc;
u2 line_number;
} Tine_number_table[line_number_table_length];

}
The items of th&ineNumberTable_attribute structure are as follows:
attribute_name_index

The value of thettribute_name_index item must be a valid
index into theconstant_poo1 table. Theconstant_pool entry
at that index must be@NSTANT_Utf8_info (84.4.7) structure
representing the strint.ineNumberTable".

attribute_length

The value of thattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

Tine_number_tabTle_length

The value of th@ine_number_table_length item indicates the
number of entries in theine_number_table array.

3 Thejavac compiler in Sun’s JDK 1.0.2 release can in fact generateNumberTabTle attributes
which are not in line number order and which are not one-to-one with source lines. This is unfor-
tunate, as we would prefer to specify a one-to-one, ordered mappintheNumberTable
attributes to source lines, but must yield to backward compatibility.

116 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Tine_number_table[]

Each entry in théine_number_tabTle array indicates that the line
number in the original Java source file changes at a given point in
the code array. Each entry must contain the following items:

start_pc

The value of thatart_pc item must indicate the index into
the code array at which the code for a new line in the
original Java source file begins. The valuewfrt_pc must
be less than the value of thede_Tength item of theCode
attribute of which this.ineNumberTable is an attribute.

Tine_number

The value of thd1ine_number item must give the
corresponding line number in the original Java source file.

4.7.7 LocalVariableTable Attribute

The LocalVvariableTable attribute is an optional variable-length attribute of a
Code (84.7.4) attribute. It may be used by debuggers to determine the value of a
given local variable during the execution of a method.ofalvariableTable
attributes are present in thetributes table of a giverCode attribute, then they
may appear in any order. There may be no more thahard8VariableTable
attribute per local variable in ti@@de attribute.

ThelocalVariableTable attribute has the format

LocalVariableTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 local_variable_table_Tlength;
{ u2 start_pc;
u2 Tength;
u2 name_index;
u2 descriptor_index;
u2 index;
} Tocal_variable_table[
Tocal_variable_table_length];

THE cl1ass FILE FORMAT 117

The items of th&ocalVariableTable_attribute structure are as follows:
attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be@NSTANT_Utf8_info (84.4.7) structure
representing the strintLocalvariableTable".

attribute_length

The value of thattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

Tocal_variable_table_length

The value of th@ocal_variable_table_length item
indicates the number of entries in flieal_variable_table
array.

Jocal_variable_table[]

Each entry in th@ocal_variable_table array indicates a
range ofcode array offsets within which a local variable has a
value. It also indicates the index into the local variables of the
current frame at which that local variable can be found. Each
entry must contain the following items:

start_pc, length

The given local variable must have a value at indices into the
code array in the intervalgtart_pc, start_pc+1ength],

that is, betweentart_pc andstart_pc+length

inclusive. The value oftart_pc must be a valid index into
the code array of thisCode attribute of the opcode of an
instruction. The value oftart_pc+Tength must be either

a valid index into theode array of thisCode attribute of the
opcode of an instruction, or the first index beyond the end of
thatcode array.

name_index, descriptor_index

The value of th@ame_index item must be a valid index
into theconstant_poo1l table. Theconstant_pool entry
at that index must containCANSTANT_Utf8_info (84.4.7)

118

THE JAVAM VIRTUAL MACHINE SPECIFICATION

structure representing a valid Java local variable name stored
as a simple name (82.7.1).

The value of thélescriptor_index item must be a valid
index into theconstant_poo1 table. Theconstant_pool

entry at that index must contairC@NSTANT_Utf8_info

(84.4.7) structure representing a valid descriptor for a Java
local variable. Java local variable descriptors have the same
form as field descriptors (84.3.2).

index

The given local variable must beiatdex in its method’s
local variables. If the local variable &idex is a two-word
type double or 1ong), it occupies botlindex and
index+1.

4.8 Constraints on Java Virtual Machine Code

The Java Virtual Machine code for a method, instance initialization method (83.8),
or class or interface initialization method (83.8) is stored ircthie array of the
Code attribute of anethod_info structure of alass file. This section describes
the constraints associated with the contents afdbde_attribute structure.

4.8.1 Static Constraints

Thestatic constraint®n aclass file are those defining the well-formedness of the
file. With the exception of the static constraints on the Java Virtual Machine code of
theclass file, these constraints have been given in the previous section. The static
constraints on the Java Virtual Machine code é1a@ss file specify how Java Vir-
tual Machine instructions must be laid out in thée array, and what the operands
of individual instructions must be.

The static constraints on the instructions indbee array are as follows:

» Thecode array must not be empty, so thede_length attribute cannot have
the valuen.

» The opcode of the first instruction in tbede array begins at index

» Only instances of the instructions documented in (86.4) may appear in the
code array. Instances of instructions using the reserved opcodes (86.2), the

THE cl1ass FILE FORMAT 119

_quick opcodes documented in Chapter 9, “An Optimization,” or any opcodes
not documented in this specification may not appear indte array.

» For each instruction in theode array except the last, the index of the opcode
of the next instruction equals the index of the opcode of the current instruction
plus the length of that instruction, including all its operands.Miideinstruc-
tion is treated like any other instruction for these purposes; the opcode speci-
fying the operation thatwaide instruction is to modify is treated as one of the
operands of thawide instruction. That opcode must never be directly reach-
able by the computation.

» The last byte of the last instruction in dwle array must be the byte at index
code_Tlength-1.

The static constraints on the operands of instructions indthe array are as fol-
lows:

» The target of each jump and branch instructipn {sr_w, goto, goto_w,
ifeq, ifne, iflt, ifge, ifgt, ifle, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmplt,
if_icmpge, if_icmpgt, if_icmple, if _acmpeq, if acmpne) must be the opcode of
an instruction within this method. The target of a jump or branch instruc-
tion must never be the opcode used to specify the operation to be modified
by awide instruction; a jump or branch target may be \thée instruction
itself.

» Each target, including the default, of eaableswitch instruction must be the
opcode of an instruction within this method. Egatieswitch instruction must
have a number of entries in its jump table that is consistent witbwitand
high jump table operands, and Itsv value must be less than or equal to its
high value. No target of tableswitch instruction may be the opcode used to
specify the operation to be modified byvige instruction; aableswitch target
may be awide instruction itself.

» Each target, including the default, of edmikupswitch instruction must be the
opcode of an instruction within this method. Edatkupswitch instruction
must have a number ofatch-offset pairs that is consistent with igairs oper-
and. Thematch-offset pairs must be sorted in increasing numerical order by
signedmatch value. No target of Bmokupswitch instruction may be the opcode
used to specify the operation to be modified byide instruction; alook-
upswitch target may be wide instruction itself

120

THE JAVAM VIRTUAL MACHINE SPECIFICATION

The operand of eaddc andldc_w instruction must be a valid index into the
constant_pool table. The constant pool entry referenced by that index must
be of typeCONSTANT_Integer, CONSTANT_Float, or CONSTANT_String.

The operand of eachic2_w instruction must be a valid index into the
constant_pool table. The constant pool entry referenced by that index must
be of typeCONSTANT_Long or CONSTANT _doubTe. In addition, the subsequent
constant pool index must also be a valid index into the constant pool, and the
constant pool entry at that index must not be used.

The operand of eadfetfield, putfield, getstatic, andputstatic instruction must
be a valid index into theonstant_poo1 table. The constant pool entry refer-
enced by that index must be of tyg@NSTANT_Fieldref.

The index operand of eadhvokevirtual, invokespecial, and invokestatic
instruction must be a valid index into thenstant_poo1 table. The constant
pool entry referenced by that index must be of GENSTANT _Methodref.

Only theinvokespecial instruction is allowed to invoke the methethi t>, the
instance initialization method (83.8). No other method whose name begins
with the charactef<' ('\u@03c') may be called by the method invocation
instructions. In particular, the class initialization methadinit> is never
called explicitly from Java Virtual Machine instructions, but only implicitly by
the Java Virtual Machine itself.

The index operand of eadhvokeinterface instruction must be a valid
index into theconstant_poo1 table. The constant pool entry referenced
by that index must be of typ€ONSTANT_InterfaceMethodref. The
value of thenargs operand of eacinvokeinterface instruction must be

the same as the number of argument words implied by the descriptor of
the CONSTANT_NameAndType_info structure referenced by the
CONSTANT _InterfaceMethodref constant pool entry. The fourth operand
byte of eachinvokeinterface instruction must have the value zero.

The index operand of eadmstanceof, checkcast, new, anewarray, and
multi-anewarray instruction must be a valid index into thenstant_pool

table. The constant pool entry referenced by that index must be of type
CONSTANT_Class.

No anewarray instruction may be used to create an array of more than 255
dimensions.

THE cl1ass FILE FORMAT 121

* No new instruction may reference@NSTANT_Class constant_poo] table
entry representing an array class. Tiee instruction cannot be used to create
an array. Thaaew instruction also cannot be used to create an interface or an
instance of ambstract class, but those checks are performed at link time.

» A multianewarray instruction must only be used to create an array of a type
that has at least as many dimensions as the value difni¢gasions operand.
That is, while anultianewarray instruction is not required to create all of the
dimensions of the array type referenced byC@8STANT_Class operand, it
must not attempt to create more dimensions than are in the array type. The
dimensions operand of eactmultianewarray instruction must not be zero.

» Theatype operand of eachewarray instruction must take one of the values
T_BOOLEAN (4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT
(9), T_INT (10), Oor T_LONG (11).

» The index operand of eadload, fload, aload, istore, fstore, astore, wide, iinc,
andret instruction must be a natural number no greaterhanlocals-1.

» The implicit index of eachload_<n>, fload_<n>, aload_<n>, istore_<n>,
fstore_<n>, andastore_<n> instruction must be no greater than the value of
max_Tlocals-1.

* The index operand of eatload, dload, Istore, anddstore instruction must be
no greater than the valuemdfx_locals-2.

e The implicit index of eachlload <n>, dload <n>, Istore <n>, and
dstore_<n> instruction must be no greater than the valueagf Tocals-2.

4.8.2 Structural Constraints

The structural constraints on thede array specify constraints on relationships
between Java Virtual Machine instructions. The structural constraints are as fol-
lows:

» Each instruction must only be executed with the appropriate type and number
of arguments in the operand stack and local variables, regardless of the execu-
tion path that leads to its invocation. An instruction operating on values of type
int is also permitted to operate on values of typee, char, andshort. (As
noted in 83.11.1, the Java Virtual Machine internally converts values of types
byte, char, andshort to typeint.)

122

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Where an instruction can be executed along several different execution paths,
the operand stack must have the same size prior to the execution of the instruc-
tion, regardless of the path taken.

At no point during execution can the order of the words of a two-word type
(Tong or double) be reversed or split up. At no point can the words of a two-
word type be operated on individually.

No local variable (or local variable pair, in the case of a two-word type) can be
accessed before it is assigned a value.

At no point during execution can the operand stack grow to contain more than
max_stack words.

At no point during execution can more words be popped from the operand
stack than it contains.

Each invokespecial instruction must name only an instance initialization
method<init>, a method irthis, aprivate method, or a method in a super-
class ofthis.

When the instance initialization methednit> is invoked, an uninitialized
class instance must be in an appropriate position on the operand stack. The
<init> method must never be invoked on an initialized class instance.

When any instance method is invoked, or when any instance variable is
accessed, the class instance that contains the instance method or instance vari-
able must already be initialized.

There must never be an uninitialized class instance on the operand stack or in
a local variable when any backwards branch is taken. There must never be an
uninitialized class instance in a local variable in code protected by an exception
handler or einally clause. However, an uninitialized class instance may be
on the operand stack in code protected by an exception handléf mx1dy

clause. When an exception is thrown, the contents of the operand stack are dis-
carded.

Each instance initialization method (83.8), except for the instance initialization
method derived from the constructor of clabgect, must call either another
instance initialization method ahis or an instance initialization method of
its immediate superclassuper before its instance members are accessed.
However, this is not necessary in the case of Olagpsct, which does not have

a superclass (82.4.6).

THE c1ass FILE FORMAT 123

» The arguments to each method invocation must be method invocation compat-
ible (82.6.7) with the method descriptor (84.3.3).

* An abstract method must never be invoked.

» Each return instruction must match its method’s return type. If the method
returns ayte, char, short, orint, only theireturn instruction may be used.
If the method returns filoat, Tong, or double, only anfreturn, Ireturn, or
dreturn instruction, respectively, may be used. If the method returns a
reference type, it must do so using ameturn instruction, and the returned
value must be assignment compatible (82.6.6) with the return descriptor
(84.3.3) of the method. All instance initialization methods, static initializers,
and methods declared to retwaii d must only use theeturn instruction.

« If getfield or putfield is used to accesspaotected field of a superclass, then
the type of the class instance being accessed must be the same as or a subclass
of the current class. lhvokevirtual is used to accespaotected method of
a superclass, then the type of the class instance being accessed must be the
same as or a subclass of the current class.

* The type of every class instance loaded from or stored intogstfield or
putfield instruction must be an instance of the class type or a subclass of the
class type.

» The type of every value stored bypatfield or putstatic instruction must be
compatible with the descriptor of the field (84.3.2) of the class instance or class
being stored into. If the descriptor typéeigte, char, short, orint, then the
value must be amnt. If the descriptor type i§loat, Tong, or double, then
the value must bef oat, Tong, ordouble, respectively. If the descriptor type
is areference type, then the value must be of a type that is assignment com-
patible (82.6.6) with the descriptor type.

» The type of every value stored into an array of typference by anaastore
instruction must be assignment compatible (82.6.6) with the component type
of the array.

» Eachathrow instruction must only throw values that are instances of class
Throwable or of subclasses OhrowabTe.

» Execution never falls off the bottom of thede array.

* No return address (a value of typeturnAddress) may be loaded from a
local variable.

124

THE JAVAM VIRTUAL MACHINE SPECIFICATION

» The instruction following eacjsr or jsr_w instruction only may be returned to
by a singleret instruction.

» Nojsr orjsr_w instruction may be used to recursively call a subroutine if that
subroutine is already present in the subroutine call chain. (Subroutines can be
nested when usingy-finally constructs from within &nally clause. For
more information on Java Virtual Machine subroutines, see 84.9.6.)

» Each instance of typeeturnAddress can be returned to at most once. téta
instruction returns to a point in the subroutine call chain abovettlivestruc-
tion corresponding to a given instance of ty@&urnAddress, then that
instance can never be used as a return address.

4.9 \Verification of class Files

Even though Sun’s Java compiler attempts to produce only class files that satisfy all
the static constraints in the previous sections, the Java Virtual Machine has no guar-
antee that any file it is asked to load was generated by that compiler, or is properly
formed. Applications such as Sun’s HotJava World Wide Web browser do not down-
load source code which they then compile; these applications download already-
compiledclass files. The HotJava browser needs to determine whethei thea

file was produced by a trustworthy Java compiler or by an adversary attempting to
exploit the interpreter.

An additional problem with compile-time checking is version skew. A user
may have successfully compiled a class, BaychaseStockOptions, to be a
subclass ofTradingClass. But the definition ofTradingClass might have
changed in a way that is not compatible with preexisting binaries since the time
the class was compiled. Methods might have been deleted, or had their return
types or modifiers changed. Fields might have changed types or changed from
instance variables to class variables. The access modifiers of a method or variable
may have changed fropublic to private. For a discussion of these issues, see
Chapter 13, “Binary Compatibility,” iThe Java Language Specification

Because of these potential problems, the Java Virtual Machine needs to verify
for itself that the desired constraints hold ondhess files it attempts to incorpo-
rate. A well-written Java Virtual Machine emulator could reject poorly formed
instructions when alass file is loaded. Other constraints could be checked at run
time. For example, a Java Virtual Machine implementation could tag runtime data
and have each instruction check that its operands are of the right type.

THE cl1ass FILE FORMAT 125

Instead, Sun’s Java Virtual Machine implementation verifies that dacis
file it considers untrustworthy satisfies the necessary constraints at linking time
(82.16.3). Structural constraints on the Java Virtual Machine code are checked
using a simple theorem prover.

Linking-time verification enhances the performance of the interpreter. Expen-
sive checks that would otherwise have to be performed to verify constraints at run
time for each interpreted instruction can be eliminated. The Java Virtual Machine
can assume that these checks have already been performed. For example, the Java
Virtual Machine will already know the following:

» There are no operand stack overflows or underflows.
* All local variable uses and stores are valid.

e The arguments to all the Java Virtual Machine instructions are of valid
types.

Sun’sclass file verifier is independent of any Java compiler. It should certify
all code generated by Sun’s current Java compiler; it should also certify code that
other compilers can generate, as well as code that the current compiler could not
possibly generate. Anglass file that satisfies the structural criteria and static
constraints will be certified by the verifier.

The class file verifier is also independent of the Java language. Other lan-
guages can be compiled into thitass format, but will only pass verification if
they satisfy the same constraints ad ass file compiled from Java source.

4.9.1 The Verification Process
Theclass file verifier operates in four passes:

Pass 1When a prospectivelass file is loaded (82.16.2) by the Java Virtual
Machine, the Java Virtual Machine first ensures that the file has the basic format
of a Javacl1ass file. The first four bytes must contain the right magic number. All
recognized attributes must be of the proper length. cllags file must not be
truncated or have extra bytes at the end. The constant pool must not contain any
superficially unrecognizable information.

While class file verification properly occurs during class linking (§2.16.3),
this check for basie1ass file integrity is necessary for any interpretation of the
class file contents and can be considered to be logically part of the verification
process.

126 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Pass 2When theclass file is linked, the verifier performs all additional verifica-
tion that can be done without looking at thede array of theCode attribute
(84.7.4). The checks performed by this pass include the following:

e Ensuring thatfinal classes are not subclassed, and fhai1 methods are
not overridden.

» Checking that every class (exc@ptject) has a superclass.

« Ensuring that the constant pool satisfies the documented static constraints; for
example, class references in the constant pool must contain a field that points
to aCONSTANT_Utf8 string reference in the constant pool.

« Checking that all field references and method references in the constant pool
have valid names, valid classes, and a valid type descriptor.

Note that when it looks at field and method references, this pass does not check to
make sure that the given field or method actually exists in the given class; nor does it
check that the type descriptors given refer to real classes. It only checks that these
items are well formed. More detailed checking is delayed until passes 3 and 4.

Pass 3:Still during linking, the verifier checks theode array of theCode
attribute for each method of thdass file by performing data-flow analysis on
each method. The verifier ensures that at any given point in the program, no mat-
ter what code path is taken to reach that point:

e The operand stack is always the same size and contains the same types of
objects.

* No local variable is accessed unless it is known to contain a value of an appro-
priate type.

* Methods are invoked with the appropriate arguments.
* Fields are assigned only using values of appropriate types.

 All opcodes have appropriate type arguments on the operand stack and in the
local variables.

For further information on this pass, see Section 4.9.2, “The Bytecode Verifier.”

Pass 4:For efficiency reasons, certain tests that could in principle be performed in
Pass 3 are delayed until the first time the code for the method is actually invoked. In
so doing, Pass 3 of the verifier avoids loadihgss files unless it has to.

THE cl1ass FILE FORMAT 127

For example, if a method invokes another method that returns an instance of
classA, and that instance is only assigned to a field of the same type, the verifier
does not bother to check if the clasactually exists. However, if it is assigned to
a field of the types, the definitions of botA andB must be loaded in to ensure
thatA is a subclass .

Pass 4 is a virtual pass whose checking is done by the appropriate Java Virtual
Machine instructions. The first time an instruction that references a type is exe-
cuted, the executing instruction does the following:

» Loads in the definition of the referenced type if it has not already been
loaded.

» Checks that the currently executing type is allowed to reference the type.

« Initializes the class, if this has not already been done.

The first time an instruction invokes a method, or accesses or modifies a field, the
executing instruction does the following:

» Ensures that the referenced method or field exists in the given class.
» Checks that the referenced method or field has the indicated descriptor.

» Checks that the currently executing method has access to the referenced
method or field.

The Java Virtual Machine does not have to check the type of the object on the oper-
and stack. That check has already been done by Pass 3. Errors that are detected in
Pass 4 cause instances of subclassetnétigeError to be thrown.

A Java Virtual Machine is allowed to perform any or all of the Pass 4 steps,
except for class or interface initialization, as part of Pass 3; see 2.16.1, “Virtual
Machine Start-up” for an example and more discussion.

In Sun’s Java Virtual Machine implementation, after the verification has
been performed, the instruction in the Java Virtual Machine code is replaced
with an alternative form of the instruction (see Chapter 9, “An Optimiza-
tion”). For example, the opcodew is replaced witmew_quick. This alter-
native instruction indicates that the verification needed by this instruction has
taken place and does not need to be performed again. Subsequent invocations
of the method will thus be faster. It is illegal for these alternative instruction
forms to appear irlass files, and they should never be encountered by the
verifier.

128

THE JAVAM VIRTUAL MACHINE SPECIFICATION

4.9.2 The Bytecode Verifier

As indicated earlier, Pass 3 of the verification process is the most complex of the
four passes oflass file verification. This section looks at the verification of Java
Virtual Machine code in more detail.

The code for each method is verified independently. First, the bytes that make
up the code are broken up into a sequence of instructions, and the index into the
code array of the start of each instruction is placed in an array. The verifier then
goes through the code a second time and parses the instructions. During this pass
a data structure is built to hold information about each Java Virtual Machine
instruction in the method. The operands, if any, of each instruction are checked to
make sure they are valid. For instance:

» Branches must be within the bounds of ¢hde array for the method.

* The targets of all control-flow instructions are each the start of an instruction.
In the case of wide instruction, thavide opcode is considered the start of the
instruction, and the opcode giving the operation modified byatitatinstruc-
tion is not considered to start an instruction. Branches into the middle of an
instruction are disallowed.

» No instruction can access or modify a local variable at an index greater than
the number of local variables that its method indicates it uses.

« All references to the constant pool must be to an entry of the appropriate type.
For example: the instructiolic can only be used for data of typet or
float, or for instances of class ring; the instructiorgetfield must reference
a field.

* The code does not end in the middle of an instruction.
« Execution cannot fall off the end of the code.

» For each exception handler, the starting and ending point of code protected by
the handler must be at the beginning of an instruction. The starting point must
be before the ending point. The exception handler code must start at a valid
instruction, and it may not start at an opcode being modified byvitte
instruction.

For each instruction of the method, the verifier records the contents of the
operand stack and the contents of the local variables prior to the execution of that
instruction. For the operand stack, it needs to know the stack height and the type
of each value on it. For each local variable, it needs to know either the type of the

THE c1ass FILE FORMAT 129

contents of that local variable, or that the local variable contains an unusable or
unknown value (it might be uninitialized). The bytecode verifier does not need to
distinguish between the integral types (ebgte, short, char) when determin-

ing the value types on the operand stack.

Next, a data-flow analyzer is initialized. For the first instruction of the
method, the local variables which represent parameters initially contain values of
the types indicated by the method’s type descriptor; the operand stack is empty.
All other local variables contain an illegal value. For the other instructions, which
have not been examined yet, no information is available regarding the operand
stack or local variables.

Finally, the data-flow analyzer is run. For each instruction, a “changed” bit
indicates whether this instruction needs to be looked at. Initially, the “changed”
bit is only set for the first instruction. The data-flow analyzer executes the follow-
ing loop:

1. Select a virtual machine instruction whose “changed” bit is set. If no instruc-
tion remains whose “changed” bit is set, the method has successfully been ver-
ified. Otherwise, turn off the “changed” bit of the selected instruction.

2. Model the effect of the instruction on the operand stack and local variables:

« If the instruction uses values from the operand stack, ensure that
there are a sufficient number of values on the stack and that the
top values on the stack are of an appropriate type. Otherwise,
verification fails.

« If the instruction uses a local variable, ensure that the specified
local variable contains a value of the appropriate type. Other-
wise, verification fails.

« If the instruction pushes values onto the operand stack, ensure
that there is sufficient room on the operand stack for the new
values. Add the indicated types to the top of the modeled oper-
and stack.

« |f the instruction modifies a local variable, record that the local
variable now contains the new type.

3. Determine the instructions that can follow the current instruction. Successor
instructions can be one of the following:

* The next instruction, if the current instruction is not an uncon-
ditional control transfer instruction (for instargmo, return or

130

THE JAVAM VIRTUAL MACHINE SPECIFICATION

athrow). Verification fails if it is possible to “fall off” the last
instruction of the method.

» The target(s) of a conditional or unconditional branch or switch.
* Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variables at the end of the exe-
cution of the current instruction into each of the successor instructions. In the
special case of control transfer to an exception handler, the operand stack is set
to contain a single object of the exception type indicated by the exception han-
dler information.

* If this is the first time the successor instruction has been visited,
record that the operand stack and local variables values calcu-
lated in steps 2 and 3 are the state of the operand stack and local
variables prior to executing the successor instruction. Set the
“changed” bit for the successor instruction.

 If the successor instruction has been seen before, merge the
operand stack and local variable values calculated in steps 2 and
3 into the values already there. Set the “changed” bit if there is
any modification to the values.

5. Continue at step 1.

To merge two operand stacks, the number of values on each stack must be
identical. The types of values on the stacks must also be identical, except that dif-
ferently typedreference values may appear at corresponding places on the two
stacks. In this case, the merged operand stack contaireSexence to an
instance of the first common superclass or common superinterface of the two
types. Such a reference type always exists because thebtigaer is a supertype
of all class and interface types. If the operand stacks cannot be merged, verifica-
tion of the method fails.

To merge two local variable states, corresponding pairs of local variables are
compared. If the two types are not identical, then unless both certanence
values, the verifier records that the local variable contains an unusable value. If both
of the pair of local variables contateference values, the merged state contains a
reference to an instance of the first common superclass of the two types.

If the data-flow analyzer runs on a method without reporting a verification
failure, then the method has been successfully verified by Pass 3coftisefile
verifier.

THE cl1ass FILE FORMAT 131

Certain instructions and data types complicate the data-flow analyzer. We now
examine each of these in more detail.

4.9.3 Long Integers and Doubles

Values of thelong anddoube types each take two consecutive words on the oper-
and stack and in the local variables.

Whenever @ ong or double is moved into a local variable, the subsequent
local variable is marked as containing the second halflohg or double. This
special value indicates that all references tolthg or double must be through
the index of the lower-numbered local variable.

Whenever any value is moved to a local variable, the preceding local variable
is examined to see if it contains the first word dfbag or adouble. If so, that
preceding local variable is changed to indicate that it now contains an unusable
value. Since half of théong or double has been overwritten, the other half must
no longer be used.

Dealing with 64-bit quantities on the operand stack is simpler; the verifier
treats them as single units on the stack. For example, the verification code for the
dadd opcode (add twdouble values) checks that the top two items on the stack
are both of typaelouble. When calculating operand stack length, values of type
Tong anddouble have length two.

Untyped instructions that manipulate the operand stack must treat values of
typedouble andlong as atomic. For example, the verifier reports a failure if the
top value on the stack isdauble and it encounters an instruction suctpesor
dup. The instructiongop2 or dup2 must be used instead.

4.9.4 Instance Initialization Methods and Newly Created Objects

Creating a new class instance is a multistep process. The Java statement
new myClass(i, j, k);
can be implemented by the following:

new #1 /I Allocate uninitialized space for myClass
dup /I Duplicate object on the operand stack
iload_1 /I Push i

132

THE JAVAM VIRTUAL MACHINE SPECIFICATION

iload_2 // Push j
iload_3 // Push k
invokespecial myClass.<init> /I Initialize object

This instruction sequence leaves the newly created and initialized object on top of
the operand stack. (More examples of compiling Java code to the instruction set of
the Java Virtual Machine are given in Chapter 7, “Compiling for the Java Virtual
Machine.”)

The instance initialization methodinit> for classmyClass sees the new
uninitialized object as itshis argument in local variablé It must either invoke
an alternative instance initialization method for clag&lass or invoke the ini-
tialization method of a superclass on thd s object before it is allowed to do
anything else wittthis.

When doing dataflow analysis on instance methods, the verifier initializes
local variablen to contain an object of the current class, or, for instance initializa-
tion methods, local variable contains a special type indicating an uninitialized
object. After an appropriate initialization method is invoked (from the current
class or the current superclass) on this object, all occurrences of this special type
on the verifier's model of the operand stack and in the local variables are replaced
by the current class type. The verifier rejects code that uses the new object before
it has been initialized or that initializes the object twice. In addition, it ensures that
every normal return of the method has either invoked an initialization method in
the class of this method or in the direct superclass.

Similarly, a special type is created and pushed on the verifier's model of the
operand stack as the result of the Java Virtual Machine instrugienThe spe-
cial type indicates the instruction by which the class instance was created and the
type of the uninitialized class instance created. When an initialization method is
invoked on that class instance, all occurrences of the special type are replaced by
the intended type of the class instance. This change in type may propagate to sub-
sequent instructions as the dataflow analysis proceeds.

The instruction number needs to be stored as part of the special type, as there
may be multiple not-yet-initialized instances of a class in existence on the operand
stack at one time. For example, the Java Virtual Machine instruction sequence that
implements

new InputStream(new Foo(), new InputStream("foo"))

may have two uninitialized instancesIobutStream on the operand stack at once.
When an initialization method is invoked on a class instance, only those occur-

THE c1ass FILE FORMAT 133

rences of the special type on the operand stack or in the registers thatsaraghe
objectas the class instance are replaced.

A valid instruction sequence must not have an uninitialized object on the
operand stack or in a local variable during a backwards branch, or in a local vari-
able in code protected by an exception handlerfdnally clause. Otherwise, a
devious piece of code might fool the verifier into thinking it had initialized a class
instance when it had, in fact, initialized a class instance created in a previous pass
through the loop.

4.9.5 Exception Handlers

Java Virtual Machine code produced from Sun’s Java compiler always generates
exception handlers such that:

» The ranges of instructions protected by two different exception handlers
always are either completely disjoint, or else one is a subrange of the other.
There is never a partial overlap of ranges.

» The handler for an exception will never be inside the code that is being pro-
tected.

» The only entry to an exception handler is through an exception. It is impossible
to fall through or “goto” the exception handler.

These restrictions are not enforced bydhess file verifier since they do not pose a
threat to the integrity of the Java Virtual Machine. As long as every nonexceptional
path to the exception handler causes there to be a single object on the operand stack,
and as long as all other criteria of the verifier are met, the verifier will pass the code.

4.9.6 Exceptions andFinally

Given the fragment of Java code

try {
startFaucet();
waterLawn();

} finally {
stopFaucet();

134

THE JAVAM VIRTUAL MACHINE SPECIFICATION

the Java language guarantees thapFaucet is invoked (the faucet is turned off)
whether we finish watering the lawn or whether an exception occurs while starting
the faucet or watering the lawn. That is, tH@ally clause is guaranteed to be
executed whether itsry clause completes normally, or completes abruptly by
throwing an exception.

To implement thecry-finally construct, the Java compiler uses the excep-
tion-handling facilities together with two special instructigsrs(“jump to sub-
routine”) andret (“return from subroutine”). Th&inally clause is compiled as a
subroutine within the Java Virtual Machine code for its method, much like the
code for an exception handler. Whejstainstruction that invokes the subroutine
is executed, it pushes its return address, the address of the instruction gdter the
that is being executed, onto the operand stack as a value ofetypmAddress.

The code for the subroutine stores the return address in a local variable. At the end
of the subroutine, eet instruction fetches the return address from the local vari-
able and transfers control to the instruction at the return address.

Control can be transferred to thinal1y clause (th&inal1y subroutine can
be invoked) in several different ways. If they clause completes normally, the
finally subroutine is invoked viajar instruction before evaluating the next Java
expression. Areak or continue inside thetry clause that transfers control out-
side thetry clause executesjsr to the code for th€inally clause first. If the
try clause executesraturn, the compiled code does the following:

1. Saves the return value (if any) in a local variable.
2. Executes gr to the code for th&inally clause.
3. Upon return from th€inally clause, returns the value saved in the local variable.

The compiler sets up a special exception handler which catches any exception
thrown by thetry clause. If an exception is thrown in they clause, this exception
handler does the following:

1. Saves the exception in a local variable.
2. Executes gr to thefinally clause.
3. Upon return from th&inally clause, rethrows the exception.

For more information about the implementation of Javais-finally construct,
see Section 7.13, “Compilinginally.”

The code for théinally clause presents a special problem to the verifier.
Usually, if a particular instruction can be reached via multiple paths and a par-

THE cl1ass FILE FORMAT 135

ticular local variable contains incompatible values through those multiple
paths, then the local variable becomes unusable. Howevedmnadly clause
might be called from several different places, yielding several different circum-
stances:

» The invocation from the exception handler may have a certain local variable
that contains an exception.

» The invocation to implementeturn may have some local variable that con-
tains the return value.

» The invocation from the bottom of they clause may have an indeterminate
value in that same local variable.

The code for theinally clause itself might pass verification, but after updat-
ing all the successors of thet instruction, the verifier would note that the
local variable that the exception handler expects to hold an exception, or that
the return code expects to hold a return value, now contains an indeterminate
value.

Verifying code that containsfinally clause is complicated. The basic idea
is the following:

» Each instruction keeps track of the list jof targets needed to reach that
instruction. For most code, this list is empty. For instructions inside code for
the finally clause, it is of length one. For multiply nestéidhally code
(extremely rare!), it may be longer than one.

» For each instruction and eajsin needed to reach that instruction, a bit vector
is maintained of all local variables accessed or modified since the execution of
thejsr instruction.

* When executing theet instruction, which implements a return from a subrou-
tine, there must be only one possible subroutine from which the instruction can
be returning. Two different subroutines cannot “merge” their execution to a
singleret instruction.

» To perform the data-flow analysis omeainstruction, a special procedure
is used. Since the verifier knows the subroutine from which the instruc-
tion must be returning, it can find all tjse instructions that call the sub-
routine and merge the state of the operand stack and local variables at the
time of theret instruction into the operand stack and local variables of the

136

THE JAVAM VIRTUAL MACHINE SPECIFICATION

instructions following thgsr. Merging uses a special set of values for the
local variables:

= For any local variable for which the bit vector (constructed above) indicates
that the subroutine has accessed or modified, use the type of the local vari-
able at the time of theet.

= For other local variables, use the type of the local variable beforgrthe
instruction.

4.10 Limitations of the Java Virtual Machine and

class File Format

The following limitations in the Java Virtual Machine are imposed by this version of
the Java Virtual Machine specification:

The per-class constant pool is limited to 65535 entries by the 16-bit
constant_pool_count field of theClassFile structure (84.1). This acts as
an internal limit on the total complexity of a single class.

The amount of code per method is limited to 65535 bytes by the sizes of
the indices in thexception_table of theCode attribute (84.7.4), in the
LineNumberTable attribute (84.7.6), and in thé&ocalVvariableTable
attribute (84.7.7).

The number of local variables in a method is limited to 65535 by the two-byte
index operand of many Java Virtual Machine instructions and the size of the
max_locals item of theClassFile structure (84.1). (Recall that values of
type long anddouble are considered to occupy two local variables.)

The number of fields of a class is limited to 65535 by the size of the
fields_count item of theClassFile structure (84.1).

The number of methods of a class is limited to 65535 by the size of the
methods_count item of theClassFile structure (84.1).

The size of an operand stack is limited to 65535 words byatkes tack field
of theCode_attribute structure (84.7.4).

The number of dimensions in an array is limited to 255 by the size of the
dimensions opcode of thenultianewarray instruction, and by the constraints

THE cl1ass FILE FORMAT 137

imposed on themultianewarray, anewarray, and newarray instructions by
84.8.2.

» A valid Java method descriptor (84.3.3) must require 255 or fewer words of
method arguments, where that limit includes the wordfids in the case of
instance method invocations. Note that the limit is on the number of words of
method arguments, and not on number of arguments themselves. Arguments of
typelong anddouble are two words long; arguments of all other types are one
word long.

CHAPTER5

Constant Pool Resolution

JAVA classes and interfaces are dynamically log@2dl6.2),linked (82.16.3),
and initialized (82.16.4). Loading is the process of finding the binary form of a class
or interface type with a particular name and constructing, from that binary form, a
Class object to represent the class or interface. Linking is the process of taking a
binary form of a class or interface type and combining it into the runtime state of the
Java Virtual Machine so that it can be executed. Initialization of a class consists of
executing its static initializers and the initializers for static fields declared in the class.

The Java Virtual Machine performs most aspects of these procedures through
operations on a constant pool (84.4), a per-type runtime data structure that serves
many of the purposes of the symbol table of a conventional language. For example,
Java Virtual Machine instructions that might otherwise have been designed to take
immediate numeric or string operands instead fetch their operands from the constant
pool. Classes, methods, and fields, whether referenced from Java Virtual Machine
instructions or from other constant pool entries, are named using the constant pool.

A Java compiler does not presume to know the way in which a Java Virtual
Machine lays out classes, interfaces, class instances, or arrays. References in the
constant pool are always initially symbolic. At run time, the symbolic representa-
tion of the reference in the constant pool is used to work out the actual location of
the referenced entity. The process of dynamically determining concrete values
from symbolic references in the constant pool is knowooastant pool resolu-
tion. Constant pool resolution may involve loading one or more classes or inter-
faces, linking several types, and initializing types. There are several kinds of
constant pool entries, and the details of resolution differ with the kind of entry to
be resolved.

Individual Java Virtual Machine instructions that reference entities in the con-
stant pool are responsible for resolving the entities they reference. Constant pool

139

140

THE JAVAM VIRTUAL MACHINE SPECIFICATION

entries that are referenced from other constant pool entries are resolved when the
referring entry is resolved.

A given constant pool entry may be referred to from any number of Java Vir-
tual Machine instructions or other constant pool entries; thus, constant pool reso-
lution can be attempted on a constant pool entry that is already resolved. An
attempt to resolve a constant pool entry that has already been successfully
resolved always succeeds trivially, and always results in the same entity produced
by the initial resolution of that entry.

Constant pool resolution is normally initiated by the execution of a Java Vir-
tual Machine instruction that references the constant pool. Rather than give the
full description of the resolution process performed by Java Virtual Machine
instructions in their individual descriptions, we will use this chapter to summarize
the constant pool resolution process. We will specify the errors that must be
detected when resolving each kind of constant pool entry, the order in which those
errors must be responded to, and the errors thrown in response.

When referenced from the context of certain Java Virtual Machine instruc-
tions, additional constraints are put on linking operations. For instanceggtthe
field instruction requires not only that the constant pool entry for the field it
references can be successfully resolved, but also that the resolved field is not a
class étatic) field. If it is a class field, an exception must be thrown. Linking
exceptions that are specific to the execution of a particular Java Virtual Machine
instruction are given in the description of that instruction and are not covered in
this general discussion of constant pool resolution. Note that such exceptions,
although described as part of the execution of Java Virtual Machine instructions
rather than constant pool resolution, are still properly considered failure of the
linking phase of Java Virtual Machine execution.

The Java Virtual Machine specification documents and orders all exceptions
that can arise as a result of constant pool resolution. It does not mandate how they
should be detected, only that they must be. In addition, as mentioned in §6.3, any
of the virtual machine errors listed as subclassas ofualMachineError may
be thrown at any time during constant pool resolution.

5.1 Class and Interface Resolution

A constant pool entry tagged @NSTANT_Class (84.4.1) represents a class or
interface. Various Java Virtual Machine instructions refer@@88TANT_Class
entries in the constant pool of the class that is current upon their execution
(83.6). Several other kinds of constant pool entries (84.4.2) reference

CONSTANT POOL RESOLUTION 141

CONSTANT_Class entries and cause those class or interface references to be
resolved when the referencing entries are resolved. For instance, before a
method reference (aCONSTANT_Methodref constant pool entry) can be
resolved, the reference it makes to the class of the method (\daate index

item of the constant pool entry) must first be resolved.

If a class or interface has not been resolved already, the details of the resolu-
tion process depend on what kind of entity is represented IOPXISEANT_Class
entry being resolved. Array classes are handled differently from non-array classes
and from interfaces. Details of the resolution process also depend on whether the
reference prompting the resolution of this class or interface is from a class or
interface that was loaded using a class loader (§82.16.2).

The name_index item of aCONSTANT_Class constant pool entry is a refer-
ence to ZONSTANT_Utf8 constant pool entry (84.4.7) for a UTF-8 string that rep-
resents the fully qualified name (82.7.9) of the class or interface to be resolved.
What kind of entity is represented bg@STANT_Class constant pool entry, and
how to resolve that entry, is determined as follows:

« If the first character of the fully qualified name of the constant pool entry to be
resolved is not a left bracket[(’), then the entry is a reference to a non-array
class or to an interface.

= If the current class (83.6) has not been loaded by a class loader, then “nor-
mal” class resolution is used (85.1.1).

= If the current class has been loaded by a class loader, then application-
defined code is used (85.1.2) to resolve the class.

« If the first character of the fully qualified name of the constant pool entry to be
resolved is a left bracket %), then the entry is a reference to an array class.
Array classes are resolved specially (85.1.3).

5.1.1 Current Class or Interface Not Loaded by a Class Loader

If a class or interface that has been loaded, and that was not loaded using a class
loader, references a non-array class or interfat¢een the following steps are per-
formed to resolve the referencecto

1. The class or interfaaeand its superclasses are first loaded (§2.16.2).

a. If class or interface has not been loaded yet, the Java Virtual Machine
will search for a filec. class and attempt to load class or interfacEom

142 THE JAVAM VIRTUAL MACHINE SPECIFICATION

that file. Note that there is no guarantee that thecfitd ass will actually
contain the class or interfae® or that the fileCc.class is even a valid
class file. It is also possible that class or interfacmight have already
been loaded, but not yet initialized. This phase of loading must detect the
following errors:

« If no file with the appropriate name can be found and read, class or inter-
face resolution throws MoClassDefFoundError.

» Otherwise, if it is determined that the selected file is not a well-formed
class file (pass 1 of §4.9.1), or is notadass file of a supported major or
minor version (84.1), class or interface resolution throwsCdassDef -
FoundError.

» Otherwise, if the selectedlass file did not actually contain the desired
class or interface, class or interface resolution throwe@assDef-
FoundError.

» Otherwise, if the selectedlass file does not specify a superclass and is
not theclass file for class0bject, class or interface resolution throws a
ClassFormatError.

b. If the superclass of the class being loaded has not yet been loaded, it is
loaded using this step 1 recursively. Loading a superclass must detect any
of the errors in step 1a, where this superclass is considered to be the class
being loaded. Note that all interfaces must hgaea.lang.0Object as
their superclass, which must already have been loaded.

2. If loading clasg and its superclasses was successful, the superclass (and thus
its superclasses, if any) of classs linked and initialized by applying steps 2—
4 recursively.

3. The clasg is linked (82.16.3), that is, it is verified (84.9) and prepared.

a. First, the class or interfaceis verified to ensure that its binary represen-
tation is structurally valid (passes 2 and 3 of §4.9 Werification may
itself cause classes and interfaces to be loaded, but not initialized (to avoid
circularity), using the procedure in step 1.

1. Sun’s JDK release 1.0.2 only verifietass files that have class loaders; it assumesdhats
files loaded locally are trusted and do not need verification.

CONSTANT POOL RESOLUTION 143

« If the class or interface contained ircTass file C.class does not satisfy
the static or structural constraints on validss files listed in Section 4.8,
“Constraints on Java Virtual Machine Code,” class or interface resolution
throws averifyError.

b. If theclass file for class or interface is successfully verified, the class
or interface is prepared. Preparation involves creating the static fields for
the class or interface and initializing those fields to their standard default
values (82.5.1). Preparation should not be confused with the execution of
static initializers (82.11); unlike execution of static initializers, prepara-
tion does not require the execution of any Java code. During preparation:

« |f a class that is not declarelstract has ambstract method, class
resolution throws anbstractMethodError.

Certain checks that are specific to individual Java Virtual Machine instructions,
but that are logically related to this phase of constant pool resolution, are
described in the documentation of those instructions. For instangetftkle
instruction resolves its field reference, and only afterward checks to see
whether that field is an instance field (that is, it issmati c). Such exceptions

are still considered and documented to be linking, not runtime, exceptions.

4. Next, the class is initialized. Details of the initialization procedure are given in
§2.16.5 and imhe Java Language Specification

« If an initializer completes abruptly by throwing some excepfioand if the
class ofE is notError or one of its subclasses, then a new instance of the
classexceptionInInitializerError, with E as the argument, is created
and used in place &

* If the Java Virtual Machine attempts to create a new instance of the class
ExceptionInInitializerError butis unable to do so becauseanof-
MemoryError occurs, then theutOfMemoryError object is thrown instead.

5. Finally, access permissions to the class being resolved are checked:

« If the current class or interface does not have permission to access the class
or interface being resolved, class or interface resolution throWslagal-
AccessError. This condition can occur, for example, if a class that is origi-
nally declaredpublic is changed to berivate after another class that
refers to the class has been compiled.

144

THE JAVAM VIRTUAL MACHINE SPECIFICATION

If none of the preceding errors were detected, constant pool resolution of the
class or interface reference must have completed successfully. However, if an
error was detected, one of the following must be true.

* If some exception is thrown in steps 1-4, the class being resolved must have
been marked as unusable or must have been discarded.

« If an exception is thrown in step 5, the class being resolved is still valid and
usable.

In either case, the resolution fails, and the class or interface attempting to perform
the resolution is prohibited from accessing the referenced class or interface.

5.1.2 Current Class or Interface Loaded by a Class Loader

If a class or interface, loaded using a class loader, references a non-array class or
interfacec, then that same class loader is used todnaddheloadClass method of
that class loader is invoked on the fully qualified path name (82.7.9) of the class to
be resolved. The value returned by thadClass method is the resolved class. The
remainder of the section describes this process in more detail.

Every class loader is an instance of a subclass of the abstrac€dass
Loader. Applications implement subclasses@fassLoader in order to extend
the manner in which the Java Virtual Machine dynamically loads classes. Class
loaders can be used to create classes that originate from sources other than files.
For example, a class could be downloaded across a network, it could be generated
on the fly, or it could be decrypted from a scrambled file.

The Java Virtual Machine invokes theadClass method of a class loader in
order to cause it to load (and optionally link and initialize) a class. The first argu-
ment toloadClass is the fully qualified name of the class to be loaded. The sec-
ond argument is a boolean. The vafaése indicates that the specified class must
be loaded, but not linked or initialized; the valureie indicates the class must be
loaded, linked, and initialized.

Implementations of class loaders are required to keep track of which classes
they have already loaded, linked, and initialiZed:

2- Future implementations may change the API between the Java Virtual Machine and the class
ClassLoader. Specifically, the Java Virtual Machine rather than the class loader will keep track
of which classes and interfaces have been loaded by a particular class loader. One possibility is
that thel oadClass method will be called with a single argument indicating the class or interface
to be loaded. The virtual machine will handle the details of linking and initialization and ensure
that the class loader is not invoked with the same class or interface name multiple times.

CONSTANT POOL RESOLUTION 145

* If a class loader is asked to load (but not link or initialize) a class or interface
that it has already loaded (and possibly already linked and initialized), then it
should simply return that class or interface.

» If a class loader is asked to load, link, and initialize a class or interface
that it has already loaded but not yet linked and initialized, the class loader
should not reload the class or interface, but should only link and initialize
it.

« |f a class loader is asked to load, link, and initialize a class or interface that it
has already loaded, linked, and initialized, the class loader should simply
return that class or interface.

When the class loader®adClass method is invoked with the name of a
class or interface that it has not yet loaded, the class loader must perform one of
the following two operations in order to load the class or interface:

» The class loader can create an array of bytes representing the bytes of a file of
class file format; it then must invoke the methddfineClass of class
ClassLoader on those bytes to convert them into a class or interface with this
class loader as the class loader for the newly defined class. IndeKiige-

Class causes the Java Virtual Machine to perform step 1a of §5.1.1.

Invoking defineClass then causes thimadClass method of the class loader

to be invoked recursively in order to load the superclass of the newly defined
class or interface. The fully qualified path name of the superclass is derived
from thesuper_class item in theclass file format. When the superclass is
loaded in, the second argumentltdClass is false, indicating that the
superclass is not to be linked and initialized immediately.

» The class loader can also invoke the static mefiadSystemClass in class
ClassLoader with the fully qualified name of the class or interface to be
loaded. Invoking this method causes the Java Virtual Machine to perform
step 1 of 85.1.1. The resultirgass file is not marked as having been loaded
by a class loader.

After the class or interface and its superclasses have been loaded successfully,
if the second argument fmadClass is true the class or interface is linked and
initialized. This second argument is alwaysie if the class loader is being called
upon to resolve an entry in the constant pool of a class or interface. The class
loader links and initializes a class or interface by invoking the metbsdl ve-

Class in the clas€1assLoader. Linking and initializing a class or interface cre-

146

THE JAVAM VIRTUAL MACHINE SPECIFICATION

ated by a class loader is very similar to linking and initializing a class or interface
without a class loader (steps 2—4 of §5.1.1):

First, the superclass of the class or interface is linked and initialized by calling
the ToadClass method of the class loader with the fully qualified name of the
superclass as the first argument, ande as the second argument. Linking and
initialization may result in the superclass’s own superclass being linked and ini-
tialized. Linking and initialization of a superclass must detect any of the errors of
step 3 of 85.1.1.

Next, the bytecode verifier is run on the class or interface being linked and ini-
tialized. The verifier may itself need classes or interfaces to be loaded, and if so, it
loads them by invoking thkoadClass method of the same class loader with the
second argument beif@g1se. Since verification may itself cause classes or inter-
faces to be loaded (but not linked or initialized, to avoid circularity), it must detect
the errors of step 1 of 85.1.1 for any classes or interfaces it attempts to load. Run-
ning the verifier may also cause the errors of step 3a of §5.1.1.

If the class file is successfully verified, the class or interface is then prepared
(step 3b of 85.1.1) and initialized (step 4 of §5.1.1).

Finally, access permissions to the class or interface are checked (step 5 of
85.1.1). If the current class or interface does not have permission to access the
class being resolved, class resolution throwsldrgalAccessError exception.

If none of the preceding errors were detected, loading, linking, and initializa-
tion of the class or interface must have completed successfully.

5.1.3 Array Classes

A constant pool entry tagged @NSTANT_Class (84.4.1) represents an array class
if the first character of the UTF-8 string (84.4.7) referenced bydhe_index
item of that constant pool entry is a left brackét)“The number of initial consec-
utive left brackets in the name represents the number of dimensions of the array
class. Following the one or more initial consecutive left brackets is a field descriptor
(84.3.2) representing either a primitive type or a non-array reference type; this field
descriptor represents thase typef the array class.

The following steps are performed to resolve an array class referenced from
the constant pool of a class or interface:

1. Determine the number of dimensions of the array class and the field descriptor
that represents the base type of the array class.

CONSTANT POOL RESOLUTION 147

2. Determine the base type of the array class:

« If the field descriptor represents a primitive type (its first character is not
“L"), that primitive type is the base type of the array class.

* If the field descriptor represents a non-array reference type (its first character
is “L"), that reference type is the base type of the array class. The reference
type is itself resolved using the procedures indicated above in 85.1.1 or in
§5.1.2.

3. If an array class representing the same base type and the same number of
dimensions has already been created, the result of the resolution is that array
class. Otherwise, a new array class representing the indicated base type and
number of dimensions is created.

5.2 Field and Method Resolution

A constant pool entry tagged @NSTANT_Fieldref (84.4.2) represents a class or
instance variable (82.9) or a (constant) field of an interface (82.13.4). Note that
interfaces do not have instance variables. A constant pool entry tagged as
CONSTANT _Methodref (84.4.2) represents a method of a classtéaic method)

or of a class instance (an instance method). References to interface methods are
made usingONSTANT _InterfaceMethodref constant pool entries; resolution of

such entries is described in 85.3.

To resolve a field reference or a method referenceCANSTANT_Class
(84.4.1) entry representing the class of which the field or method is a member
must first be successfully resolved (85.1). Thus, any exception that can be thrown
when resolving &ONSTANT_Class constant pool entry can also be thrown as a
result of resolving &ONSTANT_Fieldref or CONSTANT_Methodref entry. If the
CONSTANT_Class entry representing the class or interface can be successfully
resolved, exceptions relating to the linking of the method or field itself can be
thrown. When resolving a field reference:

« If the referenced field does not exist in the specified class or interface, field res-
olution throws aNoSuchFieldError.

» Otherwise, if the current class does not have permission to access the refer-
enced field, field resolution throws @ahlegalAccessError exception.

148 THE JAVAM VIRTUAL MACHINE SPECIFICATION

If resolving a method:

« If the referenced method does not exist in the specified class or interface, field
resolution throws 8oSuchMethodError.

» Otherwise, if the current class does not have permission to access the method
being resolved, method resolution throwsIdfiegalAccessError excep-
tion.

5.3 Interface Method Resolution

A constant pool entry tagged @NSTANT_InterfaceMethodref (84.4.2) repre-

sents a call to an instance method declared by an interface. Such a constant pool
entry is resolved by converting it into a machine-dependent internal format. No error
or exception is possible except for those documented in §6.3.

5.4 String Resolution

A constant pool entry tagged @NSTANT_String (84.4.3) represents an instance
of a string literal (§2.3), that is, a literal of the built-in tyjaasa.Tang.String.

The Unicode characters (82.1) of the string literal represented by the
CONSTANT_String entry are found in thEONSTANT_Utf8 (84.4.7) constant pool
entry that the&€ONSTANT_String entry references.

The Java language requires that identical string literals (that is, literals that
contain the same sequence of Unicode characters) must reference the same
instance of classtring. In addition, if the methodntern is called on any
string, the result is a reference to the same class instance that would be returned if
that string appeared as a literal. Thus,

(“an + nbn + “C”).‘intern() — uabcn

must have the valuerue.3

3 String literal resolution is not implemented correctly in Sun’s JDK release 1.0.2. In that implemen-
tation of the Java Virtual Machine, resolving@STANT_String in the constant pool always
allocates a new string. Two string literals in two different classes, even if they contained the iden-
tical sequence of characters, would nevesbt each other. A string literal could neverdseto
a result of theintern method.

CONSTANT POOL RESOLUTION 149

To resolve a constant pool entry tagg@dSTANT_String, the Java Virtual
Machine examines the series of Unicode characters represented by the UTF-8
string that th&€ONSTANT_String entry references.

* If another constant pool entry tagge@NSTANT_String and representing the
identical sequence of Unicode characters has already been resolved, then the
result of resolution is a reference to the instance of Slasing created for
that earlier constant pool entry.

» Otherwise, if the methothtern has previously been called on an instance of
classString containing a sequence of Unicode characters identical to that rep-
resented by the constant pool entry, then the result of resolution is a reference
to that same instance of cla’sing.

» Otherwise, a new instance of cl&ssing is created containing the sequence
of Unicode characters represented by@STANT_String entry; that class
instance is the result of resolution.

No error or exception is possible during string resolution except for those docu-
mented in 86.3.

5.5 Resolution of Other Constant Pool Items

Constant pool entries that are tagg@MSTANT_Integer or CONSTANT_Float
(84.4.4),CONSTANT_Long or CONSTANT_Double (84.4.5) all have values that are
directly represented within the constant pool. Their resolution cannot throw excep-
tions except for those documented in §6.3.

Constant pool entries that are taggeSTANT_NameAndType (84.4.6), and
CONSTANT_Utf8 (84.4.7) are never resolved directly. They are only referenced
directly or indirectly by other constant pool entries.

CHAPTER6

Java Virtual Machine
Instruction Set

A Java Virtual Machine instruction consists of an opcode specifying the operation
to be performed, followed by zero or more operands embodying values to be oper-
ated upon. This chapter gives details about the format of each Java Virtual Machine
instruction and the operation it performs.

6.1 Assumptions: The Meaning of “Must”

The description of each instruction is always given in the context of Java Virtual
Machine code that satisfies the static and structural constraints of Chapter 4, “The
class File Format.” In the description of individual Java Virtual Machine instruc-
tions, we frequently state that some situation “must” or “must not” be the case: “The
value2 must be of typent.” The constraints of Chapter 4 guarantee that all such
expectations will in fact be met. If some constraint (a “must” or “must not”) in an
instruction description is not satisfied at run time, the behavior of the Java Virtual
Machine is undefined.

The Sun implementation of the Java Virtual Machine checks that all untrusted
Java Virtual Machine code satisfies the static and structural constraints at load
time using aclass file verifier (see Section 4.9, “Verification otass Files”).

Thus, Sun’s Java Virtual Machine will only see vatithss files. Performing

most verification atlass file load time is attractive in that the checks are per-
formed just once, substantially reducing the amount of work that must be done at
run time. Other implementation strategies are possible, provided that they comply
with Chapter 12 oThe Java Language Specification

151

152

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Alternatively, a naive Java Virtual Machine implementation may check static
and structural constraints at run time. However, this lazier approach may have
serious performance implications.

6.2 Reserved Opcodes

In addition to the opcodes of the instructions specified later this chapter, which are
used in Javalass files (see Chapter 4, “Thdass File Format”), three opcodes

are reserved for internal use by a Java Virtual Machine implementation. If Sun
extends the instruction set of the Java Virtual Machine in the future, these reserved
opcodes are guaranteed not to be used.

Two of the reserved opcodes, numbers 254 (Oxfe) and 255 (0xff), have the
mnemonicsmpdepl andimpdep2, respectively. These instructions are intended to
provide “back doors” or traps to implementation-specific functionality imple-
mented in software and hardware, respectively. The third reserved opcode, num-
ber 202 (Oxca), has the mnemomieakpoint and is intended to be used by
debuggers to implement breakpoints.

Although these opcodes have been reserved, they may only be used inside a

Java Virtual Machine implementation. They cannot appear in vakds files.
Tools such as debuggers or JIT code generators (83.12) that might directly interact
with Java Virtual Machine code that has been already loaded and executed may
encounter these opcodes. Such tools should attempt to behave gracefully if they
encounter any of these reserved instructions.

6.3 Virtual Machine Errors

A Java Virtual Machine throws an object that is an instance of a subclass of the class
VirtualMachineError when an internal error or resource limitation prevents it
from implementing the semantics of the Java Language. The Java Virtual Machine
specification cannot predict where resource limitations or internal errors may be
encountered and does not mandate precisely when they can be reported. Thus, any
of the virtual machine errors listed as subclassegietualMachineError in

§2.15.4 may be thrown at any time during the operation of the Java Virtual Machine.

6.4 The Java Virtual Machine Instruction Set

Java Virtual Machine instructions are represented in this chapter by entries of the
form shown in Figure 6.1, in alphabetical order and each beginning on a new page.

JAVA VIRTUAL MACHINE INSTRUCTION SET

153

con-
pe of

this
they

f an
they

ran

mnemonic mnemonic
Operation Short description of the instruction
Format mnemonic
operandl
operand2
Operation
Forms mnemonic = opcode
Stack ..., valuel, value2 O
..., value3
Description A longer description detailing constraints on operand stack
tents or constant pool entries, the operation performed, the ty
the results, etc.
Linking If any linking exceptions may be thrown by the execution of
Exceptions instruction they are set off one to a line, in the order in which
must be thrown.
Runtime If any runtime exceptions can be thrown by the execution ¢
Exceptions instruction they are set off one to a line, in the order in which
must be thrown.
Other than the linking and runtime exceptions, if any, listed fo
instruction, that instruction must not throw any runtime exceptions
except for instances ofi rtualMachineError or its subclasses.
Notes Comments not strictly part of the specification of an instructior

set aside as notes at the end of the description.

are

Figure 6.1 An example instruction page

Each cell in the instruction format diagram represents a single 8-bit byte. The
instruction’smnemonic is its name. Its opcode is its numeric representation and is

154

THE JAVAM VIRTUAL MACHINE SPECIFICATION

given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Virtual Machine codediass file.

Keep in mind that there are “operands” generated at compile time and embed-
ded within Java Virtual Machine instructions, as well as “operands” calculated at
run time and supplied on the operand stack. Although they are supplied from sev-
eral different areas, all these operands represent the same thing: values to be oper-
ated upon by the Java Virtual Machine instruction being executed. By implicitly
taking many of its operands from its operand stack, rather than representing them
explicitly in its compiled code as additional operand bytes, register numbers, etc.,
the Java Virtual Machine’s code stays compact.

Some instructions are presented as members of a family of related instructions
sharing a single description, format, and operand stack diagram. As such, a family
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line
lists all member mnemonics and opcodes. For example, the forms line for the
Iconst_<I> family of instructions, giving mnemonic and opcode information for the
two instructions in that familyildonst_0 andlconst_1), is

Forms Iconst_0 =9 (0x9),
Iconst_1 = 10 (Oxa)

In the description of the Java Virtual Machine instructions, the effect of an
instruction’s execution on the operand stack (83.6.2) of the current frame (83.6) is
represented textually, with the stack growing from left to right and each word
(83.4) represented separately. Thus,

Stack ..., valuel, value2 O
..., result

shows an operation that begins by having a one-walt@2 on top of the operand
stack with a one-wordaluel just beneath it. As a result of the execution of the
instruction,valuel andvalue2 are popped from the operand stack and replaced by a
one-wordresult, which has been calculated by the instruction. The remainder of the
operand stack, represented by an ellipsi¥, {s unaffected by the instruction’s exe-
cution.

The typeslong anddoubTe take two words on the operand stack. In the oper-
and stack representation, each word is represented separately using a dot notation:

JAVA VIRTUAL MACHINE INSTRUCTION SET 155

Stack ..., valuel.wordl, valuel.word2, value2.word1, value2.word2 O
..., result.wordl, result.word2

The Java Virtual Machine specification does not mandate how the two words are
used to represent the 64-bitng or double value; it only requires that a particular
implementation be internally consistent.

156

THE JAVAM VIRTUAL MACHINE SPECIFICATION

aaload aaload

Operation Loadreference from array

Format | aaload |
Forms aaload = 50 (0x32)
Stack ..., arrayref, index O

..., value

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typeference. Theindex must be of
type int. Both arrayref andindex are popped from the operand
stack. Thereference value in the component of the arrayiatex
is retrieved and pushed onto the top of the operand stack.

Runtime If arrayrefis nu11, aaload throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, the aaload instruction throws anArrayIndex-
OutOfBoundsException.

JAVA VIRTUAL MACHINE INSTRUCTION SET

aastore

Operation Store intoreference array

Format | aastore |
Forms aastore = 83 (0x53)
Stack ..., arrayref, index, value [

157

aastore

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typeference. Theindex must be of
typeint andvalue must be of typeeference. Thearrayref, index,
andvalue are popped from the operand stack. f&&erence value

is stored as the component of the arraypaddx.

The type ofvalue must be assignment compatible (82.6.6) with the
type of the components of the array referenceartayref. Assign-
ment of a value of reference tyge(source) to a variable of refer-
ence typer (target) is allowed only when the tygesupports all
the operations defined on typeThe detailed rules follow:

« If Sis a class type, then:

« If Tis a class type, thesimust be the same class (82.8.1yas

or S must be a subclass of

= If Tis an interface types must implement (82.13) interfage

158 THE JAVAM VIRTUAL MACHINE SPECIFICATION

aastore (cont.) aastore (cont.)

» If Sis an array type, namely the tyge[], that is, an array of
components of typsc, then:

= If Tis a class typel must bedbject (82.4.6), or:

o If Tis an array type, namely the type[], an array of com-
ponents of typac, then eitherc andsc must be the same
primitive type, or

» TC andsc must both be reference types with tygaeassign-
able toTc, by these rules.

S cannot be an interface type, because there are no instances of
interfaces, only instances of classes and arrays.

Runtime If arrayref is nu11, aastore throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, the aastore instruction throws anArrayIndex-
OutOfBoundsException.

Otherwise, ifarrayref is notnu11 and the actual type @hlue is not
assignment compatible (82.6.6) with the actual type of the compo-
nents of the arragastore throws amrrayStoreException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 159

aconst_null aconst_null

Operation Pushnul1

Format | aconst_null |
Forms aconst_null = 1 (Ox1)
Stack .0

..., hull

Description Push thenu11 objectreference onto the operand stack.

Notes The Java Virtual Machine does not mandate a concrete value for
null.

160

aload

Operation

Format

Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

aload

Loadreference from local variable

aload

index

aload = 25 (0x19)

.0
..., Objectref

Theindex is an unsigned byte that must be a valid index into the
local variables of the current frame (83.6). The local variable at
index must contain &eference. Theobjectref in the local variable
atindex is pushed onto the operand stack.

Theaload instruction cannot be used to load a value of tepeir-
nAddress from a local variable onto the operand stack. This asym-
metry with theastore instruction is intentional.

Theaload opcode can be used in conjunction withwhee instruc-
tion to access a local variable using a two-byte unsigned index.

JAVA VIRTUAL MACHINE INSTRUCTION SET 161

aload_<n> aload_<n>
Operation Loadreference from local variable
Format | aload_<n> |
Forms aload_0 = 42 (0x2a)
aload 1 =43 (0x2b)
aload_2 = 44 (0x2c)
aload_3 = 45 (0x2d)
Stack .0
..., objectref
Description The<n> must be a valid index into the local variables of the current
frame (83.6). The local variable @ih> must contain a&eference.
The objectref in the local variable dhdex is pushed onto the oper-
and stack.
Notes An aload_<n> instruction cannot be used to load a value of type

returnAddress from a local variable onto the operand stack. This
asymmetry with the correspondiagfore_<n> instruction is inten-
tional. Each of thaload_<n> instructions is the same asad with
anindex of <n>, except that the operarah> is implicit.

162

THE JAVAM VIRTUAL MACHINE SPECIFICATION

anewarray anewarray
Operation Create new array ofeference
Format anewarray
indexbytel
indexbyte2
Forms anewarray = 189 (0xbd)
Stack ..., count J
..., arrayref
Description Thecount must be of typent. It is popped off the operand stack.
Thecount represents the number of components of the array to be
created. The unsignéddexbytel andindexbyte2 are used to con-
struct an index into the constant pool of the current class (83.6),
where the value of the index imdexbytel << 8) |indexbyte2.
The item at that index in the constant pool must be tagged
CONSTANT_Class (84.4.1), a symbolic reference to a class, array,
or interface type. The symbolic reference is resolved (85.1). A new
array with components of that type, of lengtunt, is allocated
from the garbage-collected heap, andeference arrayref to
this new array object is pushed onto the operand stack. All com-
ponents of the new array are initializedntol 1, the default value
for reference types (82.5.1).
Linking During resolution of th€ONSTANT_Class constant pool item, any
Exceptions of the exceptions documented in 85.1 can be thrown.
Runtime Otherwise, ifcount is less than zero, thanewarray instruction
Exception throws aNegativeArraySizeException.
Notes The anewarray instruction is used to create a single dimension of

an array of object references. It can also be used to create part of a
multidimensional array.

JAVA VIRTUAL MACHINE INSTRUCTION SET 163

areturn

Operation
Format
Forms

Stack

Description

areturn

Returnreference from method

areturn |

areturn = 176 (0xb0)

..., Objectref O
[empty]

The objectref must be of typereference and must refer to an
object of a type that is assignment compatible (82.6.6) with the
type represented by the return descriptor (84.3.3) of the returning
method. Thebjectref is popped from the operand stack of the cur-
rent frame (83.6) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current
method are discarded. If the returning method sgrachronized
method, the monitor acquired or reentered on invocation of the
method is released or exited (respectively) as if by execution of a
monitorexit instruction.

The interpreter then reinstates the frame of the invoker and returns
control to the invoker.

164

THE JAVAM VIRTUAL MACHINE SPECIFICATION

arraylength arraylength

Operation Get length of array

Format | arraylength |
Forms arraylength = 190 (Oxbe)
Stack ..., arrayref O

..., length

Description Thearrayref must be of typeeference and must refer to an array.
It is popped from the operand stack. Térgth of the array it refer-
ences is determined. Thiahgth is pushed onto the operand stack
as anint.

Runtime If the arrayref is null, the arraylength instruction throws a
Exception NullPointerException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 165

astore

Operation

Format

Forms

Stack

Description

Notes

astore

Storereference into local variable

astore
index

astore = 58 (0x3a)

..., objectref [

Theindex is an unsigned byte that must be a valid index into the
local variables of the current frame (83.6). Dhictref on the top

of the operand stack must be of typeturnAddress or of type
reference. It is popped from the operand stack, and the value of
the local variable a@hdex is set tabjectref.

The astore instruction is used with aobjectref of type return-
Address when implementing Javaginally keyword (see Sec-
tion 7.13, “Compilingfinally”). The aload instruction cannot be
used to load a value of typeturnAddress from a local variable
onto the operand stack. This asymmetry withatere instruction
is intentional.

Theastore opcode can be used in conjunction withwlde instruc-
tion to access a local variable using a two-byte unsigned index.

166

THE JAVAM VIRTUAL MACHINE SPECIFICATION

astore_<n> astore_<n>

Operation Storereference into local variable

Format | astore_<n> |

Forms astore_0 = 75 (0Ox4b)
astore_1 =76 (0x4c)
astore_2 = 77 (0x4d)
astore_3 = 78 (Ox4e)

Stack ..., objectref O

Description The <n> must be a valid index into the local variables of the cur-
rent frame (83.6). Thebjectref on the top of the operand stack
must be of typereturnAddress or of type reference. It is
popped from the operand stack, and the value of the local variable
at<n> is set tabjectref.

Notes An astore_<n> instruction is used with asbjectref of typeretur-

nAddress when implementing Java®inally keyword (see Sec-
tion 7.13, “Compiling finally”). An aload_<n> instruction
cannot be used to load a value of typeurnAddress from a local
variable onto the operand stack. This asymmetry with the corre-
spondingastore_<n> instruction is intentional.

Each of theastore_<n> instructions is the same astore with an
index of <n>, except that the operarah> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 167

athrow

Operation
Format
Forms

Stack

Description

Runtime
Exception

athrow

Throw exception or error

| athrow |

athrow = 191 (Oxbf)

..., Objectref O
objectref

The objectref must be of typereference and must refer to an
object which is an instance of clalsrowable or of a subclass of
Throwable. It is popped from the operand stack. Thectref is

then thrown by searching the current frame (83.6) for the most
recentcatch clause that catches the classlgéctref or one of its
superclasses.

If a catch clause is found, it contains the location of the code
intended to handle this exception. Tihe register is reset to that
location, the operand stack of the current frame is clealsgdtref

is pushed back onto the operand stack, and execution continues. If
no appropriate clause is found in the current frame, that frame is
popped, the frame of its invoker is reinstated, andobfestref is
rethrown.

If no catch clause is found that handles this exception, the current
thread exits.

If objectref is nul1, athrow throws aNullPointerException
instead obbjectref.

168

THE JAVAM VIRTUAL MACHINE SPECIFICATION

athrow (cont.) athrow (cont.)

Notes

The operand stack diagram for ththrow instruction may be mis-
leading: If a handler for this exception is found in the current
method, theathrow instruction discards all the words on the oper-
and stack, then pushes the thrown object onto the stack. However, if
no handler is found in the current method and the exception is
thrown farther up the method invocation chain, then the operand
stack of the method (if any) that handles the exception is cleared
andobjectref is pushed onto that empty operand stack. All interven-
ing stack frames from the method that threw the exception up to,
but not including, the method that handles the exception are
discarded.

JAVA VIRTUAL MACHINE INSTRUCTION SET 169

baload baload

Operation Loadbyte orboolean from array

Format | baload |
Forms baload = 51 (0x33)
Stack ..., arrayref, index O

..., value

Description Thearrayref must be of typeeference and must refer to an array
whose components are of tyjpete or of typeboolean. Theindex
must be of type nt. Botharrayref andindex are popped from the
operand stack. Theyte value in the component of the array at
index is retrieved, sign-extended to &mt value, and pushed onto
the top of the operand stack.

Runtime If arrayrefis nu11, baload throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, the baload instruction throws anArrayIndex-
OutOfBoundsException.

Notes The baload instruction is used to load values from bétite and
boolean arrays. In Sun’s implementation of the Java Virtual
Machine,boolean arrays (arrays of type BOOLEAN; see §3.1 and
the description of theewarray instruction) are implemented as
arrays of 8-bit values. Other implementations may implement
packedboolean arrays; théaload instruction of such implementa-
tions must be used to access those arrays.

170

THE JAVAM VIRTUAL MACHINE SPECIFICATION

bastore bastore

Operation Store intobyte or boolean array

Format | bastore |
Forms bastore = 84 (0x54)
Stack ..., arrayref, index, value O

Description Thearrayref must be of typeeference and must refer to an array
whose components are of tylpete or of typebooTlean. Theindex
and thevalue must both be of typént. Thearrayref, index, and
value are popped from the operand stack. The value is trun-
cated to ayte and stored as the component of the array indexed

by index.
Runtime If arrayrefis nu11, bastore throws aNul11PointerException.
Exceptions Lo . _
Otherwise, ifindex is not within the bounds of the array referenced
by arrayref, thebastore instruction throws anrrayIndexOutOf-
BoundsException.
Notes The bastore instruction is used to store values into bbjfte and

boolean arrays. In Sun’s implementation of the Java Virtual
Machine,boolean arrays (arrays of type_BOOLEAN; see §3.1 and
the description of theewarray instruction) are implemented as
arrays of 8-bit values. Other implementations may implement
packedboolean arrays; thevastore instruction of such implemen-
tations must be used to store into those arrays.

JAVA VIRTUAL MACHINE INSTRUCTION SET 171

bipush bipush

Operation Pushbyte

Format bipush
byte
Forms bipush = 16 (0x10)
Stack .. g
..., value

Description The immediatéyyte is sign-extended to aimt, and the resulting
value is pushed onto the operand stack.

172

caload

Operation
Format
Forms

Stack

Description

Runtime
Exceptions

THE JAVAM VIRTUAL MACHINE SPECIFICATION

caload

Loadchar from array

| caload |

caload = 52 (0x34)

..., arrayref, index O
..., value

Thearrayref must be of typeeference and must refer to an array
whose components are of typear. Theindex must be of type
int. Botharrayref andindex are popped from the operand stack.
Thechar value in the component of the arrayiatlex is retrieved,
zero-extended to aimt value, and pushed onto the top of the oper-
and stack.

If arrayrefis nu11, caload throws aNu11PointerException.

Otherwise, ifindex is not within the bounds of the array referenced
by arrayref, the caload instruction throws amrrayIndexOutOf-
BoundsException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 173

castore castore

Operation Store intochar array

Format | castore |
Forms castore = 85 (0x55)
Stack ..., arrayref, index, value [

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typlear. Theindex and thevalue must
both be of typeint. The arrayref, index, andvalue are popped
from the operand stack. THet value is truncated to ahar and
stored as the component of the array indexenhébax.

Runtime If arrayrefis nul11, castore throws aNul11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, thecastore instruction throws amrrayIndexOutOf-
BoundsException.

174

THE JAVAM VIRTUAL MACHINE SPECIFICATION

checkcast checkcast
Operation Check whether object is of given type
Format checkcast

indexbytel

indexbyte2
Forms checkcast = 192 (0xcO0)
Stack ..., objectref (]

..., Objectref

Description Theobjectref must be of typeeference. The unsigneihdexbytel

andindexbyte2 are used to construct an index into the constant pool
of the current class (83.6), where the value of the index is
(indexbytel << 8) |indexbyte2. The constant pool item at the index
must be aCONSTANT_Class (84.4.1), a symbolic reference to a
class, array, or interface type. The symbolic reference is resolved
(85.1).

If objectref is nu11 or can be cast to the resolved class, array, or
interface type, the operand stack is unchanged; otherwise, the
checkcast instruction throws &lassCastException.

The following rules are used to determine whethesbgattref that

is notnu11 can be cast to the resolved typesifs the class of the
object referred to bgbjectref and T is the resolved class, array, or
interface typecheckcast determines whethebjectref can be cast to
type T as follows:

JAVA VIRTUAL MACHINE INSTRUCTION SET 175

checkcast (cont.) checkcast (cont.)

* If Sis an ordinary (non-array) class, then:

= If Tis aclass type, thes must be the same class (82.8.17as
or a subclass of.

= If Tis an interface type, thes must implement (82.13) inter-
faceT.

« If Sis aclass representing the array tg@¢], that is, an array of
components of typsc, then:

= If Tis a class type, thenmust bedbject (82.4.6).

= If Tis an array typacCl], that is, an array of components of
type 7C, then one of the following must be true:

e TC andsc are the same primitive type (82.4.1).

* TC andsc are reference types (§2.4.5), and t@aecan be
cast torC by these runtime rules.

S cannot be an interface type, because there are no instances of
interfaces, only instances of classes and arrays.

Linking During resolution of th€ONSTANT_Class constant pool item, any
Exceptions of the exceptions documented in 85.1 can be thrown.

Runtime Otherwise, ifobjectref cannot be cast to the resolved class, array, or
Exception interface type, thecheckcast instruction throws aClassCast-
Exception.

Notes The checkcast instruction is very similar to thmstanceof instruc-
tion. It differs in its treatment aful11, its behavior when its test
fails (checkcast throws an exceptioninstanceof pushes a result
code), and its effect on the operand stack.

176 THE JAVAM VIRTUAL MACHINE SPECIFICATION

d2f d2f

Operation Convertdouble to float

Format | d2f |

Forms d2f = 144 (0x90)

Stack ..., value.wordl, value.word2 O
..., result

Description Thevalue on the top of the operand stack must be of tiqble.
It is popped from the operand stack and convertedrieat result
using IEEE 754 round-to-nearest mode. Tésailt is pushed onto
the operand stack.

A finite value too small to be represented aflaat is converted to

a zero of the same sign; a fimitdue too large to be represented as
afloat is converted to an infinity of the same signddable NaN

is converted to &loat NaN.

Notes The d2f instruction performs a narrowing primitive conversion
(82.6.3). It may lose information about the overall magnitude of
value and may also lose precision.

JAVA VIRTUAL MACHINE INSTRUCTION SET 177

d2i d2i

Operation Convertdouble toint

Format | d2i |

Forms d2i = 142 (0x83)

Stack ..., value.word1, value.word2 [
..., result

Description Thevalue on the top of the operand stack must be of tiqa1e.
It is popped from the operand stack and converted tmanThe
result is pushed onto the operand stack:

« |If thevalue is NaN, theresult of the conversion is aimt 0.

» Otherwise, if thevalue is not an infinity, it is rounded to an integer
value V, rounding towards zero using IEEE 754 round-towards-
zero mode. If this integer valuécan be represented as #it,
then theresult is theint value V.

« Otherwise, either thealue must be too small (a negative value of
large magnitude or negative infinity), and thgult is the small-
est representable value of tyjet, or thevalue must be too large
(a positive value of large magnitude or positive infinity), and the
result is the largest representable value of type.

Notes The d2i instruction performs a narrowing primitive conversion
(82.6.3). It may lose information about the overall magnitude of
value, and may also lose precision.

178

THE JAVAM VIRTUAL MACHINE SPECIFICATION

d2l d2l

Operation Convertdouble to Tong

Format | d2l |
Forms d2l = 143 (0x8f)
Stack ..., value.wordl, value.word2 O

..., result.word1, result.word2

Description Thevalue on the top of the operand stack must be of tiqble.
It is popped from the operand stack and convertedling. The
result is pushed onto the operand stack:

« |f the value is NaN, theresult of the conversion is ®ong 0.

» Otherwise, if thevalue is not an infinity, it is rounded to an integer

value V, rounding towards zero using IEEE 754 round-towards-

zero mode. If this integer valuécan be represented ageng,
then theresult is thelong value V.

» Otherwise, either thealue must be too small (a negative value of
large magnitude or negative infinity), and tbsult is the smallest
representable value of tygeng, or thevalue must be too large

(a positive value of large magnitude or positive infinity), and the

result is the largest representable value of typey.

Notes The d2l instruction performs a narrowing primitive conversion

(82.6.3). It may lose information about the overall magnitude of

value, and may also lose precision.

JAVA VIRTUAL MACHINE INSTRUCTION SET 179

dadd dadd

Operation Add double

Format | dadd |
Forms dadd = 99 (0x63)
Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel andvalue2 must be of typalouble. The values are
popped from the operand stack. T#euble result is valuel +
value2. Theresult is pushed onto the operand stack.

The result of aladd instruction is governed by the rules of IEEE
arithmetic:

« If either value is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that
sign.

The sum of an infinity and any finite value is equal to the infinity.

The sum of two zeroes of opposite sign is positive zero.

180 THE JAVAM VIRTUAL MACHINE SPECIFICATION

dadd (cont.) dadd (cont.)

» The sum of two zeroes of the same sign is the zero of that sign.

e The sum of a zero and a nonzero finite value is equal to the non-
zero value.

» The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

* In the remaining cases, where neither an infinity, nor a zero, nor
NaN is involved, and the values have the same sign or have differ-
ent magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent @eable, we say the oper-
ation overflows; the result is then an infinity of appropriate sign.

If the magnitude is too small to represent dsuble, we say the
operation underflows; the result is then a zero of appropriate sign.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution adadd instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 181

daload daload

Operation Loaddouble from array

Format | daload |
Forms daload = 49 (0x31)
Stack ..., arrayref, index O

..., value.word1, value.word?2

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typeuble. Theindex must be of type
int. Botharrayref andindex are popped from the operand stack.
The double value in the component of the array aidex is
retrieved and pushed onto the top of the operand stack.

Runtime If arrayrefis nu11, daload throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, the daload instruction throws amrrayIndexOutOf-
BoundsException.

182

THE JAVAM VIRTUAL MACHINE SPECIFICATION

dastore dastore

Operation Store intodouble array

Format | dastore |
Forms dastore = 82 (0x52)
Stack ..., arrayref, index, value.word1, value.word2 [

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typeuble. Theindex must be of type
int andvalue must be of typalouble. Thearrayref, index, and
value are popped from the operand stack. Hoeble value is
stored as the component of the array indexenhdbax.

Runtime If arrayref is nu11, dastore throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, dastore throws anArrayIndexOutOfBounds-Excep-
tion.

JAVA VIRTUAL MACHINE INSTRUCTION SET 183

dcmp<op> dcmp<op>
Operation Comparedouble

Format | dcmp<op> |

Forms dempg = 152 (0x98)

Stack

Description

Notes

dempl = 151 (0x97)

..., valuel.wordl, valuel.word2, value2.wordl, value2.wordl O
..., result

Both valuel andvalue2 must be of typelouble. The values are
popped from the operand stack, and a floating-point comparison is
performed. Ifvaluel is greater tharvalue2, the int valuel is
pushed onto the operand stackedfuel is equal tosalue2, theint
value 0 is pushed onto the operand stackvdfuel is less than
value2, theint value-1 is pushed onto the operand stack. If either
valuel or value2 is NaN, thedcmpg instruction pushes thént
valuel onto the operand stack and thenpl instruction pushes the

int value—1 onto the operand stack.

Floating-point comparison is performed in accordance with IEEE
754. All values other than NaN are ordered, with negative infinity
less than all finite values and positive infinity greater than all finite
values. Positive zero and negative zero are considered equal.

The dcmpg anddcmpl instructions differ only in their treatment of

a comparison involving NaN. NaN is unordered, so dmyble
comparison fails if either or both of its operands are NaN. With
both dcmpg anddcmpl available, anyloubTle comparison may be
compiled to push the sammesult onto the operand stack whether
the comparison fails on non-NaN values or fails because it encoun-
tered a NaN. For more information, see Section 7.5, “More Control
Examples.”

184 THE JAVAM VIRTUAL MACHINE SPECIFICATION

dconst_<d> dconst_<d>

Operation Pushdouble

Format | dconst_<d> |

Forms dconst_0 = 14 (Oxe)
dconst_1 = 15 (Oxf)

Stack ... O
..., <d>.word1, <d>.word2

Description Push thelouble constankd> (0.0 or 1.0) onto the operand stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 185

ddiv ddiv

Operation Divide double

Format | ddiv |
Forms ddiv = 111 (Ox6f)
Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel andvalue2 must be of typelouble. The values are
popped from the operand stack. Boab1e result isvaluel / value2.
Theresult is pushed onto the operand stack.

The result of adiv instruction is governed by the rules of IEEE
arithmetic:

« If either value is NaN, the result is NaN.

« If neither value is NaN, the sign of the result is positive if both val-
ues have the same sign, negative if the values have different signs.

« Division of an infinity by an infinity results in NaN.

« Division of an infinity by a finite value results in a signed infinity,
with the sign-producing rule just given.

186 THE JAVAM VIRTUAL MACHINE SPECIFICATION

ddiv (cont.) ddiv (cont.)

« Division of a finite value by an infinity results in a signed zero,
with the sign-producing rule just given.

« Division of a zero by a zero results in NaN; division of zero by any
other finite value results in a signed zero, with the sign-producing
rule just given.

 Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

* In the remaining cases, where neither an infinity, nor a zero, nor
NaN is involved, the quotient is computed and rounded to the
nearestdouble using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent @suable, we say the oper-
ation overflows; the result is then an infinity of appropriate sign.
If the magnitude is too small to represent dsuble, we say the
operation underflows; the result is then a zero of appropriate sign.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow,
division by zero, or loss of precision may occur, executiondof\a
instruction never throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 187

dload dload

Operation Loaddouble from local variable

Format dload

index
Forms dload = 24 (0x18)
Stack .0

..., value.word1, value.word?2

Description Theindex is an unsigned byte. Boihdex andindex + 1 must be
valid indices into the local variables of the current frame (83.6).
The local variables ahdex andindex + 1 together must contain a
double. Thevalue of the local variables andex andindex + 1 is
pushed onto the operand stack.

Notes Thedload opcode can be used in conjunction withwhede instruc-
tion to access a local variable using a two-byte unsigned index.

188

THE JAVAM VIRTUAL MACHINE SPECIFICATION

dload_<n> dload_<n>
Operation Loaddouble from local variable
Format | dload_<n> |
Forms dload 0 = 38 (0x26)
dload_1 = 39 (0x27)
dload_2 =40 (0x28)
dload 3 =41 (0x29)
Stack .0
..., value.word1, value.word?2
Description Both <n> and<n> + 1 must be valid indices into the local vari-
ables of the current frame (83.6). The local variablesnat and
<n> + 1 together must containdouble. Thevalue of the local
variables akn> and<n> + 1 is pushed onto the operand stack.
Notes Each of thedload_<n> instructions is the same dkad with an

index of <n>, except that the operarah> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 189

dmul dmul

Operation Multiply double

Format | dmul |
Forms dmul = 107 (0x6b)
Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel andvalue2 must be of typalouble. The values are
popped from the operand stack. Téeuble result is valuel *
value2. Theresult is pushed onto the operand stack.

The result of ailmul instruction is governed by the rules of IEEE
arithmetic:

« If either value is NaN, the result is NaN.

« If neither value is NaN, the sign of the result is positive if both val-
ues have the same sign, and negative if the values have different
signs.

¢ Multiplication of an infinity by a zero results in NaN.

» Multiplication of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

« In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest rep-
resentable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent asable, we say the oper-
ation overflows; the result is then an infinity of appropriate sign.
If the magnitude is too small to represent dsuble, we say the
operation underflows; the result is then a zero of appropriate sign.

190 THE JAVAM VIRTUAL MACHINE SPECIFICATION

dmul (cont.) dmul (cont.)

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or

loss of precision may occur, execution afraul instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 191

dneg dneg

Operation Negatedouble

Format | dneg |
Forms dneg = 119 (0x77)
Stack ..., value.word1, value.word2 [

..., result.wordl, result.word2

Description Thevalue must be of typeloubTe. It is popped from the operand
stack. Thedouble result is the arithmetic negation ofalue,
namely-value. Theresult is pushed onto the operand stack.

For double values, negation is not the same as subtraction from
zero. Ifx is +0.0, then@.0-x equals+0.0, but-x equals-0.0.
Unary minus merely inverts the sign ofléuble.

Special cases of interest:

* If the operand is NaN, the result is NaN (recall that NaN has no
sign).

« If the operand is an infinity, the result is the infinity of opposite
sign.

« If the operand is a zero, the result is the zero of opposite sign.

192

drem

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

drem

Remaindedouble

| drem |

drem = 115 (0x73)

..., valuel.word1, valuel.word2, value2.word1l, value2.word2 O
..., result.word1, result.word2

Description Both valuel andvalue2 must be of typalouble. The values are

popped from the operand stack. Teault is calculated and pushed
onto the operand stack agdauble.

The result of alrem instruction is not the same as that of the so-
called remainder operation defined by IEEE 754. The IEEE 754
“remainder” operation computes the remainder from a rounding
division, not a truncating division, and so its behaviarasanalo-

gous to that of the usual integer remainder operator. Instead, the
Java Virtual Machine definedrem to behave in a manner analo-
gous to that of the Java Virtual Machine integer remainder instruc-
tions (rem and Irem); this may be compared with the C library
function fmod.

The result of @arem instruction is governed by these rules:
« If either value is NaN, the result is NaN.

« If neither value is NaN, the sign of the result equals the sign of the
dividend.

* If the dividend is an infinity, or the divisor is a zero, or both, the
result is NaN.

« If the dividend is finite and the divisor is an infinity, the result
equals the dividend.

JAVA VIRTUAL MACHINE INSTRUCTION SET 193

drem (cont.) drem (cont.)

« If the dividend is a zero and the divisor is finite, the result equals
the dividend.

« In the remaining cases, where neither an infinity, nor a zero, nor
NaN is involved, the floating-point remaindesult from a divi-
dendvaluel and a divisowvalue? is defined by the mathematical
relationresult = valuel-(value2) , where is an integer that
is negative only ifvaluel/value2 is negative and positive only
if valuel/value2 is positive, and whose magnitude is as large as
possible without exceeding the magnitude of the true mathemati-
cal quotient ofvaluel andvalue2.

Despite the fact that division by zero may occur, evaluation of
a drem instruction never throws a runtime exception. Overflow,
underflow, or loss of precision cannot occur.

Notes The IEEE 754 remainder operation may be computed by the Java
library routineMath.IEEEremainder.

194 THE JAVAM VIRTUAL MACHINE SPECIFICATION

dreturn dreturn

Operation Returndouble from method

Format | dreturn |

Forms dreturn = 175 (Oxaf)

Stack ..., value.word1, value.word2 [
[empty]

Description The returning method must have return tyaeble. The value
must be of typalouble. Thevalue is popped from the operand
stack of the current frame (83.6) and pushed onto the operand stack
of the frame of the invoker. Any other values on the operand stack
of the current method are discarded. If the returning method is a
synchronized method, the monitor acquired or reentered on invo-
cation of the method is released or exited (respectively) as if by
execution of anonitorexit instruction.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

JAVA VIRTUAL MACHINE INSTRUCTION SET 195

dstore dstore

Operation Storedouble into local variable

Format dstore
index
Forms dstore = 57 (0x39)
Stack ..., value.word1, value.word2 O

Description Theindex is an unsigned byte. Boihdex andindex + 1 must be
valid indices into the of the current frame (83.6). Vhkie on the
top of the operand stack must be of tgpeble. It is popped from
the operand stack, and the local variabléadeix andindex + 1 are
set tovalue.

Notes The dstore opcode can be used in conjunction with thige
instruction to access a local variable using a two-byte unsigned
index.

196

THE JAVAM VIRTUAL MACHINE SPECIFICATION

dstore_<n> dstore_<n>

Operation Storedouble into local variable

Format | dstore_<n> |

Forms dstore 0 =71 (0x47)
dstore_1 = 72 (0x48)
dstore_2 = 73 (0x49)
dstore_3 = 74 (0x4a)

Stack ..., value.word1, value.word2 [

Description Both <n> and<n> + 1 must be valid indices into the local vari-
ables of the current frame (83.6). TWetue on the top of the oper-
and stack must be of typuble. It is popped from the operand
stack, and the local variables<at> and<n> + 1 are set toalue.

Notes Each of thedstore_<n> instructions is the same dstore with an

index of <n>, except that the operarah> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 197

dsub dsub

Operation Subtractdouble

Format | dsub |
Forms dsub = 103 (0x67)
Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel andvalue2 must be of typalouble. The values are
popped from the operand stack. T#euble result is valuel -
value2. Theresult is pushed onto the operand stack.

For double subtraction, it is always the case thab produces the
same result as+(-b). However, for thalsub instruction, subtrac-
tion from zero is not the same as negation, becausésif-0.0,
theno.0-x equals+0.0, but-x equals-0.0.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution adsab instruction never
throws a runtime exception.

198

dup

Operation
Format
Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

dup

Duplicate top operand stack word

| dup |

dup = 89 (0x59)

...,word O
..., word, word

The top word on the operand stack is duplicated and pushed onto
the operand stack.

Thedup instruction must not be used unlegsd contains a 32-bit
data type.

Except for restrictions preserving the integrity of 64-bit data types,
thedup instruction operates on an untyped word, ignoring the type
of the datum it contains.

JAVA VIRTUAL MACHINE INSTRUCTION SET 199

dup_x1 dup_x1

Operation Duplicate top operand stack word and put two down

Format | dup_x1 |
Forms dup_x1 =90 (0x5a)
Stack ..., word2, wordl O

..., wordl, word2, word1

Description The top word on the operand stack is duplicated and the copy
inserted two words down in the operand stack.

Thedup_x1 instruction must not be used unless eacharfil and
word2 is a word that contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the dup_x1 instruction operates on untyped words, ignoring the
types of the data they contain.

200

THE JAVAM VIRTUAL MACHINE SPECIFICATION

dup_x2 dup_x2

Operation Duplicate top operand stack word and put three down

Format | dup_x2 |
Forms dup_x2 = 91 (0x5b)
Stack ..., word3, word2, word1 [

..., wordl, word3, word2, word1

Description The top word on the operand stack is duplicated and the copy
inserted three words down in the operand stack.

Thedup_x2 instruction must not be used unless eacharfi2 and
word3 is a word that contains a 32-bit data type or together are the
two words of a single 64-bit datum, and unlessdl contains a
32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the dup_x2 instruction operates on untyped words, ignoring the
types of the data they contain.

JAVA VIRTUAL MACHINE INSTRUCTION SET 201

dup? dup2

Operation Duplicate top two operand stack words

Format | dup2 |
Forms dup2 = 92 (0x5c)
Stack ..., word2, wordl [

..., word2, word1, word2, wordl

Description The top two words on the operand stack are duplicated and pushed
onto the operand stack, in the original order.

The dup2 instruction must not be used unless eacwatll and
word2 is a word that contains a 32-bit data type or both together are
the two words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data types,
thedup? instruction operates on untyped words, ignoring the types
of the data they contain.

202 THE JAVAM VIRTUAL MACHINE SPECIFICATION

dup2_x1 dup2_x1

Operation Duplicate top two operand stack words and put three down

Format | dup2_x1 |
Forms dup2_x1 = 93 (0x5d)
Stack ..., word3, word2, word1 [

..., word2, word1, word3, word2, word1l

Description The top two words on the operand stack are duplicated and the cop-
ies inserted, in the original order, three words down in the operand
stack.

The dup2_x1 instruction must not be used unless eaclvafdl

and word2 is a word that contains a 32-bit data type or both
together are the two words that contain a single 64-bit datum, and
unlessword3 is a word that contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the dup2_x1 instruction operates on untyped words, ignoring the
types of the data they contain.

JAVA VIRTUAL MACHINE INSTRUCTION SET 203

dup2_x2 dup2_x2

Operation Duplicate top two operand stack words and put four down

Format | dup2_x2 |
Forms dup2_x2 = 94 (0x5e)
Stack ..., word4, word3, word2, wordl O

..., word2, word1, word4, word3, word2, word1l

Description The top two words on the operand stack are duplicated and the cop-
ies inserted, in the original order, four words down in the operand
stack.

The dup2_x2 instruction must not be used unless eaclvafll
andword2 is a 32-bit data type or both together are the two words
of a single 64-bit datum, and unlessrd3 andword4 are each a
word that contains a 32-bit data type or both together are the two
words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the dup2_x2 instruction operates on untyped words, ignoring the
types of the data they contain.

204 THE JAVAM VIRTUAL MACHINE SPECIFICATION

f2d f2d

Operation Convertfloat todouble

Format | f2d |
Forms f2d = 141 (0x8d)
Stack ..., value O

..., result.wordl, result.word2

Description Thevalue on the top of the operand stack must be of fyjpat. It
is popped from the operand stack and converteddiulale. The
result is pushed onto the operand stack.

Notes The f2d instruction performs a widening primitive conversion
(82.6.2). Because all values of tyfmat are exactly representable
by typedouble, the conversion is exact.

JAVA VIRTUAL MACHINE INSTRUCTION SET 205

f2i f2i

Operation Convertfloat toint

Format | f2i |
Forms f2i = 139 (0x8hb)
Stack ..., value O

..., result

Description Thevalue on the top of the operand stack must be of fyjipat. It
is popped from the operand stack and converted tbnanThe
result is pushed onto the operand stack:

« |f the value is NaN, theresult of the conversion is aimt 0.

» Otherwise, if thevalue is not an infinity, it is rounded to an integer
value V, rounding towards zero using IEEE 754 round-towards-
zero mode. If this integer valuécan be represented as #art,
then theresult is theint value V.

« Otherwise, either thealue must be too small (a negative value of
large magnitude or negative infinity), and thgult is the small-
est representable value of tyjet, or thevalue must be too large
(a positive value of large magnitude or positive infinity), and the
result is the largest representable value of type.

Notes The f2i instruction performs a narrowing primitive conversion
(82.6.3). It may lose information about the overall magnitude of
value, and may also lose precision.

206

THE JAVAM VIRTUAL MACHINE SPECIFICATION

2l 2l

Operation Convertfloat to Tong

Format | 21 |
Forms f21 = 140 (0x8c)
Stack ..., value O

..., result.wordl, result.word2

Description Thevalue on the top of the operand stack must be of fyjpat. It
is popped from the operand stack and converted tong. The
result is pushed onto the operand stack:

« |f the value is NaN, theresult of the conversion is ®ong 0.

» Otherwise, if thevalue is not an infinity, it is rounded to an integer

value V, rounding towards zero using IEEE 754 round-towards-

zero mode. If this integer valuécan be represented ageng,
then theresult is thelong value V.

» Otherwise, either thealue must be too small (a negative value of
large magnitude or negative infinity), and tbsult is the smallest
representable value of tygeng, or thevalue must be too large

(a positive value of large magnitude or positive infinity), and the

result is the largest representable value of typey.

Notes The f2I instruction performs a narrowing primitive conversion

(82.6.3). It may lose information about the overall magnitude of

value, and may also lose precision.

JAVA VIRTUAL MACHINE INSTRUCTION SET 207

fadd fadd

Operation Add float

Format | fadd |
Forms fadd = 98 (0x62)
Stack ..., valuel, value2 O

..., result

Description Both valuel andvalue2 must be of typefloat. The values are
popped from the operand stack. Theoat result is valuel +
value2. Theresult is pushed onto the operand stack.

The result of arfadd instruction is governed by the rules of IEEE
arithmetic:

« If either value is NaN, the result is NaN.
« The sum of two infinities of opposite sign is NaN.

* The sum of two infinities of the same sign is the infinity of that
sign.

« The sum of an infinity and any finite value is equal to the infinity.
* The sum of two zeroes of opposite sign is positive zero.
« The sum of two zeroes of the same sign is the zero of that sign.

« The sum of a zero and a nonzero finite value is equal to the non-
zero value.

208 THE JAVAM VIRTUAL MACHINE SPECIFICATION

fadd (cont.) fadd (cont.)

» The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

* In the remaining cases, where neither an infinity, nor a zero, nor
NaN is involved, and the values have the same sign or have differ-
ent magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent & @at, we say the opera-
tion overflows; the result is then an infinity of appropriate sign. If
the magnitude is too small to represent a§@at, we say the
operation underflows; the result is then a zero of appropriate sign.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution offadtd instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 209

faload faload

Operation Loadfloat from array

Format | faload |
Forms faload = 48 (0x30)
Stack ..., arrayref, index O

..., value

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typeoat. Theindex must be of type
int. Botharrayref andindex are popped from the operand stack.
Thefloat value in the component of the arrayiatlex is retrieved
and pushed onto the top of the operand stack.

Runtime If arrayrefis nu11, faload throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, the faload instruction throws amrrayIndexOutOf-
BoundsException.

210

fastore

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

fastore

Store intofloat array

| fastore |

fastore = 81 (0x51)

..., arrayref, index, value O

Description Thearrayref must be of typeeference and must refer to an array

Runtime
Exceptions

whose components are of typeoat. Theindex must be of type
int and thevalue must be of typ&loat. Thearrayref, index, and

value are popped from the operand stack. Fheat value is stored
as the component of the array indexedrimgx.

If arrayref is nu11, fastore throws aNu11PointerException.

Otherwise, ifindex is not within the bounds of the array referenced
by arrayref, thefastore instruction throws amrrayIndexOutOf-
BoundsException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 211

fcmp<op> fcmp<op>
Operation Comparefloat

Format | fcmp<op> |

Forms fcmpg = 150 (0x96)

Stack

Description

Notes

fcmpl = 149 (0x95)

..., valuel, value2 O
..., result

Both valuel andvalue2 must be of typefloat. The values are
popped from the operand stack, and a floating-point comparison is
performed. Ifvaluel is greater tharvalue2, the int valuel is
pushed onto the operand stackedfuel is equal tosalue2, theint
value 0 is pushed onto the operand stackvdfuel is less than
value2, theint value-1 is pushed onto the operand stack. If either
valuel or value2 is NaN, thefcmpg instruction pushes thént
valuel onto the operand stack and tb@pl instruction pushes the

int value—1 onto the operand stack.

Floating-point comparison is performed in accordance with IEEE
754. All values other than NaN are ordered, with negative infinity
less than all finite values and positive infinity greater than all finite
values. Positive zero and negative zero are considered equal.

Thefcmpg andfcmpl instructions differ only in their treatment of a
comparison involving NaN. NaN is unordered, so éhyat com-
parison fails if either or both of its operands are NaN. With both
fcmpg and fcmpl available, anyfloat comparison may be com-
piled to push the sanresult onto the operand stack whether the
comparison fails on non-NaN values or fails because it encountered
a NaN. For more information, see Section 7.5, “More Control
Examples.”

212 THE JAVAM VIRTUAL MACHINE SPECIFICATION

fconst_<f> fconst_<f>

Operation Pushfloat

Format | fconst_<f> |

Forms fconst_ 0 = 11 (Oxb)
fconst_1 = 12 (Oxc)
fconst_2 =13 (0xd)

Stack ... O
<f>

Description Push thefloat constant<f> (0.0, 1.0, or 2.0) onto the operand
stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 213

fdiv

Operation
Format
Forms

Stack

Description

fdiv

Divide float

| fdiv |

fdiv = 110 (Ox6e)

..., valuel, value2 O
..., result

Both valuel andvalue2 must be of typefloat. The values are
popped from the operand stack. Thigoat result is valuel /
value2. Theresult is pushed onto the operand stack.

The result of aridiv instruction is governed by the rules of IEEE
arithmetic:

« If either value is NaN, the result is NaN.

« If neither value is NaN, the sign of the result is positive if both val-
ues have the same sign, negative if the values have different signs.

« Division of an infinity by an infinity results in NaN.

« Division of an infinity by a finite value results in a signed infinity,
with the sign-producing rule just given.

« Division of a finite value by an infinity results in a signed zero,
with the sign-producing rule just given.

« Division of a zero by a zero results in NaN; division of zero by any
other finite value results in a signed zero, with the sign-producing
rule just given.

214 THE JAVAM VIRTUAL MACHINE SPECIFICATION

fdiv (cont.) fdiv (cont.)

 Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

* In the remaining cases, where neither an infinity, nor a zero, nor
NaN is involved, the quotient is computed and rounded to the
nearesfloat using IEEE 754 round-to-nearest mode. If the mag-
nitude is too large to represent alaat, we say the operation
overflows; the result is then an infinity of appropriate sign. If the
magnitude is too small to represent & @at, we say the opera-
tion underflows; the result is then a zero of appropriate sign.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow,
division by zero, or loss of precision may occur, execution of an
fdiv instruction never throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 215

fload fload

Operation Loadfloat from local variable

Format fload
index
Forms fload = 23 (0x17)
Stack .0
..., value

Description Theindex is an unsigned byte that must be a valid index into the
local variables of the current frame (83.6). The local variable at
index must contain afloat. The value of the local variable at
index is pushed onto the operand stack.

Notes Thefloat opcode can be used in conjunction withhide instruc-
tion to access a local variable using a two-byte unsigned index.

216

THE JAVAM VIRTUAL MACHINE SPECIFICATION

fload_<n> fload_<n>
Operation Loadfloat from local variable
Format | fload_<n> |
Forms fload_0 = 34 (0x22)
fload_1 = 35 (0x23)
fload_2 = 36 (0x24)
fload_3 = 37 (0x25)
Stack .0
..., value
Description The <n> must be a valid index into the local variables of the cur-
rent frame (83.6). The local variable<at> must contain &1oat.
Thevalue of the local variable atn> is pushed onto the operand
stack.
Notes Each of thefload_<n> instructions is the same &wad with an

index of <n>, except that the operarah> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 217

fmul

Operation
Format
Forms

Stack

Description

fmul

Multiply float

| fmul |

fmul = 106 (Ox6a)

..., valuel, value2 O
..., result

Both valuel andvalue2 must be of typefloat. The values are
popped from the operand stack. Theoat result is valuel *
value2. Theresult is pushed onto the operand stack.

The result of arimul instruction is governed by the rules of IEEE
arithmetic:

« If either value is NaN, the result is NaN.

« If neither value is NaN, the sign of the result is positive if both val-
ues have the same sign, and negative if the values have different
signs.

« Multiplication of an infinity by a zero results in NaN.

» Multiplication of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

218 THE JAVAM VIRTUAL MACHINE SPECIFICATION

fmul (cont.) fmul (cont.)

* In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest rep-
resentable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent & @at, we say the opera-
tion overflows; the result is then an infinity of appropriate sign. If
the magnitude is too small to represent &§@at, we say the
operation underflows; the result is then a zero of appropriate sign.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution offamul instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 219

fneg fneg

Operation Negatefloat

Format | fneg |
Forms fneg = 118 (0x76)
Stack ..., value [

..., result

Description The value must be of typefloat. It is popped from the operand
stack. ThefToat result is the arithmetic negation gélue, —value.
Theresult is pushed onto the operand stack.

For float values, negation is not the same as subtraction from
zero. Ifx is +0.0, theno.0-x equals+0.0, but -x equals-0.0.
Unary minus merely inverts the sign of toat.

Special cases of interest:

* If the operand is NaN, the result is NaN (recall that NaN has no
sign).

« If the operand is an infinity, the result is the infinity of opposite
sign.

« If the operand is a zero, the result is the zero of opposite sign.

220

frem

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

frem

Remaindeffloat

| frem |

frem = 114 (0x72)

..., valuel, value2 O
..., result

Description Both valuel andvalue2 must be of typefloat. The values are

popped from the operand stack. Temult is calculated and pushed
onto the operand stack agoat.

Theresult of anfrem instruction is not the same that of the as the
so-called remainder operation defined by IEEE 754. The IEEE 754
“remainder” operation computes the remainder from a rounding
division, not a truncating division, and so its behaviarasanalo-

gous to that of the usual integer remainder operator. Instead, the
Java Virtual Machine defindsem to behave in a manner analogous

to that of the Java Virtual Machine integer remainder instructions
(irem andlrem); this may be compared with the C library function
fmod.

The result of afirem instruction is governed by these rules:
« If either value is NaN, the result is NaN.

« If neither value is NaN, the sign of the result equals the sign of the
dividend.

* If the dividend is an infinity, or the divisor is a zero, or both, the
result is NaN.

JAVA VIRTUAL MACHINE INSTRUCTION SET 221

frem (cont.) frem (cont.)

Notes

« If the dividend is finite and the divisor is an infinity, the result
equals the dividend.

« If the dividend is a zero and the divisor is finite, the result equals
the dividend.

 In the remaining cases, where neither an infinity, nor a zero, nor
NaN is involved, the floating-point remaindesult from a divi-
dendvaluel and a divisowalue? is defined by the mathematical
relation result = valuel-(value2q) , whereq is an integer
that is negative only ialuel/value2 is negative and positive
only if valuel/value2 is positive, and whose magnitude is as
large as possible without exceeding the magnitude of the true
mathematical quotient efluel andvalue2.

Despite the fact that division by zero may occur, evaluation of an
frem instruction never throws a runtime exception. Overflow,
underflow, or loss of precision cannot occur.

The IEEE 754 remainder operation may be computed by the Java
library routineMath.IEEEremainder.

222 THE JAVAM VIRTUAL MACHINE SPECIFICATION

freturn freturn

Operation Returnfloat from method

Format | freturn |
Forms freturn = 174 (Oxae)
Stack ..., value O

[empty]

Description The returning method must have return tyfi@at. The value
must be of typefloat. The value is popped from the operand
stack of the current frame (83.6) and pushed onto the operand
stack of the frame of the invoker. Any other values on the operand
stack of the current method are discarded. If the returning method
is asynchronized method, the monitor acquired or reentered on
invocation of the method is released or exited (respectively) as if
by execution of anonitorexit instruction.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

JAVA VIRTUAL MACHINE INSTRUCTION SET 223

fstore fstore

Operation Storefloat into local variable

Format fstore

index
Forms fstore = 56 (0x38)
Stack ..., value O

Description Theindex is an unsigned byte that must be a valid index into the
local variables of the current frame (83.6). Makue on the top of
the operand stack must be of typkoat. It is popped from the
operand stack, and the value of the local variabiadak is set to
value.

Notes Thefstore opcode can be used in conjunction withwhee instruc-
tion to access a local variable using a two-byte unsigned index.

224

THE JAVAM VIRTUAL MACHINE SPECIFICATION

fstore_<n> fstore_<n>

Operation Storefloat into local variable

Format | fstore_<n> |

Forms fstore_0 = 67 (0x43)
fstore_1 = 68 (0x44)
fstore_2 = 69 (0x45)
fstore_3 = 70 (0x46)

Stack ..., value O

Description The <n> must be a valid index into the local variables of the cur-
rent frame (83.6). Thealue on the top of the operand stack must
be of typefloat. It is popped from the operand stack, and the
value of the local variable a&n> is set tovalue.

Notes Each of thefstore_<n> is the same astore with anindex of <n>,
except that the operarth> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 225

fsub fsub

Operation Subtractfloat

Format | fsub |
Forms fsub = 102 (0x66)
Stack ..., valuel, value2 O

..., result

Description Both valuel andvalue2 must be of typefloat. The values are
popped from the operand stack. Theoat result is valuel -
value2. Theresult is pushed onto the operand stack.

For float subtraction, it is always the case thab produces the
same result as+(-b). However, for thdsub instruction, subtrac-
tion from zero is not the same as negation, becausésif-0.0,
theno.0-x equals+0.0, but-x equals-0.0.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution offsub instruction never
throws a runtime exception.

226

getfield

Operation

Format

Forms

Stack

Stack

Description

THE JAVAM VIRTUAL MACHINE SPECIFICATION

getfield

Fetch field from object

getfield
indexbytel
indexbyte2

getfield = 180 (Oxb4)

..., Objectref O
..., value

OR
..., Objectref O
..., value.wordl, value.word?2

The objectref, which must be of typeeference, is popped from

the operand stack. The unsigniediexbytel and indexbyte2 are

used to construct an index into the constant pool of the current
class(83.6),where the index idrjdexbytel << 8) |indexbyte2. The
constant pool item at the index must b€0ASTANT_Fieldref
(84.4.2), a reference to a class name and a field name. If the field is
protected (84.6), then it must be either a member of the current
class or a member of a superclass of the current class, and the class
of objectref must be either the current class or a subclass of the cur-
rent class.

The item is resolved (85.2), determining both the field width and
the field offset. Th&alue at that offset into the class instance refer-
enced byobjectref is fetched and pushed onto the operand stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 227

getfield (cont.) getfield (cont.)

Linking During resolution of th&€ONSTANT_Fieldref constant pool item,
Exceptions any of the errors documented in §85.2 can be thrown.

Otherwise, if the specified field exists but istat1ic field, getfield
throws anfncompatibleClassChangeError.

Runtime Otherwise, ifobjectref is nu11, the getfield instruction throws a
Exception NulTPointerException.

Notes The getfield instruction operates on both one- and two-word wide
fields.

228

getstatic

Operation

Format

Forms

Stack

Stack

Description

THE JAVAM VIRTUAL MACHINE SPECIFICATION

getstatic

Getstatic field from class

getstatic

indexbytel

indexbyte2

getstatic = 178 (0xb2)

U
..., value

OR

U
..., value.word1, value.word?2

The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
index is {(ndexbytel << 8) |indexbyte2. The constant pool item at

the index must be @NSTANT_Fieldref (84.4.2), a reference to a
class name and a field name. If the fieldristected (84.6), then

it must be either a member of the current class or a member of a
superclass of the current class.

The item is resolved (85.2), determining both the class field and its
width. Thevalue of the class field is fetched and pushed onto the
operand stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 229

getstatic (cont.) getstatic (cont.)

Linking During resolution of th&€ONSTANT_Fieldref constant pool item,
Exceptions any of the exceptions documented in §5.2 can be thrown.

Otherwise, if the specified field exists but is nattatic (class)
field, getstatic throws arincompatibleClassChangeError.

Notes The getstatic instruction operates on both one- and two-word wide
fields.

230

goto

Operation

Format

Forms
Stack

Description

THE JAVAM VIRTUAL MACHINE SPECIFICATION

goto

Branch always

goto

branchbytel

branchbyte2

goto = 167 (Oxa7)
No change

The unsigned bytebranchbytel andbranchbyte2 are used to
construct a signed 16-bibranchoffset, where branchoffset is
(branchbytel << 8) |branchbyte2. Execution proceeds at that offset
from the address of the opcode of thiso instruction. The target
address must be that of an opcode of an instruction within the
method that contains thigto instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET 231

goto_w goto_w

Operation Branch always (wide index)

Format goto_w

branchbytel
branchbyte2
branchbyte3
branchbyte4

Forms goto_w = 200 (0xc8)
Stack No change

Description The unsigned bytebranchbytel, branchbyte2, branchbyte3, and
branchbyte4 are used to construct a signed 324dnchoffset,
wherebranchoffset is (oranchbytel << 24) | pranchbyte2 << 16) |
(branchbyte3 << 8) |branchbyte4. Execution proceeds at that offset
from the address of the opcode of tigo_w instruction. The tar-
get address must be that of an opcode of an instruction within the
method that contains thigto_w instruction.

Notes Although thegoto w instruction has a 4-byte branch offset, other
factors limit the size of a Java method to 65535 bytes (84.10). This
limit may be raised in a future release of the Java Virtual Machine.

232

12b

Operation
Format
Forms

Stack

Convertint tobyte

| i2b

i2b = 145 (0x91)

..., value O
..., result

THE JAVAM VIRTUAL MACHINE SPECIFICATION

12b

Description Thevalue on the top of the operand stack must be of tiyye It is
popped from the operand stack, truncated toyee, then sign-
extended to arint result. Theresult is pushed onto the operand

Notes

stack.

The i2b instruction performs a narrowing primitive conversion
(82.6.3). It may lose information about the overall magnitude of
value. Theresult may also not have the same sigvalse.

JAVA VIRTUAL MACHINE INSTRUCTION SET 233

12¢ 12¢C

Operation Convertint to char

Format | i2c |
Forms i2c = 146 (0x92)
Stack ..., value O

..., result

Description Thevalue on the top of the operand stack must be of type It is
popped from the operand stack, truncatedchar, then zero-
extended to arint result. Theresult is pushed onto the operand
stack.

Notes The i2c instruction performs a narrowing primitive conversion
(82.6.3). It may lose information about the overall magnitude of
value. Theresult (which is always positive) may also not have the
same sign agalue.

234 THE JAVAM VIRTUAL MACHINE SPECIFICATION

12d 12d

Operation Convertint todoubTle

Format | i2d |
Forms i2d = 135 (0x87)
Stack ..., value O

..., result.wordl, result.word2

Description Thevalue on the top of the operand stack must be of tiye It is
popped from the operand stack and converteddoeulle result.
Theresult is pushed onto the operand stack.

Notes The i2d instruction performs a widening primitive conversion
(82.6.2). Because all values of typet are exactly representable
by typedouble, the conversion is exact.

JAVA VIRTUAL MACHINE INSTRUCTION SET 235

12f 12f

Operation Convertint to float

Format | i2f |
Forms i2f = 134 (0x86)
Stack ..., value O

..., result

Description Thevalue on the top of the operand stack must be of type It is
popped from the operand stack and converted tdthet result
using IEEE 754 round-to-nearest mode. Tésellt is pushed onto
the operand stack.

Notes The i2f instruction performs a widening primitive conversion
(82.6.2), but may result in a loss of precision because ftypet
has only 24 mantissa bits.

236 THE JAVAM VIRTUAL MACHINE SPECIFICATION

A 12l

Operation Convertint to Tong

Format | i2l |
Forms i2l =133 (0x85)
Stack ..., value O

..., result.word1, result.word2

Description Thevalue on the top of the operand stack must be of tiyye It is
popped from the operand stack and sign-extended dadaresult.
Theresult is pushed onto the operand stack.

Notes The i2l instruction performs a widening primitive conversion
(82.6.2). Because all values of typet are exactly representable
by typelong, the conversion is exact.

JAVA VIRTUAL MACHINE INSTRUCTION SET 237

12S 12S

Operation Convertint to short

Format | i2s |
Forms i2s = 147 (0x93)
Stack ..., value O

..., result

Description Thevalue on the top of the operand stack must be of type It is
popped from the operand stack, truncated thart, then sign-
extended to arint result. Theresult is pushed onto the operand
stack.

Notes The i2s instruction performs a narrowing primitive conversion
(82.6.3). It may lose information about the overall magnitude of
value. Theresult may also not have the same sigivalse.

238

THE JAVAM VIRTUAL MACHINE SPECIFICATION

iladd iadd

Operation Addint

Format | jadd |
Forms iadd = 96 (0x60)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Thiat result is valuel + value2. The
result is pushed onto the operand stack.

If aniadd overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement for-
mat. If overflow occurs, then the sign of the result will not be the
same as the sign of the mathematical sum of the two values.

JAVA VIRTUAL MACHINE INSTRUCTION SET 239

laload laload

Operation Loadint from array

Format | iaload |
Forms iaload = 46 (Ox2e)
Stack ..., arrayref, index 0

..., value

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typet. Theindex must be of typént.
Both arrayref andindex are popped from the operand stack. The
int value in the component of the array iatlex is retrieved and
pushed onto the top of the operand stack.

Runtime If arrayrefis nu11, iaload throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, theiaload instruction throws amrrayIndexOutOf-
BoundsException.

240

THE JAVAM VIRTUAL MACHINE SPECIFICATION

land land

Operation Boolean ANDint

Format | iand |
Forms iand = 126 (0x7e)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must be of typént. They are popped from
the operand stack. Aimt result is calculated by taking the bitwise
AND (conjunction) ofvaluel andvalue2. Theresult is pushed onto
the operand stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 241

lastore lastore

Operation Store intoint array

Format | iastore |
Forms iastore = 79 (0x4f)
Stack ..., arrayref, index, value [

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typet. Bothindex andvalue must be
of type int. Thearrayref, index, andvalue are popped from the
operand stack. Thént value is stored as the component of the
array indexed byndex.

Runtime If arrayrefis nu11, iastore throws aNul11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, theiastore instruction throws amrrayIndexOutOf-
BoundsException.

242 THE JAVAM VIRTUAL MACHINE SPECIFICATION

iconst_<i> iconst_<i>

Operation Pushint constant

Format | iconst_<i> |

Forms iconst m1 = 2 (0x2)
iconst_0 = 3 (0x3)
iconst_1 =4 (0x4)
iconst_2 =5 (0x5)
iconst_3 = 6 (0Ox6)
iconst_4 =7 (0x7)
iconst_5 = 8 (0x8)

Stack ... O
<i>

Description Push theint constanki> (-1, 0, 1, 2, 3, 4 or 5) onto the operand
stack.

Notes Each of this family of instructions is equivalentbipush <i> for
the respective value &fi>, except that the operagrd> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 243

idiv idiv

Operation Divide int

Format | idiv |
Forms idiv = 108 (0x6c)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Thimt result is the value of the Java
expressiorvaluel / value2. Theresult is pushed onto the operand
stack.

An 1int division rounds towards 0; that is, the quotient produced for
int values inn/d is anint valueq whose magnitude is as large as
possible while satisfyingd [fj| <|n| . Moreoveq is positive
when [n| =|d| andh andd have the same sign, bgiis negative
when|n| =|d| anch andd have opposite signs.

There is one special case that does not satisfy this rule: if the divi-
dend is the negative integer of largest possible magnitude for the
int type, and the divisor isl, then overflow occurs, and the result

is equal to the dividend. Despite the overflow, no exception is

thrown in this case.

Runtime If the value of the divisor in amnt division is 0,idiv throws an
Exception ArithmeticException.

244

THE JAVAM VIRTUAL MACHINE SPECIFICATION

iIf_acmp<cond> iIf_acmp<cond>
Operation Branch ifreference comparison succeeds
Format if acmp<cond>

branchbytel

branchbyte2
Forms if_acmpeq = 165 (0xab)

if acmpne = 166 (0xa6)

Stack ..., valuel, value2 O
Description Bothvaluel andvalue2 must be of typeeference. They are both

popped from the operand stack and compared. The results of the
comparison are as follows:

* eg succeeds if and only ¥aluel = value2
* ne succeeds if and only Vlaluel # value2

If the comparison succeeds, the unsignadnchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to béranchbytel << 8) |branchbyte2. Execu-

tion then proceeds at that offset from the address of the opcode of
this if_acmp<cond> instruction. The target address must be that of
an opcode of an instruction within the method that contains this
if_acmp<cond> instruction.

Otherwise, if the comparison fails, execution proceeds at the
address of the instruction following this acmp<cond> instruc-
tion.

JAVA VIRTUAL MACHINE INSTRUCTION SET 245

iIf_icmp<cond> iIf_icmp<cond>

Operation Branch ifint comparison succeeds

Format if_icmp<cond>
branchbytel
branchbyte2

Forms if_icmpeg = 159 (0x9f)

if _icmpne = 160 (0xa0)
if icmplt = 161 (Oxal)
if_icmpge = 162 (Oxa2)
if icmpgt = 163 (0xa3)
if_icmple = 164 (0xa4)

Stack ..., valuel, value2 O

Description Bothvaluel andvalue2 must be of typént. They are both popped
from the operand stack and compared. All comparisons are signed.
The results of the comparison are as follows:

e eq succeeds if and only Vfaluel = value2
* ne succeeds if and only Vfaluel # value2
e It succeeds if and only Valuel < value2
e le succeeds if and only Vfaluel < value2
e gt succeeds if and only Vfaluel > value2

e ge succeeds if and only Vialuel = value2

246 THE JAVAM VIRTUAL MACHINE SPECIFICATION

iIf_icmp<cond> (cont.) iIf_icmp<cond> (cont.)

If the comparison succeeds, the unsignadnchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to béranchbytel << 8) |branchbyte2. Execu-

tion then proceeds at that offset from the address of the opcode of
this if_icmp<cond> instruction. The target address must be that of
an opcode of an instruction within the method that contains this
if_icmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing thisif_icmp<cond> instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET 247

if<cond> if<cond>

Operation Branch ifint comparison with zero succeeds

Format if<cond>
branchbytel
branchbyte2

Forms ifeq = 153 (0x99)

ifne = 154 (0Ox9a)
ifit = 155 (0x9b)
ifge = 156 (0x9c)
ifgt = 157 (0x9d)
ifle 158 (0x9e)

Stack ..., value O

Description Thevalue must be of typént. It is popped from the operand stack
and compared against zero. All comparisons are signed. The results
of the comparisons are as follows:

e eq succeeds if and only Vfalue =0
e ne succeeds if and only Vfalue # 0
e It succeeds if and only Vlalue < 0
e le succeeds if and only Vfalue < 0
e gt succeeds if and only Vfalue > 0

e ge succeeds if and only Vlalue = 0

248 THE JAVAM VIRTUAL MACHINE SPECIFICATION

if<cond> (cont.) if<cond> (cont.)

If the comparison succeeds, the unsignadnchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to béranchbytel << 8) |branchbyte2. Execu-

tion then proceeds at that offset from the address of the opcode of
this if<cond> instruction. The target address must be that of an
opcode of an instruction within the method that contains this
if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing thisif<cond> instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET 249

ifnonnull ifnonnull

Operation Branch ifreference notnull

Format ifnonnull
branchbytel
branchbyte2

Forms ifnonnull = 199 (0xc7)

Stack ..., value [J

Description The value must of typereference. It is popped from the oper-
and stack. Ifvalue is not null, the unsignedranchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to béranchbytel << 8) |branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcode of
this ifnonnull instruction. The target address must be that of an
opcode of an instruction within the method that containdfiiog-
null instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing thisifnonnull instruction.

250

ifnull

Operation

Format

Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

ifnull

Branch ifreference isnull

ifnull

branchbytel

branchbyte2

ifnull = 198 (0xc6)

..., value O

Description Thevalue must of typereference. It is popped from the operand

stack. Ifvalue is nu11, the unsignedranchbytel andbranchbyte2

are used to construct a signed 16-bit offset, where the offset is cal-
culated to behfranchbytel << 8) |branchbyte2. Execution then pro-
ceeds at that offset from the address of the opcode offtiik
instruction. The target address must be that of an opcode of an
instruction within the method that contains tirsill instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing thisifnull instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET 251

linc

Operation

Format

Forms

Stack

Description

Notes

linc

Increment local variable by constant

iinc

index

const

iinc = 132 (0x84)
No change

Theindex is an unsigned byte that must be a valid index into the
local variables of the current frame (83.6). Thiest is a immediate
signed byte. The local variable iatlex must contain arint. The
valueconst is first sign-extended to amt, then the local variable
atindex is incremented by that amount.

Theiinc opcode can be used in conjunction with Wide instruc-
tion to access a local variable using a two-byte unsigned index and
increment it by a two-byte immediate value.

252

iload

Operation

Format

Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

iload

Loadint from local variable

iload

index

iload = 21 (0x15)

g
..., value

Theindex is an unsigned byte that must be a valid index into the
local variables of the current frame (83.6). The local variable at
index must contain annt. Thevalue of the local variable ahdex

is pushed onto the operand stack.

Theiload opcode can be used in conjunction withwhde instruc-
tion to access a local variable using a two-byte unsigned index.

JAVA VIRTUAL MACHINE INSTRUCTION SET 253

iload_<n> iload_<n>

Operation Loadint from local variable

Format | iload_<n> |

Forms iload_0 = 26 (Ox1a)
iload_1 = 27 (Ox1b)
iload_2 = 28 (0x1c)
iload_3 = 29 (0Ox1d)

Stack .. g
..., value

Description The <n> must be a valid index into the local variables of the cur-
rent frame (83.6). The local variable<at> must contain arint.
The value of the local variable atn> is pushed onto the operand
stack.

Notes Each of theiload_<n> instructions is the same #@sad with an
index of <n>, except that the operareh> is implicit.

254

THE JAVAM VIRTUAL MACHINE SPECIFICATION

imul imul

Operation Multiply int

Format | imul |
Forms imul = 104 (0x68)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Thiemt result is valuel * value2. The
result is pushed onto the operand stack.

If an int multiplication overflows, then the result is the low-order
bits of the mathematical product asian. If overflow occurs, then

the sign of the result may not be the same as the sign of the mathe-
matical product of the two values.

JAVA VIRTUAL MACHINE INSTRUCTION SET 255

ineg ineg

Operation Negateint

Format | ineg |
Forms ineg = 116 (0x74)
Stack ...,value [

..., result

Description Thevalue must be of typént. It is popped from the operand stack.
The int result is the arithmetic negation afalue, —value. The
result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero.
Because the Java Virtual Machine uses two’s-complement repre-
sentation for integers and the range of two’s-complement values is
not symmetric, the negation of the maximum negative results

in that same maximum negative number. Despite the fact that over-
flow has occurred, no exception is thrown.

For allint valuesx, -x equals(~x) + 1.

256

THE JAVAM VIRTUAL MACHINE SPECIFICATION

instanceof instanceof
Operation Determine if object is of given type
Format instanceof

indexbytel

indexbyte2
Forms instanceof = 193 (Oxc1)
Stack ..., objectref (]

..., result

Description The objectref, which must be of typeeference, is popped from

the operand stack. The unsignediexbytel and indexbyte2 are

used to construct an index into the constant pool of the current class
(83.6), where the value of the index imdexbytel << 8) |
indexbyte2. The item at that index in the constant pool must be a
CONSTANT_Class (84.4.1), a symbolic reference to a class, array,
or interface. The symbolic reference is resolved (85.1).

If objectref is notnull and is an instance of the resolved class,
array, or interface, thmstanceof instruction pushes aint result

of 1 as an int on the operand stack. Otherwise, it pusheés@an
result of 0.

The following rules are used to determine whethesbgattref that

is notnul1 is an instance of the resolved typesifs the class of
the object referred to kobjectref and T is the resolved class, array,
or interface typejnstanceof determines whethewbjectref is an
instance ofr as follows:

JAVA VIRTUAL MACHINE INSTRUCTION SET 257

instanceof (cont.) instanceof (cont.)

* If Sis an ordinary (non-array) class, then:

= If Tis a class type, thes must be the same class (82.8.1yas
or a subclass of.

= If Tis an interface type, thes must implement (82.13) inter-
faceT.

« If Sis aclass representing the array tg@¢], that is, an array of
components of typsc, then:

= If Tis a class type, thenmust bedbject (82.4.6).

= If Tis an array typacCl], that is, an array of components of
type 7C, then one of the following must be true:

e TC andsc are the same primitive type (82.4.1).

* TC andsc are reference types (§2.4.5), and t@aecan be
cast torC by these runtime rules.

S cannot be an interface type, because there are no instances of
interfaces, only instances of classes and arrays.

Linking During resolution of th€ONSTANT_Class constant pool item, any
Exceptions of the exceptions documented in 85.1 can be thrown.

Notes The instanceof instruction is fundamentally very similar to the
checkcast instruction. It differs in its treatment ai11, its behavior
when its test failscheckcast throws an exceptionnstanceof pushes
a result code), and its effect on the operand stack.

258 THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokeinterface invokeinterface

Operation Invoke interface method

Format invokeinterface
indexbytel
indexbyte2
nargs
0
Forms invokeinterface = 185 (0xb9)
Stack ..., objectref, [argl, [arg2 ...]] O

Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isifidexbytel << 8) |indexbyte2. The item at
that index in the constant pool must have the tag
CONSTANT _InterfaceMethodref (84.4.2), a reference to an inter-
face name, a method name, and the method’s descriptor (84.3.3).
The constant pool item is resolved (85.3). The interface method
must not be<init>, an instance initialization method (83.8), or
<clinit>, a class or interface initialization method (83.8).

Thenargs operand is an unsigned byte which must not be zero. The
objectref must be of typereference and must be followed on the
operands stack byargs — 1 words of arguments. The number of
words of arguments and the type and order of the values they repre-
sent must be consistent with the descriptor of the selected interface
method.

The method table of the class of the typebjdctref is determined.

If objectref is an array type, then the method table of adagect

is used. The method table is searched for a method whose name and
descriptor are identical to the name and descriptor of the resolved
constant pool entry.

JAVA VIRTUAL MACHINE INSTRUCTION SET 259

invokeinterface (cont.) invokeinterface (cont.)

Linking
Exceptions

The result of the search is a method table entry, which includes a
direct reference to the code for the interface method and the
method’s modifier information (see Table 4.4, “Method access and
modifier flags”). The method table entry must be that @ikl i c
method.

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahpctref and the words

of arguments are made the values of its fiestjs local variables,

with objectref in local variable), argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

If the method isnative and the platform-dependent code that
implements it has not yet been loaded and linked into the Java Vir-
tual Machine, that is done. Timargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

During resolution of theCONSTANT_InterfaceMethodref con-
stant pool item, any of the exceptions documented in 85.3 can be
thrown.

Otherwise, if no method matching the resolved name and descrip-
tor can be found in the classafjectref, invokeinterface throws an
IncompatibleClassChangeError.

Otherwise, if the selected method is a classi{ic) method, the
invokeinterface instruction throws an IncompatibleClass-
ChangeError.

260 THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokeinterface (cont.) invokeinterface (cont.)

Otherwise, if the selected method is pab1ic, invokeinterface
throws ant11egalAccessError.

Otherwise, if the selected method abstract, invokeinterface
throws ambstractMethodError.

Otherwise, if the selected methodristive and the code that
implements the method cannot be loaded or linkeakeinterface
throws arUnsatisfiedLinkError.

Runtime Otherwise, if objectref is nul1, the invokeinterface instruction
Exception throws aNul1PointerException.

Notes Unlike invokevirtual, invokestatic, andinvokespecial, the number
of arguments wordsnérgs) for the method invocation is made
available as an operand of timvokeinterface instruction. As with
the other instructions, that value can also be derived from the
descriptor of the selected method. The derived value must be iden-
tical to the value of thaargs operand. This redundancy is histori-
cal, but thenargs operand also reserves space in the instruction for
an operand used by thevokeinterface_quick pseudo-instruction
which may replacénvokeinterface at run time. See Chapter 9, “An
Optimization,” for information onnvokeinterface_quick.

The fourth operand byte of thmvokeinterface instruction is unused

by the instruction itself and must be zero. It exists only to reserve
space for an additional operand added if theokeinterface
instruction is replaced by thevokeinterface_quick pseudo-instruc-
tion at run time.

JAVA VIRTUAL MACHINE INSTRUCTION SET 261

invokespecial invokespecial

Operation Invoke instance method; special handling for superclass, private,
and instance initialization method invocations

Format invokespecial

indexbytel

indexbyte2
Forms invokespecial = 183 (0xb7)
Stack ..., Objectref, [argl, [arg2 ...]] O

Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isifidexbytel << 8) |indexbyte2. The item at
that index in the constant pool must have the tag
CONSTANT _Methodref (84.4.2), a reference to a class name, a
method name, and the method’s descriptor (84.3.3). The named
method is resolved (85.2). The descriptor of the resolved method
must be identical to the descriptor of one of the methods of the
resolved class.

Next, the Java Virtual Machine determines if all of the following
conditions are true:

* The name of the method is noitni t>, an instance initialization
method (83.8).

* The method is not private method.

* The class of the method is a superclass of the class of the current
method.

* The ACC_SUPER flag (see Table 4.1, “Class access and modifier
flags”) is set for the current class.

262 THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokespecial (cont.) invokespecial (cont.)

If so, then the Java Virtual Machine selects the method with the
identical descriptor in the closest superclass, possibly selecting the
method just resolved.

The resulting method must not kelinit>, a class or interface
initialization method (83.8).

If the method is<init>, an instance initialization method (83.8),
then the method must only be invoked once on an uninitialized
object, and before the first backward branch following the execu-
tion of thenew instruction that allocated the object.

Finally, if the method iprotected (84.6), then it must be either a
member of the current class or a member of a superclass of the cur-
rent class, and the classabjectref must be either the current class

or a subclass of the current class.

The constant pool entry representing the resolved method includes
a direct reference to the code for the method, an unsigned byte
nargs that must not be zero, and the method’s modifier information
(see Table 4.4, “Method access and modifier flags”).

Theobjectref must be of typeeference and must be followed on

the operand stack bgargs — 1 words of arguments, where the
number of words of arguments and the type and order of the values
they represent must be consistent with the descriptor of the selected
instance method.

If the method issynchronized, the monitor associated with
objectref is acquired.

JAVA VIRTUAL MACHINE INSTRUCTION SET 263

invokespecial (cont.) invokespecial (cont.)

Linking
Exceptions

Runtime
Exception

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahpctref and the words

of arguments are made the values of its fissgs local variables,

with objectref in local variabled, argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

If the method isnative and the platform-dependent code that
implements it has not yet been loaded and linked into the Java Vir-
tual Machine, that is done. Timargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

During resolution of theCONSTANT_Methodref constant pool
item, any of the exceptions documented in 85.2 can be thrown.

Otherwise, if the specified method exists but is a classt(c)
method, theinvokespecial instruction throws arincompatible-
ClassChangeError.

Otherwise, if the specified method astract, invokespecial
throws ambstractMethodError.

Otherwise, if the specified method native and the code that
implements the method cannot be loaded or linkeehkespecial
throws arnsatisfiedLinkError.

Otherwise, ifobjectref is nu11, theinvokespecial instruction throws
aNullPointerException.

264

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokespecial (cont.) invokespecial (cont.)

Notes

The difference between thi@vokespecial and theinvokevirtual
instructions is thainvokevirtual invokes a method based on the
class of the object. Thi@vokespecial instruction is used to invoke
instance initialization methodsinit>) as well aprivate meth-
ods and methods of a superclass of the current class.

Theinvokespecial instruction was nameighvokenonvirtual prior to
Sun’s JDK 1.0.2 release.

JAVA VIRTUAL MACHINE INSTRUCTION SET 265

invokestatic invokestatic
Operation Invoke a classs{tatic) method
Format invokestatic
indexbytel
indexbyte2
Forms invokestatic = 184 (0Oxb8)
Stack ..., [argl, [arg2 ...]] O
Description The unsignedndexbytel andindexbyte2 are used to construct an

index into the constant pool of the current class (83.6), where the
value of the index isifidexbytel << 8) |indexbyte2. The item at

that index in the constant pool must have the tag
CONSTANT_Methodref (84.4.2), a reference to a class name, a
method name, and the method’s descriptor (84.3.3). The named
method is resolved (85.2). The descriptor of the resolved method
must be identical to the descriptor of one of the methods of the
resolved class. The method must nokbei t>, an instance initial-
ization method (83.8), otc1init>, a class or interface initializa-
tion method (83.8). It must betatic, and therefore cannot be
abstract. Finally, if the method igrotected (84.6), then it must

be either a member of the current class or a member of a superclass
of the current class.

The constant pool entry representing the resolved method includes
a direct reference to the code for the method, an unsigned byte
nargs that may be zero, and the method’s modifier information (see
Table 4.4, “Method access and modifier flags”).

266

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokestatic (cont.) invokestatic (cont.)

Linking
Exceptions

The operand stack must contaiargs words of arguments, where
the number of words of arguments and the type and order of the
values they represent must be consistent with the descriptor of the
resolved method.

If the method issynchronized, the monitor associated with the
current class is acquired.

If the method is nohative, the nargs words of arguments are
popped from the operand stack. A new stack frame is created for
the method being invoked, and the words of arguments are made
the values of its firstargs local variables, witlargl in local vari-
able0, arg2 in local variablel, and so on. The new stack frame is
then made current, and the Java Virtual Maclhinds set to the
opcode of the first instruction of the method to be invoked. Execu-
tion continues with the first instruction of the method.

If the method isative, thenargs words of arguments are popped
from the operand stack; the code that implements the method is
invoked in an implementation-dependent manner.

During resolution of theCONSTANT_Methodref constant pool
item, any of the exceptions documented in 85.2 can be thrown.

Otherwise, if the specified method exists but is an
instance method, thénvokestatic instruction throws an
IncompatibleClassChangeError.

Otherwise, if the specified method native and the code that
implements the method cannot be loaded or linkedkestatic
throws arUnsatisfiedLinkError.

JAVA VIRTUAL MACHINE INSTRUCTION SET 267
invokevirtual invokevirtual
Operation Invoke instance method; dispatch based on class
Format invokevirtual
indexbytel
indexbyte2
Forms invokevirtual = 182 (0xb6)
Stack ..., objectref, [argl, [arg2 ...]] O
Description The unsignedndexbytel andindexbyte2 are used to construct an

index into the constant pool of the current class (83.6), where the
value of the index isifidexbytel << 8) |indexbyte2. The item at

that index in the constant pool must have the tag
CONSTANT_Methodref (84.4.2), a reference to a class name, a
method name, and the method’s descriptor (84.3.3). The named
method is resolved (85.2). The descriptor of the resolved method
must be identical to the descriptor of the one of the methods of the
resolved class. The method must nokbei t>, an instance initial-
ization method (83.8), otc1init>, a class or interface initializa-
tion method (83.8). Finally, if the method pgotected (84.6),

then it must be either a member of the current class or a member of
a superclass of the current class, and the claggeofref must be
either the current class or a subclass of the current class.

The constant pool entry representing the resolved method includes
an unsignedndex into the method table of the resolved class and
an unsigned byteargs that must not be zero.

268

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokevirtual (cont.) invokevirtual (cont.)

Linking

The objectref must be of typereference. Theindex is used as an
index into the method table of the class of the typebpttref. If
theobjectref is an array type, then the method table of ddagect

is used. The table entry at that index includes a direct reference to
the method’'s code and its modifier information (see Table 4.4,
“Method access and modifier flags”).

The objectref must be followed on the operand stacknaygs — 1

words of arguments, where the number of words of arguments and
the type and order of the values they represent must be consistent
with the descriptor of the selected instance method.

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahpctref and the words

of arguments are made the values of its fissgs local variables,

with objectref in local variabled, argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

If the method isnative and the platform-dependent code that
implements it has not yet been loaded and linked into the Java
Virtual Machine, that is done. Theargs — 1 words of arguments
and objectref are popped from the operand stack; the code that
implements the method is invoked in an implementation-dependent
manner.

During resolution of th€ONSTANT _Methodref constant pool item,

Exceptions any of the exceptions documented in §5.2 can be thrown.

JAVA VIRTUAL MACHINE INSTRUCTION SET 269

invokevirtual (cont.) invokevirtual (cont.)

Runtime
Exception

Otherwise, if the specified method exists but is a class
(static) method, theinvokevirtual instruction throws an
IncompatibleClassChangeError.

Otherwise, if the specified method #bstract, invokevirtual
throws ambstractMethodError.

Otherwise, if the specified method native and the code that
implements the method cannot be loaded or linkeehkevirtual
throws arUnsatisfiedLinkError.

Otherwise, ifobjectref is nu11, theinvokevirtual instruction throws
aNullPointerException.

270

ior

Operation

Format

Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

ior

Boolean ORint

ior |

ior = 128 (0x80)

..., valuel, value2 O
..., result

Description Bothvaluel andvalue2 must both be of typént. They are popped

from the operand stack. Aimt result is calculated by taking the
bitwise inclusive OR ofaluel andvalue2. Theresult is pushed
onto the operand stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 271

irem irem

Operation Remainderint

Format | irem |
Forms irem = 112 (0x70)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Thint result is valuel — (valuel /
value2) * value2. Theresult is pushed onto the operand stack.

The result of therem instruction is such thata/b) *b + (a%b) is
equal toa. This identity holds even in the special case that the divi-
dend is the negativint of largest possible magnitude for its type
and the divisor is-1 (the remainder i8). It follows from this rule

that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is pos-
itive. Moreover, the magnitude of the result is always less than the
magnitude of the divisor.

Runtime If the value of the divisor for aint remainder operator is @&rgm
Exception throws amrithmeticException.

272

ireturn

Operation
Format
Forms

Stack

Description

THE JAVAM VIRTUAL MACHINE SPECIFICATION

ireturn

Returnint from method

ireturn |

ireturn = 172 (Oxac)

..., value
[empty]

The returning method must have return typee, short, char, or

int. Thevalue must be of typant. Thevalue is popped from the
operand stack of the current frame (83.6) and pushed onto the oper-
and stack of the frame of the invoker. Any other values on the oper-
and stack of the current method are discarded. If the returning
method is asynchronized method, the monitor acquired or re-
entered on invocation of the method is released or exited (respec-
tively) as if by execution of monitorexit instruction.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

JAVA VIRTUAL MACHINE INSTRUCTION SET 273

ishl ishl

Operation Shift leftint

Format | ishl |
Forms ishl = 120 (0x78)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Aimt result is calculated by shifting
valuel left by s bit positions, wherea is the value of the low five
bits ofvalue2. Theresult is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by 2
to the powers. The shift distance actually used is always in the
range 0 to 31, inclusive, asvhlue2 were subjected to a bitwise
logical AND with the mask value 0x1f.

274

ishr

Operation
Format
Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

ishr

Arithmetic shift rightint

| ishr |

ishr = 122 (0x7a)

..., valuel, value2 O
..., result

Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Aint result is calculated by shifting
valuel right by s bit positions, with sign extension, whesés the
value of the low five bits ofalue2. Theresult is pushed onto the
operand stack.

The resulting value i%(valuel)/ZSJ , Whesais value2 & Ox1f.
For nonnegativevaluel, this is equivalent to truncatinint divi-
sion by 2 to the powet. The shift distance actually used is always
in the range 0 to 31, inclusive, av#lue2 were subjected to a bit-
wise logical AND with the mask value 0x1f.

JAVA VIRTUAL MACHINE INSTRUCTION SET 275

istore istore

Operation Storeint into local variable

Format istore

index
Forms istore = 54 (0x36)
Stack ..., value O

Description Theindex is an unsigned byte that must be a valid index into the
local variables of the current frame (83.6). Makue on the top of
the operand stack must be of typet. It is popped from the oper-
and stack, and the value of the local variabledex is set tovalue.

Notes Theistore opcode can be used in conjunction withwihide instruc-
tion to access a local variable using a two-byte unsigned index.

276

THE JAVAM VIRTUAL MACHINE SPECIFICATION

istore_<n> Istore_<n>

Operation Storeint into local variable

Format | istore_<n> |

Forms istore_0 = 59 (0x3b)
istore_1 = 60 (0x3c)
istore_2 = 61 (0x3d)
istore_3 = 62 (0x3e)

Stack ..., value O

Description The <n> must be a valid index into the local variables of the cur-
rent frame (83.6). Thealue on the top of the operand stack must
be of typeint. It is popped from the operand stack, and the value
of the local variable atn> is set tovalue.

Notes Each of theistore_<n> instructions is the same &tore with an
index of <n>, except that the operarah> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 277

isub Isub

Operation Subtractint

Format | isub |
Forms isub = 100 (0x64)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Thiemt result is valuel — value2. The
result is pushed onto the operand stack.

For int subtractiona — b produces the same resultas (-b).
Forint values, subtraction from zero is the same as negation.

Despite the fact that overflow or underflow may occur, in which
case theesult may have a different sign than the true mathematical
result, execution of afsub instruction never throws a runtime
exception.

278

lushr

Operation
Format
Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

iushr

Logical shift rightint

| iushr |

iushr = 124 (0x7c)

..., valuel, value2 O
..., result

Bothvaluel andvalue2 must be of typént. The values are popped
from the operand stack. Aint result is calculated by shifting
valuel right by s bit positions, with zero extension, wherés the
value of the low five bits ofalue2. Theresult is pushed onto the
operand stack.

If valuelis positive and is value2 & 0x1f, the result is the same as
that ofvaluel >> s; if valuel is negative, the result is equal to the
value of the expressiongluel >> s) + (2<< ~s). The addition of
the (2<< ~s) term cancels out the propagated sign bit. The shift
distance actually used is always in the range 0 to 31, inclusive.

JAVA VIRTUAL MACHINE INSTRUCTION SET 279

IXor IXor

Operation Boolean XORint

Format | ixor |
Forms ixor = 130 (0x82)
Stack ..., valuel, value2 O

..., result

Description Bothvaluel andvalue2 must both be of typént. They are popped
from the operand stack. Aimt result is calculated by taking the
bitwise exclusive OR ofaluel andvalue2. Theresult is pushed
onto the operand stack.

280

jsr
Operation
Format
Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

jsr

Jump subroutine

jsr
branchbytel
branchbyte2

jsr = 168 (0xa8)

.. g
..., address

Theaddress of the opcode of the instruction immediately following
this jsr instruction is pushed onto the operand stack as a value of
type returnAddress. The unsignedranchbytel andbranchbyte2

are used to construct a signed 16-bit offset, where the offset is
(branchbytel << 8) |branchbyte2. Execution proceeds at that offset
from the address of thjsr instruction. The target address must be
that of an opcode of an instruction within the method that contains
this jsr instruction.

Thejsr instruction is used with thet instruction in the implemen-
tation of thefinally clauses of the Java language (see Section
7.13, “Compilingfinally”). Note thatjsr pushes the address onto
the stack andet gets it out of a local variable. This asymmetry is
intentional.

JAVA VIRTUAL MACHINE INSTRUCTION SET 281

jsr_w

Operation

Format

Forms

Stack

Description

Notes

jsr_w

Jump subroutine (wide index)

jsr_w
branchbytel
branchbyte2
branchbyte3
branchbyte4

jsr_w =201 (0xc9)

.0
..., address

Theaddress of the opcode of the instruction immediately following
thisjsr_w instruction is pushed onto the operand stack as a value of
type returnAddress. The unsignedbranchbytel, branchbyte2,
branchbyte3, andbranchbyte4 are used to construct a signed 32-bit
offset, where the offset idbranchbytel << 24) | pranchbyte2 <<

16) | pranchbyte3 << 8) |branchbyte4. Execution proceeds at that
offset from the address of thH@_w instruction. The target address
must be that of an opcode of an instruction within the method that
contains thigsr_w instruction.

Thejsr_w instruction is used with theet instruction in the imple-
mentation of th&inally clauses of the Java language (see Section
7.13, “Compilingfinally”). Note thatjsr_ w pushes the address
onto the stack andt gets it out of a local variable. This asymmetry
is intentional.

Although thejsr_w instruction has a 4-byte branch offset, other
factors limit the size of a Java method to 65535 bytes (84.10). This
limit may be raised in a future release of the Java Virtual Machine.

282 THE JAVAM VIRTUAL MACHINE SPECIFICATION

12d 12d

Operation Convertlong to double

Format | 12d |
Forms I12d = 138 (0Ox8a)
Stack ..., value.wordl, value.word2 O

..., result.word1, result.word2

Description Thevalue on the top of the operand stack must be of fypsy. It
is popped from the operand stack and converteditmlail e result
using IEEE 754 round-to-nearest mode. Tésailt is pushed onto
the operand stack.

Notes The 12d instruction performs a widening primitive conversion
(82.6.2) that may lose precision because tgpéle has only 53
mantissa bits.

JAVA VIRTUAL MACHINE INSTRUCTION SET 283

12f 12f

Operation Convertlong to float

Format | 12f |

Forms 12f = 137 (0x89)

Stack ..., value.word1, value.word2 [
..., result

Description Thevalue on the top of the operand stack must be of typsy. It
is popped from the operand stack and convertedfimat result
using IEEE 754 round-to-nearest mode. Tésellt is pushed onto
the operand stack.

Notes The 12f instruction performs a widening primitive conversion
(82.6.2) that may lose precision because tfpeat has only 24
mantissa bits.

284

12i

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

12i

Convertlong toint

| 12i |

12i = 136 (0x88)

..., value.word1, value.word2 O
..., result

Description Thevalue on the top of the operand stack must be of typsy. It

Notes

is popped from the operand stack and converted i@aresult by
taking the low-order 32 bits of tHng value and discarding the
high-order 32 bits. Theesult is pushed onto the operand stack.

The I2i instruction performs a narrowing primitive conversion
(82.6.3). It may lose information about the overall magnitude of
value. Theresult may also not have the same sigwvalse.

JAVA VIRTUAL MACHINE INSTRUCTION SET 285

ladd ladd

Operation Add Tong

Format | ladd |
Forms ladd = 97 (0x61)
Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel and value2 must be of typelong. The values are
popped from the operand stack. Tlag result is valuel + value2.
Theresult is pushed onto the operand stack.

If a Tong addition overflows, then the result is the low-order bits of
the mathematical sum as represented byna. If overflow occurs,
then the sign of the result will not be the same as the sign of the
mathematical sum of the two values.

286

laload

Operation
Format
Forms

Stack

Description

Runtime
Exceptions

THE JAVAM VIRTUAL MACHINE SPECIFICATION

laload

Loadlong from array

| laload |

laload = 47 (Ox2f)

..., arrayref, index O
..., value.word1l, value.word2

Thearrayref must be of typeeference and must refer to an array
whose components are of typeng. Theindex must be of type
int. Botharrayref andindex are popped from the operand stack.
The Tong value in the component of the arrayiatiex is retrieved
and pushed onto the top of the operand stack.

If arrayref is nu11, laload throws aNu11PointerException.

Otherwise, ifindex is not within the bounds of the array referenced
by arrayref, the laload instruction throws amrrayIndexOutOf-
BoundsException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 287

land land

Operation Boolean AND1long

Format | land |
Forms land = 127 (0x7f)
Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel and value2 must both be of typdong. They are
popped from the operand stackléng result is calculated by tak-
ing the bitwise AND ofvaluel andvalue2. Theresult is pushed
onto the operand stack.

288

lastore

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

lastore

Store intolong array

| lastore |

lastore = 80 (0x50)

..., arrayref, index, value.word1, value.word2 [

Description Thearrayref must be of typeeference and must refer to an array

Runtime
Exceptions

whose components are of typeng. Theindex must be of type
int andvalue must be of typ8ong. Thearrayref, index, andvalue
are popped from the operand stack. Theg value is stored as the
component of the array indexed ioyglex.

If arrayrefis nu11, lastore throws aNu11PointerException.

Otherwise, ifindex is not within the bounds of the array referenced
by arrayref, the lastore instruction throws amrrayIndexOutOf-
BoundsException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 289

Icmp Icmp

Operation Comparelong

Format | lcmp |

Forms Icmp = 148 (0x94)

Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.wordl (0
..., result

Description Both valuel and value2 must be of typelong. They are both
popped from the operand stack, and a signed integer comparison is
performed. Ifvaluel is greater tharvalue2, the int value 1 is
pushed onto the operand stackdfuel is equal tovalue2, theint
value 0 is pushed onto the operand stackial@el is less than
value2, theint value —1 is pushed onto the operand stack.

290 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Iconst_<I> Iconst_<I>

Operation Pushlong constant

Format | Iconst_<I> |

Forms Iconst_0 =9 (0x9)
Iconst_1 =10 (Oxa)

Stack O
..., <I>.word1l, <I>.word?2

Description Push thélong constankl> (0 or 1) onto the operand stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 291

Idc

Operation

Format

Forms

Stack

Description

Linking
Exceptions

Idc

Push item from constant pool

Idc

index

Idc = 18 (0x12)

.0
..., item

Theindex is an unsigned byte that must be a valid index into the
constant pool of the current class (83.6). The constant pool entry at
index must be aCONSTANT_Integer (84.4.4),CONSTANT_Float
(84.4.4), OICONSTANT_String (84.4.3). The constant pool entry is
resolved (85.4, 85.5). If the entry is GANSTANT_Integer oOr
CONSTANT_Float, it must contain a numeritem which is pushed
onto the operand stack as#art or float, respectively.

If the entry atindex is a CONSTANT_String, it must contain a
CONSTANT_Utf8 (84.4.7) string. An instance of claSsring is
created and initialized to tH@®NSTANT_Utf8 string. Theitem, a
reference to the instance, is pushed onto the operand stack.

During resolution of @ONSTANT_String constant pool item, any
of the exceptions documented in 85.4 can be thrown.

292

Idc_w
Operation
Format
Forms

Stack

Description

Linking
Exceptions

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Idc_w

Push item from constant pool (wide index)

ldc_w

indexbytel

indexbyte2

Idc_w =19 (0x13)

g
..., Item

The unsignedndexbytel andindexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current class
(83.6), where the value of the index is calculatedragxXbytel <<

8) | indexbyte2. The index must be a valid index into the constant
pool of the current class. The constant pool entry at the index must
be aCONSTANT_Integer (84.4.4),CONSTANT_Float (84.4.4), or
CONSTANT_String (84.4.3). The constant pool entry is resolved
(85.4, 85.5). If the entry is aCONSTANT_Integer oOr
CONSTANT_Float, it must contain a numeritem which is pushed
onto the operand stack asfrt or float, respectively.

If the entry at the constant pool index I €@GSTANT_String, it
must contain aCONSTANT_Utf8 (84.4.7) string. An instance of
class String is created and initialized to th@ONSTANT_Utf8
string. Theitem, a reference to the instance, is pushed onto the
operand stack.

During resolution of @ONSTANT_String constant pool item, any
of the exceptions documented in 85.4 can be thrown.

JAVA VIRTUAL MACHINE INSTRUCTION SET 293

Idc_w (cont.) Idc_w (cont.)

Notes The ldc_w instruction is identical to thklc instruction except for
its wider constant pool index.

294

Idc2_w

Operation

Format

Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Idc2_w

Pushlong or double from constant pool (wide index)

Idc2_w

indexbytel

indexbyte2

Idc2_w = 20 (0Ox14)

g
..., item.word1, item.word?2

The unsignedndexbytel and indexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current class
(83.6), where the value of the index is calculatedragxXbytel <<

8) | indexbyte2. The index must be a valid index into the constant
pool of the current class. The constant pool entry at the index must
be aCONSTANT_Long (84.4.5) OrCONSTANT _Double (84.4.5). The
constant pool entry is resolved (85.5). The entry must contain a
numericitem which is pushed onto the operand stack &sng or
double, respectively.

Only a wide-index version of tHdc2_w instruction exists; there is
noldc2 instruction that pusheslang or doub1e with a single-byte
index.

JAVA VIRTUAL MACHINE INSTRUCTION SET 295

Idiv Idiv

Operation Divide Tong

Format | Idiv |
Forms Idiv = 109 (0x6d)
Stack ..., valuel.wordl, valuel.word2, value2.word1l, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel and value2 must be of typelong. The values are
popped from the operand stack. Theag result is the value of the
Java expressioveluel / value2. Theresult is pushed onto the oper-
and stack.

A Tong division rounds towards 0; that is, the quotient produced for
Tong values inn/ d is along valueq whose magnitude is as large
as possible while satisfyingd [fj| < |n| . Moreover,is positive
when|n| > |d| andn andd have the same sign, bgtis negative
when|n| = |d| andh andd have opposite signs.

There is one special case that does not satisfy this rule: if the divi-
dend is the negative integer of largest possible magnitude for the
Tong type and the divisor is1, then overflow occurs and the result

is equal to the dividend; despite the overflow, no exception is
thrown in this case.

Runtime If the value of the divisor in dong division is 0,ldiv throws an
Exception ArithmeticException.

296

lload

Operation

Format

Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

lload

Load1ong from local variable

lload

index

lload = 22 (0x16)

g
..., value.word1, value.word?2

Theindex is an unsigned byte. Boihdex andindex + 1 must be
valid indices into the local variables of the current frame (83.6).
The local variables @ahdex andindex + 1 together must contain a
Tong. Thevalue of the local variables anhdex andindex + 1 is
pushed onto the operand stack.

Thelload opcode can be used in conjunction with\thde instruc-
tion to access a local variable using a two-byte unsigned index.

JAVA VIRTUAL MACHINE INSTRUCTION SET 297

lload_<n> lload_<n>

Operation Loadlong from local variable

Format | lload_<n> |

Forms lload_0 = 30 (Ox1e)
lload_1 = 31 (Ox1f)
lload_2 = 32 (0x20)
lload_3 = 33 (0x21)

Stack O
..., value.word1, value.word?2

Description Both <n> and<n> + 1 must be valid indices into the local vari-
ables of the current frame (83.6). The local variablesnat and
<n> + 1 together must containlang. Thevalue of the local vari-
ables akn> and<n> + 1 is pushed onto the operand stack.

Notes Each of thelload_<n> instructions is the same #sad with an
index of <n>, except that the operarah> is implicit.

298 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Imul Imul

Operation Multiply Tong

Format | Imul |
Forms Imul = 105 (0x69)
Stack ..., valuel.word1, valuel.word2, value2.word1l, value2.word2 O

..., result.word1, result.word2

Description Both valuel and value2 must be of typelong. The values are
popped from the operand stack. Tihag result is valuel * value2.
Theresult is pushed onto the operand stack.

If a Tong multiplication overflows, then the result is the low-order
bits of the mathematical product represented asag. If overflow
occurs, then the sign of the result may not be the same as the sign of
the mathematical product of the two values.

JAVA VIRTUAL MACHINE INSTRUCTION SET 299

Ineg Ineg

Operation Negatelong

Format | Ineg |
Forms Ineg = 117 (0x75)
Stack ..., value.word1, value.word2 [

..., result.wordl, result.word2

Description The value must be of typ€long. It is popped from the operand
stack. Thelong result is the arithmetic negation @&lue, —value.
Theresult is pushed onto the operand stack.

For 1Tong values, negation is the same as subtraction from zero.
Because the Java Virtual Machine uses two’s-complement repre-
sentation for integers and the range of two’s-complement values is
not symmetric, the negation of the maximum negatesey results

in that same maximum negative number. Despite the fact that over-
flow has occurred, no exception is thrown.

For all Tong valuesx, —x equals(~x) + 1.

300 THE JAVAM VIRTUAL MACHINE SPECIFICATION

lookupswitch lookupswitch

Operation Access jump table by key match and jump

Format lookupswitch
<0-3 byte pad>
defaultbytel
defaultbyte2
defaultbyte3
defaultbyte4
npairsl
npairs2
npairs3
npairs4
match-offset pairs...

Forms lookupswitch = 171 (Oxab)

Stack ooy key O

Description A lookupswitch is a variable-length instruction. Immediately after
thelookupswitch opcode, between zero and three null bytes (zeroed
bytes, not the null object) are inserted as padding. The number of
null bytes is chosen so that thefaultbytel begins at an address
that is a multiple of four bytes from the start of the current method
(the opcode of its first instruction). Immediately after the padding
follow a series of signed 32-bit valuegefault, npairs, and then
npairs pairs of signed 32-bit values. Timpairs must be greater
than or equal to 0. Each of thpairs pairs consists of aint match
and a signed 32-hiffset. Each of these signed 32-bit values is con-
structed from four unsigned bytes agtl << 24) | pyte2 << 16) |
(byte3 << 8) |byte4.

JAVA VIRTUAL MACHINE INSTRUCTION SET 301

lookupswitch (cont.) lookupswitch (cont.)

Notes

The tablematch-offset pairs of thdookupswitch instruction must be
sorted in increasing numerical orderrbgtch.

Thekey must be of typaént and is popped from the operand stack.
Thekey is compared against timeatch values. If it is equal to one

of them, then a target address is calculated by adding the corre-
spondingoffset to the address of the opcode of tluaskupswitch
instruction. If thekey does not match any of timeatch values, the
target address is calculated by addiefault to the address of the
opcode of thidookupswitch instruction. Execution then continues

at the target address.

The target address that can be calculated from the offset of each
match-offset pair, as well as the one calculated frdefault, must

be the address of an opcode of an instruction within the method that
contains thidookupswitch instruction.

The alignment required of the 4-byte operands ofdtieipswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains theekupswitch is positioned on a
4-byte boundary.

Thematch-offset pairs are sorted to support lookup routines that are
quicker than linear search.

302

lor

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

lor

Boolean ORlong

lor |

lor = 129 (0x81)

..., valuel.word1, valuel.word2, value2.word1l, value2.word2 O
..., result.word1, result.word2

Description Both valuel andvalue2 must be of typélong. They are popped

from the operand stack. Rong result is calculated by taking the
bitwise inclusive OR ofaluel andvalue2. Theresult is pushed
onto the operand stack.

JAVA VIRTUAL MACHINE INSTRUCTION SET 303

Irem Irem

Operation Remaindefiong

Format | Irem |
Forms Irem = 113 (0x71)
Stack ..., valuel.wordl, valuel.word2, value2.word1l, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel and value2 must be of typelong. The values are
popped from the operand stack. Theng result is valuel -
(valuel / value2) * value2. Theresult is pushed onto the operand
stack.

The result of thdrem instruction is such thata/b) *b + (a%b) is
equal toa. This identity holds even in the special case that the divi-
dend is the negativiong of largest possible magnitude for its type
and the divisor is-1 (the remainder i8). It follows from this rule

that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is pos-
itive; moreover, the magnitude of the result is always less than the
magnitude of the divisor.

Runtime If the value of the divisor for aong remainder operator is rgm
Exception throws amrithmeticException.

304 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Ireturn Ireturn

Operation Returnlong from method

Format | Ireturn |

Forms Ireturn = 173 (Oxad)

Stack ..., value.wordl, value.word2 [
[empty]

Description The returning method must have return tyjamg. The value

must be of typelong. The value is popped from the operand
stack of the current frame (83.6) and pushed onto the operand
stack of the frame of the invoker. Any other values on the oper-
and stack of the current method are discarded. If the returning
method is asynchronized method, the monitor acquired or
reentered on invocation of the method is released or exited
(respectively) as if by execution ofn@nitorexit instruction.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

JAVA VIRTUAL MACHINE INSTRUCTION SET 305

Ishl Ishi

Operation Shift left Tong

Format | Ishl |
Forms Ishl = 121 (0x79)
Stack ..., valuel.word1l, valuel.word2, value2 O

..., result.wordl, result.word2

Description Thevaluel must be of typdong andvalue2 must be of typent.
The values are popped from the operand stadlkong result is cal-
culated by shiftingzaluel left by s bit positions, whers is the low
six bits ofvalue2. Theresult is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by 2
to the powers. The shift distance actually used is therefore always
in the range 0 to 63, inclusive, as/#éllue2 were subjected to a bit-
wise logical AND with the mask value 0x3f.

306

Ishr

Operation
Format
Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Ishr

Arithmetic shift rightTong

| Ishr |

Ishr = 123 (0x7b)

..., valuel.wordl, valuel.word2, value2 O
..., result.word1, result.word2

Thevaluel must be of typdong andvalue2 must be of typent.
The values are popped from the operand stadlond result is cal-
culated by shiftingrzaluel right by s bit positions, with sign exten-
sion, wheres is the value of the low six bits gflue2. Theresult is
pushed onto the operand stack.

The resulting value i£(va|ue1)/ZSJ , Wheseis value2 & 0x3f.
For nonnegativeraluel, this is equivalent to truncatinkpng divi-
sion by 2 to the powet. The shift distance actually used is there-
fore always in the range 0 to 63, inclusive, awalue2 were
subjected to a bitwise logical AND with the mask value 0x3f.

JAVA VIRTUAL MACHINE INSTRUCTION SET 307

Istore Istore

Operation Storelong into local variable

Format Istore
index
Forms Istore = 55 (0x37)
Stack ..., value.word1, value.word2 O

Description Theindex is an unsigned byte. Boihdex andindex + 1 must be
valid indices into the local variables of the current frame (83.6).
Thevalue on the top of the operand stack must be of typey. It
is popped from the operand stack, and the local variableslext
andindex + 1 are set toalue.

Notes Thelstore opcode can be used in conjunction withwhee instruc-
tion to access a local variable using a two-byte unsigned index.

308

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Istore_<n> Istore_<n>

Operation Storelong into local variable

Format |

Istore_<n> |

Forms

Stack

Description

Notes

Istore_ 0 = 63 (0x3f)
Istore_1 = 64 (0x40)
Istore_2 = 65 (0x41)
Istore_3 = 66 (0x42)

..., value.wordl, value.word2 O

Both <n> and<n> + 1 must be valid indices into the local vari-
ables of the current frame (83.6). TWetue on the top of the oper-

and stack must be of typeong. It is popped from the operand
stack, and the local variables<at> and<n> + 1 are set toalue.

Each of thelstore_<n> instructions is the same &tore with an
index of <n>, except that the operarah> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET 309

Isub Isub

Operation Subtractlong

Format | Isub |
Forms Isub = 101 (0x65)
Stack ..., valuel.wordl, valuel.word2, value2.word1l, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel and value2 must be of typelong. The values are
popped from the operand stack. Tiloag result is valuel — value2.
Theresult is pushed onto the operand stack.

For 1ong subtractiona—b produces the same resultaas—b). For
Tong values, subtraction from zero is the same as negation.

Despite the fact that overflow or underflow may occur, in which
case theesult may have a different sign than the true mathematical
result, execution of atsub instruction never throws a runtime
exception.

310

lushr

Operation
Format
Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

lushr

Logical shift rightlong

| lushr |

lushr = 125 (0x7d)

..., valuel.wordl, valuel.word2, value2 OJ
..., result.word1, result.word2

Thevaluel must be of typdong andvalue2 must be of typent.
The values are popped from the operand stadlond result is cal-
culated by shiftingrzaluel right logically (with zero extension) by
the amount indicated by the low six bits\aflue2. Theresult is
pushed onto the operand stack.

If valuelis positive and is value2 & 0x3f, the result is the same as
that ofvaluel >> s; if valuel is negative, the result is equal to the
value of the expressiongluel >> s) + (2L << ~s). The addition

of the (2L << ~s) term cancels out the propagated sign bit. The
shift distance actually used is always in the range 0 to 63, inclusive.

JAVA VIRTUAL MACHINE INSTRUCTION SET 311

Ixor Ixor

Operation Boolean XORlong

Format | Ixor |
Forms Ixor = 131 (0x83)
Stack ..., valuel.wordl, valuel.word2, value2.wordl, value2.word2 [0

..., result.wordl, result.word2

Description Both valuel andvalue2 must be of typelong. They are popped
from the operand stack. Rong result is calculated by taking the
bitwise exclusive OR ofaluel andvalue2. Theresult is pushed
onto the operand stack.

312

THE JAVAM VIRTUAL MACHINE SPECIFICATION

monitorenter monitorenter

Operation Enter monitor for object

Format monitorenter |
Forms monitorenter = 194 (0Oxc2)
Stack ..., objectref O

Description Theobjectref must be of typeeference.

Each object has a monitor associated with it. The thread that exe-
cutesmonitorenter gains ownership of the monitor associated with
objectref. If another thread already owns the monitor associated
with objectref, the current thread waits until the object is unlocked,
then tries again to gain ownership. If the current thread already
owns the monitor associated wihbjectref, it increments a counter

in the monitor indicating the number of times this thread has
entered the monitor. If the monitor associated wiiffactref is not
owned by any thread, the current thread becomes the owner of the
monitor, setting the entry count of this monitor to 1.

Runtime If objectrefisnu11, monitorenter throws aNu11PointerException.
Exception
Notes For detailed information about threads and monitors in the Java

Virtual Machine, see Chapter 8, “Threads and Locks.”

JAVA VIRTUAL MACHINE INSTRUCTION SET 313

monitorenter (cont.) monitorenter (cont.)

Themonitorenter instruction may be used withnaonitorexit instruc-

tion to implement a Javaynchronized block. Themonitorenter
instruction is not used in the implementation s3fnchronized
methods, although it provides equivalent semantics; monitor entry
on invocation of aynchronized method is handled implicitly by
the Java Virtual Machine’s method invocation instructions. See
§7.14, in “Compiling for the Java Virtual Machine,” for more infor-
mation on the use of thmonitorenter andmonitorexit instructions.

The association of a monitor with an object may be managed in
various ways that are beyond the scope of this specification. For
instance, the monitor may be allocated and deallocated at the same
time as the object. Alternatively, it may be dynamically allocated at
the time when a thread attempts to gain exclusive access to the
object and freed at some later time when no thread remains in the
monitor for the object.

The synchronization constructs of the Java Language require sup-
port for operations on monitors besides entry and exit, including
waiting on a monitordbject.wait) and notifying other threads
waiting in a monitor @bject.notify andObject.notifyAll).
These operations are supported in the standard package
java.lang, supplied with the Java Virtual Machine. No explicit
support for these operations appears in the instruction set of the
Java Virtual Machine.

314

THE JAVAM VIRTUAL MACHINE SPECIFICATION

monitorexit monitorexit

Operation Exit monitor for object

Format monitorexit |
Forms monitorexit = 195 (0Oxc3)
Stack ..., objectref O

Description Theobjectref must be of typeeference.

The current thread must be the owner of the monitor associated
with the instance referenced bgjectref. The thread decrements
the counter indicating the number of times it has entered this moni-
tor. If as a result the value of the counter becomes zero, the current
thread releases the monitor. If the monitor associatedobjattref
becomes free, other threads that are waiting to acquire that monitor
are allowed to attempt to do so.

Runtime If objectref is nu11, monitorexit throws aNu11PointerException.

Exceptions Otherwise, if the current thread is not the owner of the monitor,

monitorexit throws arnf11egaTMonitorStateException.

Notes For detailed information about threads and monitors in the Java
Virtual Machine, see Chapter 8, “Threads and Locks.”

JAVA VIRTUAL MACHINE INSTRUCTION SET 315

monitorexit (cont.) monitorexit (cont.)

The monitorenter and monitorexit instructions may be used to
implement Java'synchronized blocks. Themonitorexit instruc-

tion is not used in the implementationsyfnchronized methods,
although it provide equivalent semantics; monitor exit on normal or
abnormalsynchronized method completion is handled implicitly
by the Java Virtual Machine’s method invocation instructions. The
Java Virtual Machine also implicitly handles monitor exit from
within asynchronized block when an error is thrown. See 87.14,
in “Compiling for the Java Virtual Machine,” for more information
on the use of theonitorenter andmonitorexit instructions.

316

THE JAVAM VIRTUAL MACHINE SPECIFICATION

multianewarray multianewarray
Operation Create new multidimensional array
Format multianewarray

indexbytel

indexbyte2

dimensions
Forms multianewarray = 197 (0xc5)
Stack ..., countl, [count2, ...] O

..., arrayref

Description Thedimensions is an unsigned byte which must be greater than or

equal to 1. It represents the number of dimensions of the array to be
created. The operand stack must condiiimensions words, which

must be of typdnt and nonnegative, each representing the number
of components in a dimension of the array to be created. The
countl is the desired length in the first dimensiooynt2 in the
second, etc.

All of the count values are popped off the operand stack. The
unsignedindexbytel andindexbyte2 are used to construct an index
into the constant pool of the current class (83.6), where the value of
the index is ifidexbytel << 8) |indexbyte2. The item at that index

in the constant pool must b&€@NSTANT_Class (84.4.1). The sym-
bolic reference is resolved (85.1.3). The resulting entry must be an
array class type of dimensionality greater than or equdinten-

sions.

JAVA VIRTUAL MACHINE INSTRUCTION SET 317

multianewarray (cont.) multianewarray (cont.)

Linking
Exceptions

Runtime
Exception

Notes

A new multidimensional array of the array type is allocated from
the garbage-collected heap. The components of the array of in the
first dimension are initialized to subarrays of the type of the second
dimension, and so on. The components of the first dimension of the
array are initialized to the default initial value for the type of the
components (82.5.1). A&eference arrayref to the new array is
pushed onto the operand stack.

During resolution of th€ONSTANT_Class constant pool item, any
of the exceptions documented in §85.1 can be thrown.

Otherwise, if the current class does not have permission to access
the base class of the resolved array clasdtianewarray throws
anIllegalAccessError.

Otherwise, if any of thdimensions values on the operand stack is
less than zero, thaultianewarray instruction throws &legative-
ArraySizeException.

It may be more efficient to usewarray or anewarray when creat-
ing an array of a single dimension.

The array class referenced via the constant pool instruction may
have more dimensions than ttienensions operand of thenulti-
anewarray instruction. In that case, only the fiddtmensions of the
dimensions of the array are created.

318

new

Operation

Format

Forms

Stack

Description

Linking
Exceptions

THE JAVAM VIRTUAL MACHINE SPECIFICATION

new

Create new object

new
indexbytel
indexbyte2

new = 187 (0Oxbb)

... g
..., Objectref

The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isiijdexbytel << 8) |indexbyte2. The item at

that index in the constant pool must beC@NSTANT_Class
(84.4.1). The symbolic reference is resolved (85.1) and must result
in a class type (it must not result in an array or interface type).
Memory for a new instance of that class is allocated from the gar-
bage-collected heap, and the instance variables of the new object
are initialized to their default initial values (82.5.1). Dhigctref, a
reference to the instance, is pushed onto the operand stack.

During resolution of th€ONSTANT_Class constant pool item, any
of the exceptions documented in 85.1 can be thrown.

Otherwise, if theCONSTANT_Class constant pool item re-
solves to an interface or is abstract class,new throws an
InstantiationError.

JAVA VIRTUAL MACHINE INSTRUCTION SET 319

new (cont.) new (cont.)

Note

Otherwise, if the current class does not have permission to access
the resolved class (82.7.8ew throws ani11egalAccessError.

The new instruction does not completely create a new instance;
instance creation is not completed until an instance initialization
method has been invoked on the uninitialized instance.

320

THE JAVAM VIRTUAL MACHINE SPECIFICATION

newarray newarray
Operation Create new array
Format newarray
atype

Forms newarray = 188 (0xbc)
Stack ...,count O

..., arrayref
Description Thecount must be of typent. It is popped off the operand stack.

Thecount represents the number of elements in the array to be cre-
ated.

Theatype is a code that indicates the type of array to create. It must
take one of the following values:

Array Type atype
T_BOOLEAN 4
T_CHAR 5
T_FLOAT 6
T_DOUBLE 7

8

9

T_BYTE

T_SHORT
T_INT 10
T_LONG 11

A new array whose components are of tygigpe, of length
count, is allocated from the garbage-collected heapeference
arrayref to this new array object is pushed into the operand stack.
All of the elements of the new array are initialized to the default
initial values for its type (82.5.1).

JAVA VIRTUAL MACHINE INSTRUCTION SET 321

newarray (cont.) newarray (cont.)

Runtime If count is less than zerapewarray throws aNegativeArray-
Exception SizeException.

Notes In Sun’s implementation of the Java Virtual Machine, arrays of
type boolean (atype is T_BOOLEAN) are stored as arrays of 8-bit
values and are manipulated using blaad andbastore instruc-
tions, instructions that also access arrays of typee. Other
implementations may implement packédolean arrays; the
baload andbastore instructions must still be used to access those
arrays.

322

nop

Operation Do nothing

Format | nop
Forms nop = 0 (0x0)
Stack No change

Description Do nothing.

THE JAVAM VIRTUAL MACHINE SPECIFICATION

nop

JAVA VIRTUAL MACHINE INSTRUCTION SET 323
pop pop
Operation Pop top operand stack word
Format | pop |
Forms pop = 87 (0x57)
Stack ..., word O
Description The top word is popped from the operand stack.
The pop instruction must not be used unlegsrd is a word that
contains a 32-bit data type.
Notes Except for restrictions preserving the integrity of 64-bit data types,

the pop instruction operates on an untyped word, ignoring the type

of the datum it contains.

324

pop2

Operation
Format
Forms

Stack

Description

Notes

THE JAVAM VIRTUAL MACHINE SPECIFICATION

pop2

Pop top two operand stack words

| pop2 |

pop2 = 88 (0x58)

...,word2, wordl1 O

The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of wandi1
andword? is a word that contains a 32-bit data types or together are
the two words of a single 64-bit datum.

Except for restrictions preserving the integrity of 64-bit data types,
the pop2 instruction operates on raw words, ignoring the types of
the data they contain.

JAVA VIRTUAL MACHINE INSTRUCTION SET 325

putfield putfield

Operation Set field in object

Format putfield
indexbytel
indexbyte2
Forms putfield = 181 (Oxb5)
Stack ..., Objectref, value O
OR
Stack ..., Objectref, value.word1, value.word2 [

Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isiffdexbytel << 8) |indexbyte2. The constant
pool item at the index must beCANSTANT_Fieldref (84.4.2), a
reference to a class name and a field name. If the figldois
tected (84.6), then it must be either a member of the current class
or a member of a superclass of the current class, and the class of
objectref must be either the current class or a subclass of the current
class.

326 THE JAVAM VIRTUAL MACHINE SPECIFICATION

putfield (cont.) putfield (cont.)

The constant pool item is resolved (85.2), determining both the
field width and the field offset. The type ofaue stored by gut-

field instruction must be compatible with the descriptor of the field
(84.3.2) of the class instance being stored into. If the field descrip-
tor type isbyte, char, short, or int, then thevalue must be an
int. If the field descriptor type i§loat, Tong, ordouble, then the
value must be &loat, Tong, or double, respectively. If the field
descriptor type is a reference type, thenvdlae must be of a type
that is assignment compatible (82.6.6) with the field descriptor

type.
The value and objectref, which must be of typeeference, are

popped from the operand stack. The field at the offset from the start
of the object referenced lojectref is set to thevalue.

Linking During resolution of th&€ONSTANT_Fieldref constant pool item,
Exceptions any of the exceptions documented in 85.2 can be thrown.

Otherwise, if the specified field exists but istat1ic field, putfield
throws antncompatibleClassChangeError.

Runtime Otherwise, ifobjectref is nul11, the putfield instruction throws a
Exception NullPointerException.

Notes The putfield instruction operates on both one- and two-word wide
fields.

JAVA VIRTUAL MACHINE INSTRUCTION SET 327

putstatic putstatic

Operation Setstatic field in class

Format putstatic
indexbytel
indexbyte2
Forms putstatic = 179 (0Oxb3)
Stack ..., value O
OR
Stack ..., value.word1, value.word2 [

Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isiffdexbytel << 8) |indexbyte2. The constant
pool item at the index must beCANSTANT_Fieldref (84.4.2), a
reference to a class name and a field name. If the figldois
tected (84.6), then it must be either a member of the current class
or a member of a superclass of the current class.

328

THE JAVAM VIRTUAL MACHINE SPECIFICATION

putstatic (cont.) putstatic (cont.)

Linking
Exceptions

Notes

The constant pool item is resolved (85.2), determining both the
class field and its width. The type oWvaue stored by autstatic
instruction must be compatible with the descriptor of the field
(84.3.2) of the class instance being stored into. If the field descrip-
tor type isbyte, char, short, or int, then thevalue must be an
int. If the field descriptor type i§loat, Tong, ordouble, then the
value must be &loat, Tong, or double, respectively. If the field
descriptor type is a reference type, thenvdlae must be of a type
that is assignment compatible (82.6.6) with the field descriptor

type.

Thevalue is popped from the operand stack, and the class field is
set tovalue.

During resolution of th€0ONSTANT_Fieldref constant pool item,
any of the exceptions documented in 85.2 can be thrown.

Otherwise, if the specified field exists but is nostatic
field (class variable)putstatic throws anIncompatibleClass-
ChangeError.

The putstatic instruction operates on both one- and two-word wide
fields.

JAVA VIRTUAL MACHINE INSTRUCTION SET 329

ret

Operation

Format

Forms
Stack

Description

Notes

ret

Return from subroutine

ret

index

ret = 169 (0xa9)
No change

The index is an unsigned byte between 0 and 255, inclusive. The
local variable aindex in the current frame (83.6) must contain a
value of typereturnAddress. The contents of the local variable
are written into the Java Virtual Maching’s register, and execu-
tion continues there.

The ret instruction is used witljsr or jsr_w instructions in the
implementation of th&inally keyword of the Java language (see
Section 7.13, “Compilingfinally”). Note thatjsr pushes the
address onto the stack aredl gets it out of a local variable. This
asymmetry is intentional.

Theret instruction should not be confused with thiirn instruc-
tion. A return instruction returns control from a Java method to its
invoker, without passing any value back to the invoker.

Theret opcode can be used in conjunction withuwhee instruction
to access a local variable using a two-byte unsigned index.

330

return

Operation
Format
Forms

Stack

Description

THE JAVAM VIRTUAL MACHINE SPECIFICATION

return

Returnvoid from method

return |

return = 177 (Oxb1l)

0
[empty]

The returning method must have return typéd. Any values on

the operand stack of the current frame (83.6) are discarded. If the
returning method is synchronized method, the monitor acquired

or reentered on invocation of the method is released or exited
(respectively) as if by execution ofr@nitorexit instruction.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

JAVA VIRTUAL MACHINE INSTRUCTION SET 331

saload saload

Operation Loadshort from array

Format | saload |
Forms saload = 53 (0x35)
Stack ..., arrayref, index O

..., value

Description Thearrayref must be of typeeference and must refer to an array
whose components are of typkort. Theindex must be of type
int. Botharrayref andindex are popped from the operand stack.
The short value in the component of the array #@tdex is
retrieved, sign-extended to ant value, and pushed onto the top of
the operand stack.

Runtime If arrayrefis nu11, saload throws aNu11PointerException.

Exceptions Otherwise, ifindex is not within the bounds of the array referenced

by arrayref, the saload instruction throws amrrayIndexOutOf-
BoundsException.

332

sastore

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

sastore

Store intoshort array

| sastore |

sastore = 86 (0x56)

..., array, index, value 0

Description Thearrayref must be of typeeference and must refer to an array

Runtime
Exceptions

whose components are of typeort. Bothindex andvalue must
be of typeint. Thearrayref, index, andvalue are popped from the
operand stack. Thint value is truncated to ahort and stored as
the component of the array indexedibgex.

If arrayref is nul11, sastore throws aNu11PointerException.

Otherwise, ifindex is not within the bounds of the array referenced
by arrayref, thesastore instruction throws amrrayIndexOutOf-
BoundsException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 333

sipush sipush

Operation Pushshort

Format sipush
bytel
byte2

Forms sipush = 17 (0x11)

Stack .0

..., value

Description The immediate unsigndrytel andbyte2 values are assembled into
an intermediatehort where the value of the short ig/{el << 8) |
byte2. The intermediate value is then sign-extended tonanand
the resultingralue is pushed onto the operand stack.

334

swap

Operation
Format
Forms

Stack

THE JAVAM VIRTUAL MACHINE SPECIFICATION

swap

Swap top two operand stack words

| swap |

swap = 95 (0x5f)

...,word2, wordl1 O
..., wordl, word2

Description The top two words on the operand stack are swapped.

Notes

The swap instruction must not be used unless eaclw@i2 and
wordl is a word that contains a 32-bit data type.

Except for restrictions preserving the integrity of 64-bit data types,
theswap instruction operates on untyped words, ignoring the types
of the data they contain.

JAVA VIRTUAL MACHINE INSTRUCTION SET 335

tableswitch tableswitch

Operation Access jump table by index and jump

Format tableswitch
<0-3 byte pad>
defaultbytel
defaultbyte2
defaultbyte3
defaultbyte4
lowbytel
lowbyte2
lowbyte3
lowbyte4
highbytel
highbyte2
highbyte3
highbyte4
jump offsets...

Forms tableswitch = 170 (Oxaa)

Stack ..., index O

336

THE JAVAM VIRTUAL MACHINE SPECIFICATION

tableswitch (cont.) tableswitch (cont.)

Description A tableswitch is a variable-length instruction. Immediately after the

Notes

tableswitch opcode, between zero and three null bytes (zeroed
bytes, not the null object) are inserted as padding. The number of
null bytes is chosen so that the following byte begins at an address
that is a multiple of four bytes from the start of the current method
(the opcode of its first instruction). Immediately after the padding
follow the bytes constituting a series of signed 32-bit values:
default, low, high, and therhigh — low + 1 further signed 32-bit off-
sets. The valubw must be less than or equalhigh. Thehigh -

low + 1 signed 32-bit offsets are treated as a 0-based jump table.
Each of these signed 32-bit values is constructeblyasl (<< 24) |
(byte2 << 16) | pyte3 << 8) |byte4.

The index must be of typeint and is popped from the operand
stack. Ifindex is less thaow or index is greater thahigh, then a
target address is calculated by addiefault to the address of the
opcode of thigableswitch instruction. Otherwise, the offset at posi-
tion index — low of the jump table is extracted. The target address is
calculated by adding that offset to the address of the opcode of this
tableswitch instruction. Execution then continues at the target
address.

The target address which can be calculated from each jump table
offset, as well as the ones that can be calculateddetault, must

be the address of an opcode of an instruction within the method that
contains thigableswitch instruction.

The alignment required of the 4-byte operands oftéhkswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains thableswitch starts on a 4-byte
boundary.

JAVA VIRTUAL MACHINE INSTRUCTION SET 337

wide wide

Operation Extend local variable index by additional bytes

Format 1: wide

<opcode>
indexbytel
indexbyte2

where <opcode> is one ofiload, fload, aload, lload, dload, istore,
fstore, astore, Istore, dstore, orret

Format 2: wide
iinc
indexbytel
indexbyte2
constbytel
constbyte2

Forms wide = 196 (0xc4)
Stack Same as modified instruction

Description Thewide instruction modifies the behavior of another instruction. It
takes one of two formats, depending on the instruction being modi-
fied. The first form of thewide instruction modifies one of the
instructionsiload, fload, aload, lload, dload, istore, fstore, astore,
Istore, dstore, or ret. The second form applies only to thiac
instruction.

338

THE JAVAM VIRTUAL MACHINE SPECIFICATION

wide (cont.) wide (cont.)

Notes

In either case, thevide opcode itself is followed in the compiled
code by the opcode of the instructiwide modifies. In either form,

two unsigned bytemdexbytel andindexbyte? follow the modified
opcode and are assembled into a 16-bit unsigned index to a local
variable in the current frame (83.6), where the value of the index is
(indexbytel << 8) | indexbyte2. The calculated index must be a
valid index into the local variables of the current frame. Where the
wide instruction modifies aload, dload, Istore, or dstore instruc-

tion, the index following the calculated index (index + 1) must also
be a valid index into the local variables. In the second form, two
immediate unsigned bytesonstbytel and constbyte2 follow
indexbytel andindexbyte2 in the code stream. Those bytes are also
assembled into a signed 16-bit constant, where the constant is
(constbytel << 8) |constbyte2.

The widened bytecode operates as normal, except for the use of the
wider index and, in the case of the second form, the larger incre-
ment range.

Although we say thatvide “modifies the behavior of another
instruction,” thewide instruction effectively treats the modified
instruction as operands wide, denaturing the embedded instruc-
tion in the process. In the case of a modifiadinstruction, one of

the logical operands of thimc is not even at the normal offset from
the opcode. The embedded instruction must never be executed
directly; its opcode must never be the target of any control transfer
instruction.

CHAPTER ;

Compiling for the
Java Virtual Machine

T HE Java Virtual Machine is designed to support the Java programming language.
Sun’s JDK 1.0.2 release of the Java programming language contains both a compiler
from Java source code to the Java Virtual Machine’s instructiorj setd) and a
runtime system that implements the Java Virtual Machine itseltj. Understand-

ing how one Java compiler utilizes the Java Virtual Machine is useful to the prospec-
tive Java compiler writer, as well as to one trying to understand the operation of the
Java Virtual Machine.

Although this chapter concentrates on compiling Java code, the Java Virtual
Machine does not assume that the instructions it executes were generated from
Java source code. While there have been a number of efforts aimed at compiling
other languages to the Java Virtual Machine, version 1.0.2 of the Java Virtual
Machine was not designed to support a wide range of languages. Some languages
may be hosted fairly directly by the Java Virtual Machine. Others may support
constructs that only can be implemented inefficiently.

We are considering bounded extensions to future versions of the Java Virtual
Machine to support a wider range of languages more directly. Please contact us at
jvm@javasoft.com if you have interest in this effort.

Note that the term “compiler” is sometimes used when referring to a translator
from the instruction set of a Java Virtual Machine to the instruction set of a spe-
cific CPU. One example of such a translator is a “Just In Time” (JIT) code genera-
tor, which generates platform-specific instructions only after Java Virtual Machine
code has been loaded into the Java Virtual Machine. This chapter does not address

339

340

THE JAVAM VIRTUAL MACHINE SPECIFICATION

issues associated with code generation, only those associated with compiling from
Java source code to Java Virtual Machine instructions.

7.1 Format of Examples

This chapter consists mainly of examples of Java source code together with anno-
tated listings of the Java Virtual Machine code thatjtineac compiler in Sun’s
JDK 1.0.2 release generates for the examples. The Java Virtual Machine code is
written in the informal “virtual machine assembly language” output by Sarsp
utility, also distributed with the JDK. You can ugevap to generate additional
examples of compiled Java methods.

The format of the examples should be familiar to anyone who has read assem-
bly code. Each instruction takes the form

<index> <opcode> [<operand1> [<operand2>...]] [<comment>]

The<index> is the index of the opcode of the instruction in the array that contains
the bytes of Java Virtual Machine code for this method. Alternativelyitioex>

may be thought of as a byte offset from the beginning of the methoegoptusle>

is the mnemonic for the instruction’s opcode, and the zero or<opeeandN> are

the operands of the instruction. The opticra@mment> is given in Java-style end-
of-line comment syntax:

8 bipush 100 // Push constant 100

Some of the material in the comments is emittedawap; the rest is supplied by
the authors. Theindex> prefacing each instruction may be used as the target of a
control transfer instruction. For instanceyoto 8 instruction transfers control to the
instruction at index 8. Note that the actual operands of Java Virtual Machine control
transfer instructions are offsets from the addresses of the opcodes of those instruc-
tions; these operands are displayed oyap, and are shown in this chapter, as more
easily read offsets into their methods.

We preface an operand representing a constant pool index with a hash sign,
and follow the instruction by a comment identifying the constant pool item refer-
enced, as in

10 Idc#1 // Float 100.000000
or
9 invokevirtual #4 // Method Example.addTwo (II)I

For the purposes of this chapter, we do not worry about specifying details such as
operand sizes.

COMPILING FOR THE JAVA VIRTUAL MACHINE 341
7.2 Use of Constants, Local Variables, and Control Constructs

Java Virtual Machine code exhibits a set of general characteristics imposed by the
Java Virtual Machine’s design and use of types. In the first example we encounter
many of these, and we consider them in some detail.

The spin method simply spins around an emgpy loop 100 times:

void spin() {
int 1i;
for (i =0; i < 100; i++) {
; // Loop body is empty

}
The Java compiler compilegin to
Method void spin()

0 iconst 0 /I Push int constant @

1 istore_1 /I Store into local 1 (1=0)

2 goto8 /I First time through don’t increment
5 iincl1l /I Increment local 1 by 1 (7++)

8 iload_1 /I Push local 1 (7)

9 bipush 100 /I Push int constant (100)

11 if icmplt 5 /I Compare, loop if < (i < 100)
14 return /I Return void when done

The Java Virtual Machine is stack-oriented, with most operations taking one
or more operands from the operand stack of the Java Virtual Machine’s current
frame, or pushing results back onto the operand stack. A new frame is created
each time a Java method is invoked, and with it is created a new operand stack and
set of local variables for use by that method (see Section 3.6, “Frames”). At any
one point of the computation, there are thus likely to be many frames and equally
many operand stacks per thread of control, corresponding to many nested method
invocations. Only the operand stack in the current frame is active.

The instruction set of the Java Virtual Machine distinguishes operand types by
using distinct bytecodes for operations on its various data types. The mgthod
only operates on values of typet. The instructions in its compiled code chosen
to operate on typed dategnst_0O, istore_1, iinc, iload_1, if_icmplt) are all spe-
cialized for typeint.

342

THE JAVAM VIRTUAL MACHINE SPECIFICATION

The two constants ispin, @ and 100, are pushed onto the operand stack
using two different instructions. Theeis pushed using aitonst_0 instruction,
one of the family oficonst_<i> instructions. Thel0oo is pushed using bipush
instruction, which fetches the value it pushes as an immediate operand.

The Java Virtual Machine frequently takes advantage of the likelihood of cer-
tain operandsipt constants-1, 0, 1, 2, 3, 4 and5 in the case of thizonst_<i>
instructions) by making those operands implicit in the opcode. Because the
iconst_0 instruction knows it is going to push ant @, iconst_0 does not need to
store an operand to tell it what value to push, nor does it need to fetch or decode
an operand. Compiling the push @fasbipush 0 would have been correct, but
would have made the compiled code $prin one byte longer. A simple virtual
machine would have also spent additional time fetching and decoding the explicit
operand each time around the loop. Use of implicit operands makes compiled
code more compact and efficient.

Theint i in spin is stored as Java Virtual Machine local varidblBecause
most Java Virtual Machine instructions operate on values popped from the oper-
and stack rather than directly on local variables, instructions that transfer values
between local variables and the operand stack are common in code compiled for
the Java Virtual Machine. These operations also have special support in the
instruction set. Irspin, values are transferred to and from local variables using
theistore_1 andiload_1 instructions, each of which implicitly operates on local
variablel. Theistore_1 instruction pops afnt from the operand stack and stores
it in local variablel. Theiload_1 instruction pushes the value in local variable
onto the operand stack.

The use (and reuse) of local variables is the responsibility of the compiler
writer. The specialized load and store instructions should encourage the compiler
writer to reuse local variables as much as is feasible. The resulting code is faster,
more compact, and uses less space in the Java frame.

Certain very frequent operations on local variables are catered to specially by
the Java Virtual Machine. Thenc instruction increments the contents of a local
variable by a one-byte signed value. Tiime instruction inspin increments the
first local variable (its first operand) fyits second operand). Thiac instruction
is very handy when implementing looping constructs.

The for loop ofspin is accomplished mainly by these instructions:

5 iincl1 /l Increment local 1 by 1 (i++)
8 iload 1 /I Push local 1 (1)

9 bipush 100 // Push int constant (100)

11 if_icmplt 5 // Compare, loop if < (i <100)

COMPILING FOR THE JAVA VIRTUAL MACHINE 343

Thebipush instruction pushes the valti@0 onto the operand stack asiar, then
the if_icmplt instruction pops that value off the stack and compares it agalhst
the comparison succeeds (the Java variaisdess thanee), control is transferred
to index5 and the next iteration of thfer loop begins. Otherwise, control passes to
the instruction following th&_icmplt.
If the spin example had used a data type other tiranfor the loop counter,
the compiled code would necessarily change to reflect the different data type. For
instance, if instead of aint thespin example usesdouble:

void dspin() {
double 1;
for (i =0.0; i < 100.0; i++) {
; // Loop body is empty

}
the compiled code is

Method void dspin()

0 dconst 0 /I Push double constant 0.0

1 dstore 1 /l Store into locals Land 2 (i = 0.0)
2 goto9 /I First time through don’t increment
5 dload_1 /I Push doub1e onto operand stack

6 dconst 1 /I Push doub1e constant 1 onto stack
7 dadd /I Add; there is no dinc instruction

8 dstore 1 /Il Store result in locals 1 and 2

9 dload 1 /I Push local

10 Idc2_w #4 // Double 100.000000

13 dcmpg /l There is no if_dcmplt instruction
14 iflts /I Compare, loop if < (i <100.000000)
17 return /I Return void when done

The instructions that operate on typed data are now specialized fatolypie.
(Theldc2_w instruction will be discussed later in this chapter.)

Note that indspin, double values use two words of storage, whether on the
operand stack or in local variables. This is also the case for values dfotype
As another example:

double doubleLocals(double dl1, double d2) {
return dl + d2;

344

THE JAVAM VIRTUAL MACHINE SPECIFICATION

becomes

Method double doubleLocals(double,double)

0 dload 1 // First argument in locals 1 and 2

1 dload_3 // Second argument in locals 3 and 4
2 dadd // Each also uses two words on stack
3 dreturn

It is always necessary to access the words of a two-word type in pairs and in
their original order. For instance, the words ofdheb1e values indoubleLocals
must never be manipulated individually.

The Java Virtual Machine’s opcode size of one byte results in its compiled
code being very compact. However, one-byte opcodes also mean that the Java Vir-
tual Machine’s instruction set must stay small. As a compromise, the Java Virtual
Machine does not provide equal support for all data types: it is not completely
orthogonal (see Table 3.1, “Type support in the Java Virtual Machine instruction
set”). In the case afspin, note that there is nié dcmplt instruction in the Java
Virtual Machine instruction set. Instead, the comparison must be performed using
adcmpg followed by aniflt, requiring one more Java Virtual Machine instruction
than theint version ofspin.

The Java Virtual Machine provides the most direct support for data of type
int. This is partly because the Java Virtual Machine’s operand stack and local
variables are one word wide, and a word is guaranteed to hold values of all inte-
gral types up to and including dant value. It is also motivated by the frequency
of int data in typical Java programs.

Smaller integral types have less direct support. There abg e char, or
short versions of the store, load, or add instructions, for instance. Heresigithe
example written using short:

void sspin() {
short 1;
for (i =0; i < 100; i++) {
; // Loop body is empty

}

It must be compiled for the Java Virtual Machine using instructions operating on
another type, most likelynt, converting betweeshort andint values as neces-
sary to ensure that the results of operationshamrt data stay within the appro-
priate range:

COMPILING FOR THE JAVA VIRTUAL MACHINE 345

method void sspin()

0 iconst O

1 istore 1

2 goto 10

5 iload_1 /I The short is stored in an int
6 iconst 1

7 iadd

8 i2s /l Truncate int to short
9 istore 1

10 iload_1

11 bipush 100

13 if_icmplt 5

16 return

The lack of direct support fdsyte, char, andshort types in the Java Virtual
Machine is not particularly painful, because values of those types are internally pro-
moted toint (byte andshort are sign-extended tint, char is zero-extended).
Operations obyte, char, andshort data can thus be done using: instructions.
The only additional cost is that of truncating the valuesnafoperations to valid
ranges.

Thelong and floating-point types have an intermediate level of support in the
Java Virtual Machine, lacking only the full complement of conditional control
transfer instructions.

7.3 Arithmetic

The Java Virtual Machine generally does arithmetic on its operand stack (the excep-
tion is theiinc instruction, which directly increments the value of a local variable).
For instance, thalign2grain method aligns amnt value to a given power of 2
grain size:

int align2grain(int i, int grain) {
return ((i + grain-1) & ~(grain-1));
b

Operands for arithmetic operations are popped from the operand stack, and
the results of operations are pushed back onto the operand stack. Results of arith-
metic subcomputations can thus be made available as operands of their nesting

346 THE JAVAM VIRTUAL MACHINE SPECIFICATION

computation. For instance, the calculation~@frain—1) is handled by these

instructions:
5 iload 2 // Load grain onto operand stack
6 iconst_1 // Load constant 1 onto operand stack
7 isub /1 Subtract; push result onto stack
8 iconst_ ml // Load constant —1 onto operand stack
9 ixor / Do XOR; push result onto stack

Firstgrain—1 is calculated using the contents of local varigbénd an imme-
diateint valuel. These operands are popped from the operand stack and their
difference pushed back onto the operand stack, where it is immediately avail-
able for use as one operand of ke instruction (recall thatx == -1Ax). Sim-
ilarly, the result of thaxor instruction becomes an operand for the subsequent
iand instruction.

The code for the entire method follows:

Method int align2grain(int,int)
0 iload 1
iload_2
iadd
iconst_1
isub
iload_2
iconst_1
isub
iconst_ m1
ixor
iand
ireturn

O© 0O NO Ol WDN -

el
= O

7.4 Accessing the Constant Pool

Many numeric constants, as well as objects, fields, and methods, are accessed via
the constant pool of the current class. Object access is considered later (87.8). Java
data of typesnt, long, float, anddouble, as well as references to instances of
String (constant pool items tagg€ANSTANT_String), is managed using thec,

Idc_w, andldc2_w instructions.

COMPILING FOR THE JAVA VIRTUAL MACHINE 347

Theldc andldc_w instructions are used to access one-word values in the con-
stant pool (including instances of classring), andldc2_w is used to access
two-word values. Thédc_w instruction is used in place tafc only when there is
a large number of constant pool items and a larger index is needed to access an
item. Theldc2_w instruction is used to access all two-word items; there is no non-
wide variant.

Integral constants of typéste, char, orshort, as well as smatfint values,
may be compiled using thpush, sipush, oriconst_<i> instructions, as seen ear-
lier (87.2). Certain small floating-point constants may be compiled using the
fconst_<f> anddconst_<d> instructions.

In all of these cases compilation is straightforward. For instance, the con-
stants for

void useManyNumeric() {
int i = 100;
int j = 1000000;
long 11 = 1;
Tong 12 = Oxffffffff;
double d = 2.2;
...do some calculations...

}
are set up as follows:

Method void useManyNumeric()
0 bipush 100 /I Push a small int with bipush

2 istore 1
3 ldc#1 /I Integer 1000000; a larger int
// value uses Idc
5 istore 2
6 Iconst_1 /I A tiny Tong value uses short, fast Iconst_1
7 lstore_3
8 Idc2_w #6 /I Along oxffffffff (thatis, an int -1); any

/I Tong constant value can be pushed by ldc2_w
11 Istore 5
13 Idc2_w #8 // Double 2.200000; so do
/I uncommon doubTe values
16 dstore 7
...do those calculations...

348

THE JAVAM VIRTUAL MACHINE SPECIFICATION

7.5 More Control Examples

Compilation of Java'sor statement was shown in an earlier section (87.2). Most of
Java’s other intramethod control transfer construtts then-else, do, while,
break, andcontinue) are also compiled in the obvious ways. The compilation of
Java'sswitch statement is handled in a separate section (Section 7.10, “Compiling
Switches”), as is the compilation of exceptions (Section 7.12, “Throwing and Handling
Exceptions”) and Java®inally statement (Section 7.13, “Compilifignally”).

As a further example, while loop is compiled in an obvious way, although
the specific control transfer instructions made available by the Java Virtual
Machine vary by data type. As usual, there is more support for data afrtype

void whileInt() {
int i = 0;
while (i < 100) {
T+
}
is compiled to

Method void whileInt()

0 iconst O

1 istore 1

2 goto8

5 iincl1l

8 iload 1

9 bipush 100
11 if_icmplt 5
14 return

Note that the test of thehile statement (implemented using tiieicmplt
instruction) is at the bottom of the Java Virtual Machine code for the loop. (This
was also the case in thpin examples earlier.) The test being at the bottom of the
loop forces the use ofgato instruction to get to the test prior to the first iteration
of the loop. If that test fails, and the loop body is never entered, this extra instruc-
tion is wasted. Howevemlhile loops are typically used when their body is
expected to be run, often for many iterations. For subsequent iterations, putting
the test at the bottom of the loop saves a Java Virtual Machine instruction each
time around the loop: if the test were at the top of the loop, the loop body would
need a trailingjoto instruction to get back to the top.

COMPILING FOR THE JAVA VIRTUAL MACHINE 349

Control constructs involving other data types are compiled in similar ways, but
must use the instructions available for those data types. This leads to somewhat less
efficient code because more Java Virtual Machine instructions are needed:

void whileDouble() {
double i = 0.0;
while (i < 100.1) {
i+

}
is compiled to

Method void whileDouble()
0 dconst 0
1 dstore_1
2 goto9
5 dload_1
6 dconst_1
7 dadd
8 dstore_1
9 dload_1
10 Idc2_w #4 /I Double 100.100000
13 dcmpg / To test we have to use
14 iflts /I two instructions...
17 return

Each floating-point type has two comparison instructiderspl andfcmpg
for typefloat, anddcmpl anddcmpg for typedouble. The variants differ only in
their treatment of NaN. NaN is unordered, so all floating-point comparisons fail if
either of their operands is NaN. The compiler chooses the variant of the compari-
son instruction for the appropriate type that produces the same result whether the
comparison fails on non-NaN values or encounters a NaN. For instance:

int lessThanl00(double d) {
if (d < 100.0) {
return 1;
} else {
return -1;

350 THE JAVAM VIRTUAL MACHINE SPECIFICATION

compiles to

Method int TessThanl00(double)

0 dload_1

1 ldc2_w #4 // Double 100.000000

4 dcmpg /I Push 1if dis NaN or d > 100.000000;
// push 0 if d == 100.000000

5 ifge 10 /I Branchon O or 1

8 iconst_1

9 ireturn

10 iconst_m1l

11 ireturn

If d is not NaN and is less thane .0, thedcmpg instruction pushes amt —1 onto
the operand stack, and fifige instruction does not branch. Whetldés greater than
100.0 or is NaN, thedcmpg instruction pushes aint 1 onto the operand stack,
and thefge branches. I8l is equal tal00. 0, thedcmpg instruction pushes aimt 0
onto the operand stack, and tfge branches.

The dcmpl instruction achieves the same effect if the comparison is
reversed:

int greaterThanl@@(double d) {
if (d > 100.0) {

return 1;
} else {
return -1;
}
}
becomes

Method int greaterThan100(double)

0 dload 1

1 Idc2 w#4 /] Double 100.000000

4 dcmpl /I Push =1 if dis Nan or d < 100.000000;
// push 0 if d == 100.000000

5 ifle 10 // Branch on 0 or -1

8 iconst_1

9 ireturn

10 iconst_ml

11 ireturn

COMPILING FOR THE JAVA VIRTUAL MACHINE 351

Once again, whether the comparison fails on a non-NaN value or because it is
passed a NaN, thdcmpl instruction pushes aimt value onto the operand stack
that causes thile to branch. If both of thdcmp instructions did not exist, one of

the example methods would have had to do more work to detect NaN.

7.6 Receiving Arguments

If narguments are passed to a Java instance method, they are received, by convention,
in the local variables numberédhroughn of the frame created for the new method
invocation. The arguments are received in the order they were passed. For example:

int addTwo(int i, int j) {
return i + j;

}
compiles to
Method int addTwo(int,int)
0 iload_1 // Push value of local 1 (i)
1 iload 2 /I Push value of local 2 (3)
2 iadd // Add; leave int result on val stack
3 ireturn // Return int result

By convention, an instance method is passedfarence to its instance in
local variable zero. The instance is accessible in Java viatkekeyword. Code
to pushthis into local variable zero must be present in the invoker of an instance
method (see Section 7.7, “Invoking Methods”).

Class §tatic) methods do not have an instance, so for them this use of local
variable zero is unnecessary. A class method starts using local variables at index
zero. If theaddTwo method was a class method, its arguments would be passed in
a similar way to the first version:

static int addTwoStatic(int i, int j) {
return i + j;

3
compiles to

Method int addTwoStatic(int,int)
0 iload 0
1 iload 1
2 iadd
3 ireturn

352

THE JAVAM VIRTUAL MACHINE SPECIFICATION

The only difference is that the method arguments appear starting in local v@riable
rather thari.

7.7 Invoking Methods

The normal method invocation for a Java instance method dispatches on the runtime
type of the object (they are virtual, in C++ terms). Such an invocation is imple-
mented using theavokevirtual instruction, which takes as its argument an index to

a constant pool entry giving the fully qualified name of the class type of the object,
the name of the method to invoke, and that method’s descriptor (84.3.3). To invoke
theaddTwo method, defined earlier as an instance method, we might write

int addl2andl13() {
return addTwo(12, 13);
}

This compiles to

Method int add12and13()

0 aload O /1 Push this local 0 (this) onto stack
1 bipush 12 // Push int constant 12 onto stack
3 bipush 13 // Push int constant 13 onto stack

5 invokevirtual #4 / Method Example.addtwo(II)I

8 ireturn // Return int on top of stack; it is

/] the int result of addTwo ()

The invocation is set up by first pushingefference to the current instance,
this, onto the operand stack. The method invocation’s argumierisalues12
and13, are then pushed. When the frame for 4HéTwo method is created, the
arguments passed to the method become the initial values of the new frame’s local
variables. That is, theeference for this and the two arguments, pushed onto
the operand stack by the invoker, will become the initial values of local variables
0, 1, and2 of the invoked method.

Finally, addTwo is invoked. When it returns, itsnt return value is pushed
onto the operand stack of the frame of the invokerathi@2and13 method. The
return value is thus put in place to be immediately returned to the invoker of
add12and13.

The return fromaddi2and13 is handled by thereturn instruction of
add12and13. Theireturn instruction takes thént value returned byddTwo, on
the operand stack of the current frame, and pushes it onto the operand stack of the
frame of the invoker. It then returns control to the invoker, making the invoker’s

COMPILING FOR THE JAVA VIRTUAL MACHINE 353

frame current. The Java Virtual Machine provides distinct return instructions for
many of its numeric andeference data types, as well ageurn instruction for
methods with no return value. The same set of return instructions is used for all
varieties of method invocations.

The operand of thimvokevirtual instruction (in the example, the constant pool
index #4) is not the offset of the method in the class instance. The Java compiler
does not know the internal layout of a class instance. Instead, it generates symbolic
references to the methods of an instance, which are stored in the constant pool.
Those constant pool items are resolved at run time to determine the actual method
location. The same is true for all other Java Virtual Machine instructions that access
class instances.

Invoking addTwoStatic, a class{tatic) variant ofaddTwo, is similar:

int addl2andl13() {
return addTwoStatic(12, 13);
}

although a different Java Virtual Machine method invocation instruction is used:

Method int add12and13()
0 bipush 12
2 bipush 13
4 invokestatic #3 // Method Example.addTwoStatic(II)I
7 ireturn

Compiling an invocation of a classt@tic) method is very much like compiling an
invocation of an instance method, excepis is not passed by the invoker. The
method arguments will thus be received beginning with local vafialsiee Section
7.6, “Receiving Arguments”). Thi@vokestatic instruction is always used to invoke
class methods.

The invokespecial instruction must be used to invoke instance initialization
(<init>) methods (see Section 7.8, “Working with Class Instances”). It is also
used when invoking methods in the superclassdr) and when invoking
private methods. For instance, given classesr andFar declared as

class Near {
int it;
public int getItNear() {
return getIt(Q);

354 THE JAVAM VIRTUAL MACHINE SPECIFICATION

private int getIt() {
return it;

}

class Far extends Near {
int getItFar() {
return super.getItNear();

}
the methodlear.getItNear (which invokes @rivate method) becomes
Method int getItNear()

0 aload 0O
1 invokespecial #5 // Method Near.getIt()I
4 ireturn

The methodrar.getItFar (which invokes a superclass method) becomes
Method int getItFar()

0 aload 0O
1 invokespecial #4 / Method Near.getItNear()I
4 ireturn

Note that methods called using timokespecial instruction always passhis to
the invoked method as its first argument. As usual, it is received in local vériable

7.8 Working with Class Instances

Java Virtual Machine class instances are created using the Java Virtual Machine’s
new instruction. Once the class instance has been created and its instance variables,
including those of the class and all of its superclasses, have been initialized to their
default values, an instance initialization method of the new class instamdeax)

is invoked. [Recall that at the level of the Java Virtual Machine, a constructor
appears as a method with the special compiler-supplied €ame>. This special

method is known as the instance initialization method (83.8). Multiple instance ini-
tialization methods, corresponding to multiple constructors, may exist for a given
class.] For example:

Object create() {
return new Object();

COMPILING FOR THE JAVA VIRTUAL MACHINE 355

compiles to

Method java.lang.Object create()

0 new #1 /l Class java.lang.0Object

3 dup

4 invokespecial #4 /l Method java.lang.0Object.<init>QV
7 areturn

Class instances are passed and returneckfasence types) very much like
numeric values, although typeference has its own complement of instruc-
tions:

int 1; // An finstance variable
MyObj example() {
MyObj o = new MyObj();
return silly(o);
}
MyObj sil1ly(MyObj o) {
if (o !'= null) {

return o;
} else {
return o;
}
3
becomes

Method MyObj example()

0 new#2 /I Class MyObj
dup
invokespecial #5 /I Method MyObj.<init>(QV
astore 1
aload 0
aload_1
10 invokevirtual #4

// Method Example.silly(LMyObj;)LMyObj;

13 areturn

O© 0o ~N P w

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Method MyObj si11y(MyObj)
0 aload_1

ifnull 6

aload_1

areturn

aload 1

7 areturn

o O b

The fields of a class instance (instance variables) are accessed ugjetg the
field andputfield instructions. Ifi is an instance variable of typet, the methods
setIt andgetIt, defined as

void setIt(int value) {
i = value;

}

int getIt(Q) {
return i;

}
become

Method void setIt(int)
0 aload O
1 iload_1
2 putfield #4 /l Field Example.i I
5 return

Method int getIt()
0 aload 0O
1 getfield #4 /l Field Example.i I
4 ireturn

As with the operands of method invocation instructions, the operandspoitflaéd
andgetfield instructions (the constant pool indéX are not the offsets of the fields

in the class instance. The Java compiler generates symbolic references to the fields
of an instance, which are stored in the constant pool. Those constant pool items are
resolved at run time to determine the actual field offset.

7.9 Arrays

Java Virtual Machine arrays are also objects. Arrays are created and manipulated
using a distinct set of instructions. Thewarray instruction is used to create an
array of a numeric type. The code

COMPILING FOR THE JAVA VIRTUAL MACHINE 357

void createBuffer() {
int buffer[];
int bufsz = 100;
int value 12;
buffer = new int[bufsz];
buffer[10] = value;
value = buffer[11];

}
might be compiled to

Method void createBuffer()
0 bipush 100 /I Push bufsz

2 istore 2 /I Store bufsz in local 2

3 bipush 12 /I Push value

5 istore_3 /I Store value in local 3

6 iload 2 /I Push bufsz...

7 newarray int //..and create new array of int
9 astore 1 /l Store new array in buffer
10 aload 1 /I Push buffer

11 bipush 10 /[Push constant 10

13 iload_3 /I Push value

14 jastore / Store value at buffer[10]
15 aload 1 /l Push buffer

16 bipush 11 /I Push constant 11

18 iaload // Push value at buffer[11]
19 istore_3 /I ...and store it in value

20 return

Theanewarray instruction is used to create a one-dimensional array of object
references:

void createThreadArray() {
Thread threads[];
int count = 10;
threads = new Thread[count];
threads[@] = new Thread();

3

becomes

358 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Method void createThreadArray()

0 bipush 10 // Push 10...

2 istore 2 /I ...and initialize count to that

3 iload_2 // Push count, used by anewarray
4 anewarray class #1 // Create new array of class Thread
7 astore 1 // Store new array in threads

8 aload 1 // Load value of threads on stack
9 iconst_0 // Load @ into stack

10 new #1 /I Create instance of class Thread
13 dup /I Make duplicate reference...

14 invokespecial #5 /[...to pass to initialization method

/l Method java.lang.Thread.<init>(V
17 aastore // Store new Thread in array at @
18 return

Theanewarray instruction can also be used to create the first dimension of a multi-
dimensional array. Alternatively, timeultianewarray instruction can be used to create
several dimensions at once. For example, the three-dimensional array in the following:

int[]J[][] create3DArray() {
int grid[]1[]1[];
grid = new int[10][5][];
return grid;
}
is created by

Method int create3DArray(Q[1[]1[]
0 bipush 10 // Push 10 (dimension one)
2 iconst 5 // Push 5 (dimension two)
3 multianewarray #1 dim #2 /l Class [[[I, a three
// dimensional int array;
Il only create first two
// dimensions

7 astore_1 /[Store new array...
8 aload_1 /[...then prepare to return it
9 areturn

The first operand of theultianewarray instruction is the constant pool index to the
array class type to be created. The second is the number of dimensions of that array type
to actually create. Thaultianewarray instruction can be used to create all the dimen-
sions of the type, as the code fareate3DArray shows. Note that the multidimen-

sional array is just an object, and so is loaded and returnedalyaénl andareturn
instruction, respectively. For information about array class names, see §4.4.1.

COMPILING FOR THE JAVA VIRTUAL MACHINE 359

All arrays have associated lengths, which are accessed vaardyéength

instruction.

7.10 Compiling Switches

Java’sswitch statements are compiled using tlableswitch and lookupswitch

instructions. Theableswitch instruction is used when the cases ofdletch can
be efficiently represented as indices into a table of target offsetde Figl t target
of theswitch is used if the value of the expression of ¢lhétch falls outside the

range of valid indices. For instance,

int chooseNear(int i) {
switch (i) {

case 0: return 0

case 1: return 1;

case 2: return 2;

default: return -1;

compiles to

Method int chooseNear(int)

0

1 tableswitch O to 2:

iload_1

/I Load local 1 (argument 1)
/I Valid indices are 0 through 2

0: 28 /1 If 1 is @, continue at 28
1:30 /l'1f 4 is 1, continue at 30
2:32 /1'1f 4 is 2, continue at 32
default:34 // Otherwise, continue at 34
28 iconst_0 /I i was 0; push int 0...
29 ireturn /I ...and return it
30 iconst 1 /I i was 1; push int 1...
31 ireturn /I ...and return it
32 iconst_2 /I i was 2; push int 2...
33 ireturn /I ...and return it
34 iconst_ml /I otherwise push int —L1...
35 ireturn /I ...and return it

The Java Virtual Machine'sableswitch andlookupswitch instructions only
operate onint data. Because operations yite, char, or short values are

360

THE JAVAM VIRTUAL MACHINE SPECIFICATION

internally promoted toint, a switch whose expression evaluates to one of
those types is compiled as though it evaluated to type If the chooseNear
method had been written using typhkort, the same Java Virtual Machine
instructions would have been generated as when usingi titp@ther numeric
types must be narrowed to typet for use in aswitch.

Where the cases of thevitch are sparse, the table representation of the
tableswitch instruction becomes inefficient in terms of space. [Bhleupswitch
instruction may be used instead. Tloekupswitch instruction pairsint keys
(the values of thecase labels) with target offsets in a table. Wherloak-
upswitch instruction is executed, the value of the expression obwhech is
compared against the keys in the table. If one of the keys matches the value of
the expression, execution continues at the associated target offset. If no key
matches, execution continues at thefault target. For instance, the compiled
code for

int chooseFar(int i) {
switch (i) {

case -100: return -1;
case 0: return 0;
case 100: return 1;
default: return -1;

}

looks just like the code forhooseNear, except for the use of tHeokupswitch
instruction:

Method int chooseFar(int)

0 iload_1

1 lookupswitch 3:
-100: 36
0: 38
100: 40
default:42

36 iconst_ml

37 ireturn

38 iconst 0

39 ireturn

40 iconst_1

COMPILING FOR THE JAVA VIRTUAL MACHINE 361

41 ireturn
42 const_ml
43 ireturn

The Java Virtual Machine specifies that the table ofdbi@ipswitch instruc-
tion must be sorted by key so that implementations may use searches more effi-
cient than a linear scan. Even so, ldoupswitch instruction must search its keys
for a match rather than simply perform a bounds check and index into a table like
tableswitch. Thus, aableswitch instruction is probably more efficient thatoak-
upswitch where space considerations permit a choice.

7.11 Operations on the Operand Stack

The Java Virtual Machine has a large complement of instructions that manipulate
the contents of the operand stack as untyped words or pairs of untyped words. These
are useful because of the Java Virtual Machine’s reliance on deft manipulation of its
operand stack. For instance:

public Tong nextIndex() {
return index++;

}

private long index = 0;
is compiled to

Method Tong nextIndex()

0 aload 0 /I Write this onto operand stack

1 dup /I Make a copy of it

2 getfield #4 /I One of the copies of this is consumed
/I loading 1ong field index onto stack,
/I above the original this

5 dup2_x1 /I The Tong on top of the stack is
/I inserted into the stack below the
/l original this

6 Iconst_1 /I A Tong 1 is loaded onto the stack

7 ladd /I The index value is incremented

8 putfield #4 /I and the result stored back in the field
11 Ireturn /I The original value of index is left on

/I top of the stack, ready to be returned

362 THE JAVAM VIRTUAL MACHINE SPECIFICATION

Note that the Java Virtual Machine never allows its operand stack manipulation
instructions to modify or move the words of its two-word data types individually.

7.12 Throwing and Handling Exceptions
Exceptions are thrown from Java programs using:tirew keyword. Its compila-
tion is simple:

void cantBeZero(int i) throws TestExc {
if (== 0) {
throw new TestExc();

}

becomes

Method void cantBeZero(int)

0 iload_1 // Load argument 1 (i) onto stack

1 ifne 12 /I If i==0, allocate instance and throw
4 new#1 /I Create instance of TestExc

7 dup // One reference goes to the constructor
8 invokespecial #7 /l Method TestExc.<init>(QV

11 athrow // Second reference is thrown

12 return I/l Never get here if we threw TestExc

Compilation of Java’'sry-catch is straightforward. For example:

void catchOne() {
try {
tryItOut();
} catch (TestExc e) {
handTeExc(e);

}
is compiled as

Method void catchOne()
0 aload_0 // Beginning of try block
1 invokevirtual #6 /I Method Example.tryItOut()V
4 return /1 End of try block; normal return

COMPILING FOR THE JAVA VIRTUAL MACHINE 363

5 astore 1 /I Store thrown value in local variable 1
6 aload 0 /I Load this onto stack

7 aload 1 /I Load thrown value onto stack

8 invokevirtual #5 /I Invoke handler method:

/l ExampTle.handleExc(LTestExc;)V
11 return /I Return after handling TestExc
Exception table:
From To Target Type
0 4 5 Class TestExc

Looking more closely, thery block is compiled just as it would be if they were
not present:

Method void catchOne()

0 aload O /I Beginning of try block
1 invokevirtual #4 /l Method Example.tryItOut()V
4 return /1 End of try block; normal return

If no exception is thrown during the execution of tirg block, it behaves as though
thetry were not theretryItOut is invoked andatchOne returns.

Following thetry block is the Java Virtual Machine code that implements the
singlecatch clause:

5 astore 1 /I Store thrown value in local variable 1
6 aload 0 /I Load th1is onto stack

7 aload_1 /I Load thrown value onto stack

8 invokevirtual #5 /I Invoke handler method:

/l ExampTle.handleExc(LTestExc;)V
11 return /I Return after handling TestExc
Exception table:
From To Target Type
0 4 5 Class TestExc

The invocation ohandleExc, the contents of theatch clause, is also compiled

like a normal method invocation. However, the presencecaftah clause causes

the compiler to generate an exception table entry. The exception table for the
catchOne method has one entry corresponding to the one argument (an instance of
classTestExc) that thecatch clause otatchOne can handle. If some value that is

an instance ofestExc is thrown during execution of the instructions between in-
dices0 and4 (inclusive) incatchOne, control is transferred to the Java Virtual
Machine code at indeX, which implements the block of thatch clause. If the

364 THE JAVAM VIRTUAL MACHINE SPECIFICATION

value that is thrown is not an instancereftExc, thecatch clause ofcatchOne
cannot handle it. Instead, the value is rethrown to the invokertahOne.
A try may have multipleatch clauses:

void catchTwo() {
try {
tryItOut();
} catch (TestExcl
handTeExc(e);
} catch (TestExc2
handleExc(e);

e) {

e) {

}

Multiple catch clauses of a givetiry statement are compiled by simply appending
the Java Virtual Machine code for eacltch clause one after the other, and adding

entries to the exception table:

Method void catchTwo()

0 aload 0
1 invokevirtual #5
4 return

5 astore_ 1

»

aload 0
aload_1
8 invokevirtual #7

~

11 return
12 astore 1

13 aload_0
14 aload 1
15 invokevirtual #7

18 return
Exception table:

From To Target
0 4 5
0 4 12

// Begin try block

/l Method Example.tryItOut()V

/l End of try block; normal return

// Beginning of handler for TestExc1;

/I Store thrown value in local variable 1
/I Load th1is onto stack

// Load thrown value onto stack

/I Invoke handler method:

/l Example.handleExc(LTestExcl;)V
// Return after handling TestExcl

// Beginning of handler for TestExc2;

/I Store thrown value in local variable 1
/I Load th1is onto stack

/I Load thrown value onto stack

/I Invoke handler method:

/l Example.handleExc(LTestExc2;)V
// Return after handling TestExc2

Type
Class TestExcl
Class TestExc2

COMPILING FOR THE JAVA VIRTUAL MACHINE

If during the execution of thery clause (between indicésand4) a value is thrown
that matches the parameter of one or more ok#heh blocks (the value is an
instance of one or more of the parameters), the first (leftmostkatich clause is

365

selected. Control is transferred to the Java Virtual Machine code for the block of that

catch clause. If the value thrown does not match the parameter of anycaftidte

clauses otatchTwo, the Java Virtual Machine rethrows the value without invoking
code in anytatch clause otatchTwo.

Nestedtry-catch statements are compiled very much likerg statement

with multiple catch clauses:

void nestedCatch() {

}

becomes

try {
try {

tryItOut(Q);
} catch (TestExcl e) {
handTeExcl(e);

}

} catch (TestExc2 e) {
handTeExc2(e);

Method void nestedCatch()

0

1
4
5

~N o

1
12

13
14
15

aload_0
invokevirtual #8
return

astore 1

aload 0
aload_1
invokevirtual #7

return
astore 1

aload_0
aload 1
invokevirtual #6

/I Begin try block

// Method Example.tryItOut()V

/1 End of try block; normal return

/I Beginning of handler for TestExc1;
/1 Store thrown value in local variable 1
/I Load this onto stack

/I Load thrown value onto stack

/I Invoke handler method:

/l ExampTle.handleExcl(LTestExcl;)V
/I Return after handling TestExcl

/I Beginning of handler for TestExc2;
/I Store thrown value in local variable 1
// Load this onto stack

/I Load thrown value onto stack

/I Invoke handler method:

366

THE JAVAM VIRTUAL MACHINE SPECIFICATION

/l ExampTle.handleExc2(LTestExc2;)V
18 return // Return after handling TestExc2
Exception table:
From To Target Type
0 4 5 Class TestExcl
0 12 12 Class TestExc2

The nesting otatch clauses is represented only in the exception table. When an
exception is thrown, the innermost catch clause that contains the site of the excep-
tion and with a matching parameter is selected to handle it. For instance, if the invo-
cation of tryItOut (at index1) threw an instance ofestExcl, it would be
handled by theatch clause that invokesand1eExcl. This is so even though the
exception occurs within the bounds of the outarch clause (catchingestExc2),

and even though that outextch clause might otherwise have been able to handle
the thrown value.

As a subtle point, note that the range afaach clause is inclusive on the
“from” end and exclusive on the “to” end (see 84.7.4). Thus, the exception table
entry for thecatch clause catchinestExcl does not cover theturn instruc-
tion at offsetd. However, the exception table entry for twch clause catching
TestExc2 does cover theeturn instruction at offsetll. Return instructions
within nestedcatch clauses are included in the range of instructions covered by
nestingcatch clauses.

7.13 Compiling finally

Compilation of atry-finally statement is similar to that efy-catch. Prior to
transferring control outside thery statement, whether that transfer is normal or
abrupt, because an exception has been throwfij tid 1y clause must first be exe-
cuted. For a simple example:

void tryFinally(Q) {
try {
tryItOut();
} finally {
wrapItUpQ;

}

the compiled code is

COMPILING FOR THE JAVA VIRTUAL MACHINE 367

Method void tryFinally()

0 aload O /I Beginning of try block

1 invokevirtual #6 // Method Example.tryItOut()V

4 jsrl4 /I Call finally block

7 return /l End of try block

8 astore 1 /I Beginning of handler for any throw
9 jsri4 /I Call finally block

12 aload_1 /I Push thrown value,

13 athrow /I and rethrow the value to the invoker
14 astore_2 /I Beginning of finally block

15 aload 0 /I Push this onto stack

16 invokevirtual #5 /l Method Example.wrapItUp(V
19 ret2 /I Return from finally block

Exception table:
From To Target Type
0 4 8 any

There are four ways for control to pass outside oftithe statement: by falling
through the bottom of that block, by returning, by executihgeak or continue
statement, or by raising an exceptiortdfItOut returns without raising an excep-
tion, control is transferred to thfeénally block using gsr instruction. Thgsr 14
instruction at indeX makes a “subroutine call” to the code for fi@al11y block at
index 14 (the finally block is compiled as an embedded subroutine). When the
finally block completes, theet 2 instruction returns control to the instruction fol-
lowing thejsr instruction at indexX.

In more detail, the subroutine call works as follows: jBhénstruction pushes
the address of the following instructiartrn at index7) onto the operand stack
before jumping. Thastore_2 instruction that is the jump target stores the address
on the operand stack into local variabl& he code for théinally block (in this
case thaload_0 andinvokevirtual instructions) is run. Assuming execution of
that code completes normally, thet instruction retrieves the address from local
variable2 and resumes execution at that address.rdtuen instruction is exe-
cuted, andtryFinally returns normally.

A try statement with &inally clause is compiled to have a special excep-
tion handler, one that can handle any exception thrown withinrthastatement.

If tryItOut throws an exception, the exception tabletfioyFinally is searched
for an appropriate exception handler. The special handler is found, causing execu-
tion to continue at inde®. Theastore_1 instruction at indeX stores the thrown

368

THE JAVAM VIRTUAL MACHINE SPECIFICATION

value into local variablé. The followingjsr instruction does a subroutine call to
the code for th&inally block. Assuming that code returns normally,dtoad_1
instruction at index2 pushes the thrown value back onto the operand stack, and
the followingathrow instruction rethrows the value.

Compiling atry statement with both @tch clause and &inally clause is
more complex:

void tryCatchFinally() {
try {
tryItOut();
} catch (TestExc e) {
handTeExc(e);
} finally {
wrapItUpQ;

}
becomes

Method void tryCatchFinally()

0 aload O // Beginning of try block
1 invokevirtual #4 /I Method Example.tryItOut()V
4 goto 16 // Jump to finally block
7 astore 3 // Beginning of handler for TestExc;
/I Store thrown value in local variable 3
8 aload 0 // Push this onto stack
9 aload 3 // Push thrown value onto stack

10 invokevirtual #6 /I Invoke handler method:
/l Example.handleExc(LTestExc;)V

13 goto 16 I Huh?2?1

16 jsr 26 /I Call final11y block

19 return // Return after handling TestExc

20 astore 1 // Beginning of handler for exceptions

/[other than TestExc, or exceptions
// thrown while handling TestExc
21 jsr 26 I/ Call final1ly block
24 aload_1 // Push thrown value,

L This goto instruction is strictly unnecessary, but is generated byabec compiler of Sun’s JDK
1.0.2 release.

COMPILING FOR THE JAVA VIRTUAL MACHINE 369

25 athrow /I and rethrow the value to the invoker
26 astore_2 /I Beginning of finally block

27 aload 0 /I Push this onto stack

28 invokevirtual #5 /I Method ExampTle.wrapItUp(V

31 ret2 /I Return from finally block

Exception table:
From To Target Type
0o 4 7 Class TestExc
0 16 20 any

If the try statement completes normally, theto instruction at indeX jumps
to the subroutine call for thEinally block at indexl6. Thefinally block at
index 26 is executed, control returns to theturn instruction at index9, and
tryCatchFinally returns normally.

If tryItOut throws an instance dfestExc, the first (innermost) applicable
exception handler in the exception table is chosen to handle the exception. The
code for that exception handler, beginning at index 7, passes the thrown value to
handleExc, and on its return makes the same subroutine call thitted 1y block
at index26 as in the normal case. If an exception is not throwhand1eExc,
tryCatchFinally returns normally.

If tryItOut throws a value that is not an instancde@tExc, or if handle-

Exc itself throws an exception, the condition is handled by the second entry in the
exception table, which handles any value thrown between indiaad 16. That
exception handler transfers control to ind@& where the thrown value is first
stored in local variablé. The code for théinally block at index6 is called as

a subroutine. If it returns, the thrown value is retrieved from local variabfel
rethrown using thathrow instruction. If a new value is thrown during execution

of thefinally clause, thefinally clause aborts ancryCatchFinally returns
abnormally, throwing the new value to its invoker.

7.14 Synchronization

The Java Virtual Machine provides explicit support for synchronization through its
monitorenter and monitorexit instructions. For Java, however, perhaps the most
common form of synchronization is thgnchronized method.

A synchronized method is not normally implemented usimgnitorenter
and monitorexit. Rather, it is simply distinguished in the constant pool by the
ACC_SYNCHRONIZED flag, which is checked by the method invocation instructions.

370

THE JAVAM VIRTUAL MACHINE SPECIFICATION

When invoking a method for whickCC_SYNCHRONIZED is set, the current thread
acquires a monitor, invokes the method itself, and releases the monitor whether
the method invocation completes normally or abruptly. During the time the exe-
cuting thread owns the monitor, no other thread may acquire it. If an exception is
thrown during invocation of theynchronized method, and theynchronized
method does not handle the exception, the monitor for the method is automatically
released before the exception is rethrown out ofglehronized method.

The monitorenter and monitorexit instructions exist to support Java’s
synchronized statements. Aynchronized statement acquires a monitor on
behalf of the executing thread, executes the body of the statement, then releases
the monitor:

void onlyMe(Foo f) {
synchronized(f) {
doSomething();

}
Compilation of synchronized statements is straightforward:

Method void onlyMe (Foo)

0 aload_1 // Load f onto operand stack

1 astore 2 // Store it in local variable 2

2 aload 2 // Load local variable 2 (f) onto stack
3 monitorenter // Enter the monitor associated with
4 aload 0 /I Holding the monitor, pass this and
5 invokevirtual #5 /I call Example.doSomething()V

8 aload_2 // Load local variable 2 (f) onto stack
9 monitorexit // Exit the monitor associated with
10 return // Return normally

11 aload_2 /I In case of any throw, end up here
12 monitorexit // Be sure to exit monitor,

13 athrow // then rethrow the value to the invoker

Exception table:
FromTo Target Type
4 8 1 any

CHAPTER8

Threads and Loci<s

This chapter details the low-level actions that may be used to explain the interac-
tion of Java Virtual Machine threads with a shared main memory. It has been
reprinted with minimal changes froihe Java Language Specificatidny James
Gosling, Bill Joy, and Guy Steele.

8.1 Terminology and Framework

A variable is any location within a Java program that may be stored into. This
includes not only class variables and instance variables, but also components of
arrays. Variables are kept imaain memoryhat is shared by all threads. Because

it is impossible for one thread to access parameters or local variables of another
thread, it does not matter whether parameters and local variables are thought of as
residing in the shared main memory or in the working memory of the thread that
owns them.

Every thread hasworking memoryn which it keeps its owworking copyof
variables that it must use or assign. As the thread executes a Java program, it oper-
ates on these working copies. The main memory containsnéster copyof
every variable. There are rules about when a thread is permitted or required to
transfer the contents of its working copy of a variable into the master copy or vice
versa.

The main memory also contailisks there is one lock associated with each
object. Threads may compete to acquire a lock.

For the purposes of this chapter, the varbs assign load, store lock, and
unlock name actions that a thread can perform. The vedn$ write, lock, and
unlockname actions that the main memory subsystem can perform. Each of these
operations is atomic (indivisible).

371

372

THE JAVAM VIRTUAL MACHINE SPECIFICATION

A useor assignoperation is a tightly coupled interaction between a thread’s
execution engine and the thread’s working memoripok or unlockoperation is
a tightly coupled interaction between a thread’s execution engine and the main
memory. But the transfer of data between the main memory and a thread’s work-
ing memory is loosely coupled. When data is copied from the main memory to a
working memory, two actions must occuread operation performed by the main
memory, followed some time later by a correspondiragl operation performed
by the working memory. When data is copied from a working memory to the main
memory, two actions must occur:store operation performed by the working
memory, followed some time later by a correspondimige operation performed
by the main memory. There may be some transit time between main memory and
a working memory, and the transit time may be different for each transaction;
thus, operations initiated by a thread on different variables may viewed by another
thread as occurring in a different order. For each variable, however, the operations
in main memory on behalf of any one thread are performed in the same order as
the corresponding operations by that thread. (This is explained in greater detalil
later.)

A single Java thread issues a streanus® assign lock, andunlock opera-
tions as dictated by the semantics of the Java program it is executing. The underly-
ing Java implementation is then required additionally to perform approfuégate
store read and write operations so as to obey a certain set of constraints,
explained later. If the Java implementation correctly follows these rules and the
Java application programmer follows certain other rules of programming, then
data can be reliably transferred between threads through shared variables. The
rules are designed to be “tight” enough to make this possible, but “loose” enough
to allow hardware and software designers considerable freedom to improve speed
and throughput through such mechanisms as registers, queues, and caches.

Here are the detailed definitions of each of the operations:

» A useaction (by a thread) transfers the contents of the thread’s working copy
of a variable to the thread’s execution engine. This action is performed when-
ever a thread executes a virtual machine instruction that uses the value of a
variable.

* An assignaction (by a thread) transfers a value from the thread’s execution
engine into the thread's working copy of a variable. This action is performed
whenever a thread executes a virtual machine instruction that assigns to a vari-
able.

THREADS AND LOCKS 373

A readaction (by the main memory) transmits the contents of the master copy
of a variable to a thread’s working memory for use by a lasetoperation.

» A load action (by a thread) puts a value transmitted from main memory by a
readaction into the thread's working copy of a variable.

» A storeaction (by a thread) transmits the contents of the thread’s working copy
of a variable to main memory for use by a lateite operation.

» A write action (by the main memory) puts a value transmitted from the thread’s
working memory by &toreaction into the master copy of a variable in main
memory.

* A lock action (by a thread tightly synchronized with main memory) causes a
thread to acquire one claim on a particular lock.

» An unlockaction (by a thread tightly synchronized with main memory) causes
a thread to release one claim on a particular lock.

Thus, the interaction of a thread with a variable over time consists of a
sequence ofise assign load, andstore operations. Main memory performs a
read operation for everyoad and awrite operation for evergtore A thread’s
interactions with a lock over time consist of a sequendeckfandunlockopera-
tions. All the globally visible behavior of a thread thus comprises all the thread’s
operations on variables and locks.

8.2 Execution Order and Consistency

The rules of execution order constrain the order in which certain events may
occur. There are four general constraints on the relationships among actions:

» The actions performed by any one thread are totally ordered; that is, for any
two actions performed by a thread, one action precedes the other.

» The actions performed by the main memory for any one variable are totally
ordered; that is, for any two actions performed by the main memory on the
same variable, one action precedes the other.

» The actions performed by the main memory for any one lock are totally
ordered; that is, for any two actions performed by the main memory on the
same lock, one action precedes the other.

* Itis not permitted for an action to follow itself.

374

THE JAVAM VIRTUAL MACHINE SPECIFICATION

The last rule may seem trivial, but it does need to be stated separately and explic-
itly for completeness. Without it, it would be possible to propose a set of actions
by two or more threads and precedence relationships among the actions that
would satisfy all the other rules but would require an action to follow itself.

Threads do not interact directly; they communicate only through the shared
main memory. The relationships between the actions of a thread and the actions of
main memory are constrained in three ways:

» Eachlock or unlockaction is performed jointly by some thread and the main
memory.

» Eachload action by a thread is uniquely paired witfead action by the main
memory such that tHead action follows theead action.

« Eachstoreaction by a thread is uniquely paired witlviite action by the main
memory such that therite action follows thestoreaction.

Most of the rules in the following sections further constrain the order in which
certain actions take place. A rule may state that one action must precede or follow
some other action. Note that this relationship is transitive: if agtioost precede
action B, andB must precede, thenA must precede. The programmer must
remember that these rules are ¢indy constraints on the ordering of actions; if no
rule or combination of rules implies that actiai€must precede actioB, then a
Java implementation is free to perform act®imefore actiona, or to perform
action B concurrently with actiom. This freedom can be the key to good perfor-
mance. Conversely, an implementation is not required to take advantage of all the
freedoms given it.

In the rules that follow, the phrasing ‘must intervene betwees and C”
means that actioa must follow actiona and precede action

8.3 Rules About Variables

Let T be a thread and be a variable. There are certain constraints on the opera-
tions performed by with respect to/:

» A useorassignby T of v is permitted only when dictated by executiontby
of the Java program according to the standard Java execution model. For exam-
ple, an occurrence of as an operand of theoperator requires that a single
useoperation occur oly; an occurrence of as the left-hand operand of the
assignment operatemrequires that a singbssignoperation occur. Aliseand

THREADS AND LOCKS 375

assignactions by a given thread must occur in the order specified by the pro-
gram being executed by the thread. If the following rules fortid perform

a requireduseas its next action, it may be necessaryrfdao perform doad

first in order to make progress.

» A storeoperation byr on Vv must intervene between assignby T of v and
a subsequerbad by T of v. (Less formally: a thread is not permitted to lose
the most recent assign.)

» An assignoperation byr on Vv must intervene betweeriaad or storeby T of
v and a subsequestoreby T of V. (Less formally: a thread is not permitted
to write data from its working memory back to main memory for no reason.)

» After a thread is created, it must performeasignor load operation on a vari-
able before performing ase or store operation on that variable. (Less for-
mally: a new thread starts with an empty working memory.)

 After a variable is created, every thread must performsaignor load oper-
ation on that variable before performingiseor store operation on that vari-
able. (Less formally: a new variable is created only in main memory and is not
initially in any thread’s working memory.)

Provided that all the constraints in §8.3, §8.6, and §8.7 are obelped] ar

store operation may be issued at any time by any thread on any variable, at the
whim of the implementation.

There are also certain constraints onrdaa andwrite operations performed

by main memory:

» For everyload operation performed by any threadn its working copy of a
variable v, there must be a corresponding precedaay operation by the
main memory on the master copywfand thdoad operation must put into
the working copy the data transmitted by the correspondamoperation.

» For everystoreoperation performed by any threadn its working copy of a
variable v, there must be a corresponding followwwgte operation by the
main memory on the master copy\gfand thewrite operation must put into
the master copy the data transmitted by the corresposttirepperation.

» Let actionA be aload or storeby threadr on variablev, and let actiorP be
the correspondingead or write by the main memory on variable Similarly,
let actions be some othdoad or store by threadr on that same variablg,
and let actionp be the correspondingad or write by the main memory on

376

THE JAVAM VIRTUAL MACHINE SPECIFICATION

variableVv. If A precedes, thenP must preced®. (Less formally: operations
on the master copy of any given variable on behalf of a thread are performed
by the main memory in exactly the order that the thread requested.)

Note that this last rule appliemly to actions by a thread on tsamevariable.
However, there is a more stringent ruleoilatile variables (88.7).

8.4 Nonatomic Treatment of Double and Long Variables

If a doubTe or Tong variable is not declareeblatile, then for the purposes of
load, store read, andwrite operations it is treated as if it were two variables of
32 bits each: wherever the rules require one of these operations, two such opera-
tions are performed, one for each 32-bit half. The manner in which the 64 bits of
adouble or Tong variable are encoded into two 32-bit quantities and the order
of the operations on the halves of the variables are not definEdebyava Lan-
guage Specification

This matters only becauseead or write of adouble or Tong variable may
be handled by an actual main memory as two 32hi or write operations that
may be separated in time, with other operations coming between them. Conse-
quently, if two threads concurrently assign distinct values to the same shared non-
volatile double or Tong variable, a subsequent use of that variable may obtain
a value that is not equal to either of the assigned values, but some implementation-
dependent mixture of the two values.

An implementation is free to implemelutad, store read andwrite opera-
tions for double andTong values as atomic 64-bit operations; in fact, this is
strongly encouraged. The model divides them into 32-bit halves for the sake of
several currently popular microprocessors that fail to provide efficient atomic
memory transactions on 64-bit quantities. It would have been simpler for Java to
define all memory transactions on single variables as atomic; this more complex
definition is a pragmatic concession to current hardware practice. In the future this
concession may be eliminated. Meanwhile, programmers are cautioned always to
explicitly synchronize access to shatkdble andlong variables.

8.5 Rules About Locks

Let T be a thread and be a lock. There are certain constraints on the operations
performed byr with respect ta.:

THREADS AND LOCKS 377

» A lockoperation byr onL may occur only if, for every threagl other tharr,
the number of precedinmlockoperations bys onL equals the number of pre-
cedinglock operations bys on L. (Less formally: only one thread at a time is
permitted to lay claim to a lock; moreover, a thread may acquire the same lock
multiple times and does not relinquish ownership of it until a matching number
of unlockoperations have been performed.)

» An unlockoperation by thread on lockL may occur only if the number of
precedingunlockoperations byr onL is strictly less than the number of pre-
cedinglock operations byr onL. (Less formally: a thread is not permitted to
unlock a lock it does not own.)

With respect to a lock, tHeck andunlockoperations performed by all the threads
are performed in some total sequential order. This total order must be consistent
with the total order on the operations of each thread.

8.6 Rules About the Interaction of Locks and Variables

Let 7 be any thread, lat be any variable, and letbe any lock. There are certain
constraints on the operations performedrbwith respect to/ andL:

» Between arassignoperation byr onVv and a subsequenhlockoperation by
T onL, astoreoperation byr on v must intervene; moreover, thgite oper-
ation corresponding to thaetoremust precede thenlockoperation, as seen by
main memory. (Less formally: if a thread is to performualockoperation on
anylock, it must first copwll assigned values in its working memory back out
to main memory.)

» Between dock operation byr onL and a subsequeuaseor storeoperation by
T on a variable/, anassignor load operation orv must intervene; moreover,
if itis aload operation, then theadoperation corresponding to thaad must
follow the lock operation, as seen by main memory. (Less formallpcla
operation behaves as if it flushabkvariables from the thread’s working mem-
ory, after which it must either assign them itself or load copies anew from main
memory.)

378 THE JAVAM VIRTUAL MACHINE SPECIFICATION
8.7 Rules for Volatile Variables

If a variable is declared volatile, then additional constraints apply to the opera-
tions of each thread. L&t be a thread and let andw be volatile variables.

» A useoperation byr onV is permitted only if the previous operation byn
vV wasload, and doad operation byr onV is permitted only if the next oper-
ation by T on Vv is use Theuseoperation is said to be “associated” with the
read operation that corresponds to thad.

» A storeoperation byr onV is permitted only if the previous operation Dy
on Vv wasassign and arassignoperation byr on Vv is permitted only if the
next operation by on Vv is store Theassignoperation is said to be “associ-
ated” with thewrite operation that corresponds to #tere

* Let actionA be auseor assignby threadr on variablev, let actionF be the
load or storeassociated witla, and let actiorP be theread or write of v that
corresponds te. Similarly, let actiors be auseor assignby threadr on vari-
ablew, let actionG be theload or storeassociated witis, and let actiorQ be
theread or write of v that corresponds t6. If A precedes®, thenp must pre-
cedeQ. (Less formally: operations on the master copies of volatile variables on
behalf of a thread are performed by the main memory in exactly the order that
the thread requested.)

8.8 Prescient Store Operations

If a variable is not declarecblatile, then the rules in the previous sections are
relaxed slightly to allovstore operations to occur earlier than would otherwise be
permitted. The purpose of this relaxation is to allow optimizing Java compilers to
perform certain kinds of code rearrangement that preserve the semantics of prop-
erly synchronized programs, but might be caught in the act of performing memory
operations out of order by programs that are not properly synchronized.

Suppose that atore by T of v would follow a particulaassignby T of v
according to the rules of the previous sections, with no intervéoaagpr assign
by T of v. Then thatstore operation would send to the main memory the value
that theassignoperation put into the working memory of threedThe special
rule allows thestore operation actually to occur before thssign operation
instead, if the following restrictions are obeyed:

THREADS AND LOCKS 379

* If the storeoperation occurs, thessignis bound to occur. (Remember, these
are restrictions on what actually happens, not on what a thread plans to do. No
fair performing astore and then throwing an exception before Hssign
occurs!)

» Nolock operation intervenes between the relocatedeand theassign
* Noload of v intervenes between the relocattdreand theassign
* No otherstoreof v intervenes between the relocasgtdreand theassign

» Thestoreoperation sends to the main memory the value thatssignopera-
tion will put into the working memory of thread

This last property inspires us to call such an estdyeoperatiorprescient it has

to know ahead of time, somehow, what value will be stored bgdbignthat it
should have followed. In practice, optimized compiled code will compute such
values early (which is permitted if, for example, the computation has no side
effects and throws no exceptions), store them early (before entering a loop, for
example), and keep them in working registers for later use within the loop.

8.9 Discussion

Any association between locks and variables is purely conventional. Locking
any lock conceptually flushedl variables from a thread’s working memory,

and unlocking any lock forces the writing out to main memorgloYariables

that the thread has assigned. That a lock may be associated with a particular
object or a class is purely a convention. In some applications, it may be appro-
priate always to lock an object before accessing any of its instance variables, for
example;synchronized methods are a convenient way to follow this conven-
tion. In other applications, it may suffice to use a single lock to synchronize
access to a large collection of objects.

If a thread uses a particular shared variable only after locking a particular lock
and before the corresponding unlocking of that same lock, then the thread will
read the shared value of that variable from main memory aftéwdkeperation,
if necessary, and will copy back to main memory the value most recently assigned
to that variable before thenlockoperation. This, in conjunction with the mutual
exclusion rules for locks, suffices to guarantee that values are correctly transmit-
ted from one thread to another through shared variables.

380

THE JAVAM VIRTUAL MACHINE SPECIFICATION

The rules for volatile variables effectively require that main memory be
touched exactly once for eaakeor assignof a volatile variable by a thread, and
that main memory be touched in exactly the order dictated by the thread execution
semantics. However, such memory operations are not ordered with regpeact to
andwrite operations on nonvolatile variables.

8.10 Example: Possible Swap

Consider a class that has class variablesdb and methodai ther andyon:

class Sample {
inta=1, b = 2;
void hither() {

a =b;
}
void yon(Q)
b = a;
}

}

Now suppose that two threads are created, and that one threadd tiadls while
the other thread callgon. What is the required set of actions and what are the
ordering constraints?

Let us consider the thread that cditsther. According to the rules, this
thread must perform aseof b followed by anassignof a. That is the bare mini-
mum required to execute a call to the methother.

Now, the first operation on varialbeby the thread cannot hse But it may
beassignor load. An assignto b cannot occur because the program text does not
call for such amassignoperation, so bbad of b is required. Thisoad operation by
the thread in turn requires a precediaegd operation fob by the main memory.

The thread may optionalktorethe value oh after theassignhas occurred. If
it does, then thetoreoperation in turn requires a followiwgrite operation fora
by the main memory.

The situation for the thread that cajts is similar, but with the roles afand
b exchanged.

THREADS AND LOCKS 381

The total set of operations may be pictured as follows:

hither thread main memory yon thread
readb reada
load b load a
! |
useb usea
! |
assigna assignb
! |
[storea] [storeb]

[writea] [write b]

Here an arrow from actioa to actions indicates thatt must preceds.

In what order may the operations by the main memory occur? The only con-
straint is that it is not possible both for thate of a to precede theead of a and
for thewrite of b to precede theead of b, because the causality arrows in the dia-
gram would form a loop so that an action would have to precede itself, which is
not allowed. Assuming that the optiorstbre andwrite operations are to occur,
there are three possible orderings in which the main memory might legitimately
perform its operations. Léta andhb be the working copies af andb for the
hither thread, letya andyb be the working copies for then thread, and leta
andmb be the master copies in main memory. Initiad=1 andmb=2. Then the
three possible orderings of operations and the resulting states are as follows:

* write a—reada, readb - write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)

» reada - write a, write b - readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

» reada - write a, readb - write b (thenha=2, hb=2, ma=2, mb=1, ya=1, yb=1)
Thus, the net result might be that, in main memiorg, copied inta, a is copied

into b, or the values od andb are swapped; moreover, the working copies of the
variables might or might not agree. It would be incorrect, of course, to assume that

382 THE JAVAM VIRTUAL MACHINE SPECIFICATION

any one of these outcomes is more likely than another. This is one place in which
the behavior of a Java program is necessarily timing-dependent.
Of course, an implementation might also choose not to perforstaheand
write operations, or only one of the two pairs, leading to yet other possible results.
Now suppose that we modify the example tosi8ehronized methods:

class SynchSample {
inta=1, b = 2;
synchronized void hither() {

a =b;

}

synchronized void yon()
b = a;

}

}

Let us again consider the thread that chilsher. According to the rules, this
thread must performlack operation (on th€lass object for clasSynchSample)
before the body of methddi ther is executed. This is followed byuseof b and
then anassignof a. Finally, anunlock operation on th€lass object must be per-
formed after the body of methdd ther completes. That is the bare minimum
required to execute a call to the methadher.

As before, doad of b is required, which in turn requires a precediagd
operation fob by the main memory. Because thad follows thelock operation,
the correspondingead must also follow théock operation.

Because annlockoperation follows thassignof a, astoreoperation ora is
mandatory, which in turn requires a followimgite operation fora by the main
memory. Thenrite must precede thenlockoperation.

The situation for the thread that calts is similar, but with the roles afand
b exchanged.

THREADS AND LOCKS 383

The total set of operations may be pictured as follows:

hither thread main memory yon thread

lock classSynchSample lock classSynchSample

. '

readb reada
loadb load a
| !
useb usea
| !
assigna assignb
| !
storea storeb

\ /

write a write b

unlockclassSynchSample unlockclassSynchSample

The lock and unlock operations provide further constraints on the order of
operations by the main memory; tleek operation by one thread cannot occur
between thdock andunlock operations of the other thread. Moreover, uhkck
operations require that trstore andwrite operations occur. It follows that only
two sequences are possible:

» write a—reada, readb — write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)
» reada- write a, write b » readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

While the resulting state is timing-dependent, it can be seen that the two threads
will necessarily agree on the valuesaaindb.

384 THE JAVAM VIRTUAL MACHINE SPECIFICATION
8.11 Example: Out-of-Order Writes

This example is similar to that in the preceding section, except that one method
assigns to both variables and the other method reads both variables. Consider a
class that has class variabéeandb and methodso andfro:

class Simple {
inta=1, b = 2;
void to() {
a = 3;
b = 4;
}
void fro(Q)
System.out.printin("a=

+a+ ", b=" + b);

}

Now suppose that two threads are created, and that one threaib calige the
other thread call§ro. What is the required set of actions and what are the order-
ing constraints?

Let us consider the thread that calls According to the rules, this thread
must perform amssignof a followed by arassignof b. That is the bare minimum
required to execute a call to the methodBecause there is no synchronization, it
is at the option of the implementation whether or natéoe the assigned values
back to main memory! Therefore, the thread that dalsmay obtain eithet or
3 for the value ofi, and independently may obtain eitReor 4 for the value ob.

Now suppose thato is synchronized butfro is not:

class SynchSimple {
inta=1, b = 2;
synchronized void to() {

a = 3;

b = 4;
}
void fro()

System.out.printin("a= " + a + ", b=" + b);
}

THREADS AND LOCKS 385

In this case the methaa will be forced tostorethe assigned values back to main
memory before th@nlock operation at the end of the method. The methad
must, of course, useandb (in that order) and so mulstad values fora andb
from main memory.

The total set of operations may be pictured as follows:

to thread main memory fro thread

reada readb

lock classSynchSimple loada loadb
! |
assigna usea
| }
assignb useb
| /
storea storeb printing

\

writea ~ write b

Vo /

unlockclassSynchSimple

Here an arrow from actioa to actions indicates thatt must preceds.

In what order may the operations by the main memory occur? Note that the
rules do not require thatrite a occur beforewrite b; neither do they require that
reada occur beforgeadb. Also, even though methaa is synchronized, method
fro is not synchronized, so there is nothing to preventahd operations from
occurring between thleck andunlockoperations. (The point is that declaring one
methodsynchronized does not of itself make that method behave as if it were
atomic.)

As a result, the methofto could still obtain eithet or 3 for the value o#,
and independently could obtain eittzeor 4 for the value ob. In particular,fro
might observe the valuefor a and4 for b. Thus, even thougho does arassign
to a and then arassignto b, the write operations to main memory may be
observed by another thread to occur as if in the opposite order.

386

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Finally, suppose thaio andfro are bothsynchronized:

class SynchSynchSimple {
inta=1, b = 2;
synchronized void to() {
a = 3;
b = 4;
}
synchronized void fro(Q)
System.out.printin("a=

+a+ ", b=" + b);

}

In this case, the actions of methfxb cannot be interleaved with the actions
of methodto, and sofro will print either “a=1, b=2" or “a=3, b=4".

8.12 Threads

Threads are created and managed by the clabsesd andThreadGroup. Cre-

ating aThread object creates a thread, and that is the only way to create a thread.
When the thread is created, it is not yet active; it begins to run whenaits
method is called.

8.13 Locks and Synchronization

There is a lock associated with every object. The Java language does not provide a
way to perform separateck andunlock operations; instead, they are implicitly
performed by high-level constructs that arrange always to pair such operations
correctly. (The Java Virtual Machine, however, provides sepanatgtorenter
andmonitorexitinstructions that implement theck andunlockoperations.)

The synchronized statement computes a reference to an object; it then
attempts to perform kbck operation on that object and does not proceed further
until the lock operation has successfully completed.|g8k operation may be
delayed because the rules about locks can prevent the main memory from
participating until some other thread is ready to perform one or omdpek
operations.) After the lock operation has been performed, the body of the
synchronized statement is executed. If execution of the body is ever completed,

THREADS AND LOCKS 387

either normally or abruptly, annlock operation is automatically performed on
that same lock.

A synchronized method automatically performs@ck operation when it is
invoked; its body is not executed until tleek operation has successfully com-
pleted. If the method is an instance method, it locks the lock associated with the
instance for which it was invoked (that is, the object that will be knowth&s
during execution of the body of the method). If the methadasic, it locks the
lock associated with th€lass object that represents the class in which the
method is defined. If execution of the method’s body is ever completed, either
normally or abruptly, annlockoperation is automatically performed on that same
lock.

Best practice is that if a variable is ever to be assigned by one thread and used
or assigned by another, then all accesses to that variable should be enclosed in
synchronized methods osynchronized statements.

8.14 Wait Sets and Notification

Every object, in addition to having an associated lock, has an associated wait set,
which is a set of threads. When an object is first created, its wait set is empty.
Wait sets are used by the metheds t, notify, andnotifyAll of class
Object. These methods also interact with the scheduling mechanism for threads.
The methodwait should be invoked for an object only when the current
thread (call itr) has already locked the object’s lock. Suppose that thréad in
fact performedv lock operations that have not been matchedubipck opera-
tions. Thewait method then adds the current thread to the wait set for the object,
disables the current thread for thread scheduling purposes, and pevfontask
operations to relinquish the lock. The thrgatien lies dormant until one of three
things happens:

» Some other thread invokes thetify method for that object, and thread
happens to be the one arbitrarily chosen as the one to notify.

» Some other thread invokes thetifyA11 method for that object.

« If the call by thread to thewait method specified a time-out interval, then the
specified amount of real time has elapsed.

The threadT is then removed from the wait set and re-enabled for thread
scheduling. It then locks the object again (which may involve competing in the

388

THE JAVAM VIRTUAL MACHINE SPECIFICATION

usual manner with other threads); once it has gained control of the lock, it per-
forms N — 1 additionallock operations and then returns from the invocation of the
wait method. Thus, on return from theit method, the state of the object’s lock

is exactly as it was when tlhea1it method was invoked.

Thenotify method should be invoked for an object only when the current
thread has already locked the object’s lock, orIdmegalMonitorState-
Exception will be thrown. If the wait set for the object is not empty, then some
arbitrarily chosen thread is removed from the wait set and re-enabled for thread
scheduling. (Of course, that thread will not be able to proceed until the current
thread relinquishes the object’s lock.)

ThenotifyAll method should be invoked for an object only when the cur-
rent thread has already locked the object’s lock, afldrgalMonitorState-
Exception will be thrown. Every thread in the wait set for the object is removed
from the wait set and re-enabled for thread scheduling. (Of course, those threads
will not be able to proceed until the current thread relinquishes the object’s
lock.)

CHAPTER9

An Optimization

THIS chapter describes an optimization implemented in Sun’s version of the Java
Virtual Machine. In this optimization, compiled Java Virtual Machine code is modi-
fied at run time for better performance.

The optimization takes the form of a set of pseudo-instructions. These are
variants of normal Java Virtual Machine instructions that take advantage of infor-
mation learned at run time to do less work than the original instructions. The
pseudo-instructions are distinguishable by the suffidick in their mnemonics.

It is important to understand that these pseudo-instructiommoapart of the
Java Virtual Machine specification or instruction set. They are invisible outside of
a Java Virtual Machine implementation. However, inside a Java Virtual Machine
implementation they have proven to be an effective optimization.

The techniqgue documented in this chapter is covered by U.S. Patent
5,367,685.

9.1 Dynamic Linking via Rewriting

A compiler targeting the Java Virtual Machine must only emit instructions from the
instruction set documented in Chapter 6, “Java Virtual Machine Instruction Set.”
The optimization described in this chapter works by dynamically replacing occur-
rences of certain of those instructions, the first time they are executed, by internal,
more efficient variants. The new instructions take advantage of loading and linking
work done the first time the associated normal instruction is executed.

For instructions that are rewritten, each instance of the instruction is replaced
on its first execution by aquick pseudo-instruction. Subsequent execution of that

389

390

THE JAVAM VIRTUAL MACHINE SPECIFICATION

instruction instance is always thquick variant. Most instructions withquick
variants have just a single alternative version, although some have several.

In all cases, the instructions witlquick variants reference the constant pool,
a fairly costly operation. Thequick pseudo-instructions save time by exploiting
the fact that, while the first time an instruction referencing the constant pool must
dynamically resolve the constant pool entry, subsequent invocations of that same
instruction must reference the same object and need not resolve the entry again.
The rewriting process is as follows:

1. Resolve the specified item in the constant pool.
2. Throw an exception if the item in the constant pool cannot be resolved.

3. Overwrite the instruction with thequick pseudo-instruction and any new
operands it requires. The instructignastatic, getstatic, putfield, andgetfield
each have twoquick versions, chosen depending on the type of the field being
operated upon.

4. Execute the newquick pseudo-instruction.

This is the same as the definition of the original instruction, except for the additional
step in which the instruction overwrites itself with_itgiick variant. The operands

of the_quick pseudo-instruction must fit within the space allocated for the original
instruction’s operands.

The _quick variant of an instruction can assume that the item in the constant
pool has already been resolved and that this resolution did not generate any errors.
It simply performs the intended operation on the resolved item. A significant
amount of time is thus saved on all subsequent invocations of the pseudo-instruc-
tion.

9.2 The_quick Pseudo-instructions

The remainder of this chapter specifies tlgaick pseudo-instructions used by
Sun’s Java Virtual Machine implementation. Although they are documented in the
same format as the normal Java Virtual Machine instructions,gtiiek pseudo-
instructions are not part of the Java Virtual Machine specification and do not appear
in class files. They are normally an invisible implementation detail, so that deci-
sions such as opcode choices are left up to the implementor.

However, there are exceptions to this rule. Certain tools such as debuggers
and just-in-time (JIT) code generators may need to know details abowuible

AN OPTIMIZATION 391

pseudo-instructions so that they can operate on code that has already been exe-
cuted. An implementation of the Java Virtual Machine may use techniques similar
to but different from Sun’s quick pseudo-instructions, or may use different
opcode numbers from Sun’s implementation. Tools assuming the details of Sun’s
_quick pseudo-instructions may not work with these differing implementations.

APIs are being developed for debuggers and JIT code generators. These APls
may provide ways of hiding details of internal pseudo-instructions so that tools
that are independent of internal implementation details can be written. However,
as of this writing these APIs have not yet been established, so in the meantime we
document opcode values together with other details of Sguisk instructions.
Tools can assume that implementations of the Java Virtual Machine that derive
from Sun’s, or that are written to be compatible with Sun’s implementation, will
follow the specification given below.

Contactjvm@java.sun.com for more information about the status of debug-
ger and JIT code generator APIs.

392

THE JAVAM VIRTUAL MACHINE SPECIFICATION

anewarray_quick anewarray_quick

Operation Create new array afeference

Format anewarray_quick

indexbytel
indexbyte2

Forms anewarray_quick = 222 (Oxde)

Stack ..., count J
..., arrayref

Description Thecount must be of typdnt. It is popped off the operand stack.
Thecount represents the number of components of the array to be
created. The unsigndddexbytel andindexbyte2 are used to con-
struct an index into the constant pool of the current class (83.6),
where the value of the index imdexbytel << 8) |indexbyte2. The
item at that index in the constant pool must already have been suc-
cessfully resolved and must be a class or interface type. A new
array of that type, of lengttount, is allocated from the garbage-
collected heap, and reference arrayref to this new array object
is pushed onto the operand stack. All components of the new array
are initialized tonull, the default value for reference types
(82.5.1).

Runtime If count is less than zero, ttamewarray_quick instruction throws a

Exception NegativeArraySizeException.

Notes The opcode of this instruction was originalyewarray. The oper-

ands of thanewarray instruction are not modified.

The anewarray_quick instruction is used to create a single dimen-
sion of an array of object references. It can also be used to create
the first dimension of a multidimensional array.

AN OPTIMIZATION 393

checkcast_quick checkcast_quick
Operation Check whether object is of given type
Format checkcast_quick

indexbytel

indexbyte2
Forms checkcast_quick = 224 (0xe0)
Stack ..., objectref [J

..., Objectref

Description Theobjectref must be of typ@eference. The unsigneihdexbytel

andindexbyte2 are used to construct an index into the constant pool
of the current class (83.6), where the value of the index is
(indexbytel << 8) |indexbyte2. The object at that index of the con-
stant pool must already have been successfully resolved and must
be a class or interface type.

If objectref is nu11 or can be cast to the resolved class, array, or
interface type, the operand stack is unchanged; otherwise, the
checkcast_quick instruction throws @lassCastException.

The following rules are used to determine whethesbgattref that

is notnul1 can be cast to the resolved typeslis the class of the
object referred to bybjectref and T is the resolved class, array, or
interface typegheckcast_quick determines whethebjectref can be
cast to typer as follows:

e If Sis an ordinary (non-array) class, then:

« If Tis aclass type, thedmust be the same class (82.8.1) as
or S must be a subclass of

= If Tis an interface type, thesy must implement (§2.13) inter-
faceT.

394

THE JAVAM VIRTUAL MACHINE SPECIFICATION

checkcast_quick (cont.) checkcast_quick (cont.)

Runtime
Exception

Notes

» If Sis aclass representing the array tg£], that is, an array of
components of typsc, then:

= If Tis a class type, thenmust bedbject (82.4.6).

- If Tis an array typgcl], that is, an array of components of
type 7C, then one of the following must be true:

* TC andsc are the same primitive type (§2.4.1).

» TC andsc are reference types (82.4.5) and tyaecan be
cast to7C by these runtime rules.

S cannot be an interface type, because there are no instances of
interfaces, only instances of classes and arrays.

If objectref cannot be cast to the type of the resolved class, the
checkcast_quick instruction throws @lassCastException.

The opcode of this instruction was originadlyeckcast. The oper-
ands of theheckcast instruction are not modified.

The checkcast_quick instruction is very similar to the
instanceof quick instruction. It differs in its treatment afi11, its
behavior when its test failshgckcast_quick throws an exception,
instanceof_quick pushes a result code), and its effect on the oper-
and stack.

AN OPTIMIZATION 395

getfield_quick getfield_quick
Operation Fetch field from object
Format getfield_quick
offset
<unused>
Forms getfield_quick = 206 (Oxce)
Stack ..., objectref [J
..., value
Description The objectref, which must be of typeeference, is popped from
the operand stack. Thalue of the one-word field aiffset into the
class instance referenced thjectref is fetched and pushed onto
the operand stack.
Runtime If objectref is null, the getfield_quick instruction throws a
Exception NullPointerException.
Notes The opcode of this instruction was originaistfield, operating on

a field determined dynamically to have an offset into the class
instance data of 255 words or less and to have a width of one word.

When the constant pool entry referenced lggtfield instruction is
resolved, the offset for the field it references is generated. That off-
set replaces the first operand byte of the origietfield instruc-

tion. The second operand byte of tigetfield is unused by
getfield_quick.

396

THE JAVAM VIRTUAL MACHINE SPECIFICATION

getfield_quick_w getfield_quick_w
Operation Fetch field from object
Format getfield_quick_w
indexbytel
indexbyte2
Forms getfield_quick_w = 227 (0xe3)
Stack ..., objectref (]
..., value
OR
Stack ..., objectref (]
..., value.word1, value.word?2
Description The objectref, which must be of typeeference, is popped from
the operand stack. The unsignedexbytel and indexbyte2 are
used to construct an index into the constant pool of the current class
(83.6), where the index isnflexbytel << 8) |indexbyte2. The con-
stant pool item at the index must beCa@NSTANT_Fieldref
(84.4.2) which must already have been resolved and must not be a
class §tatic) field. A field offset must have been stored in the
constant pool. Thealue at that offset into the class instance refer-
enced byobjectref is fetched and pushed onto the operand stack.
Runtime If objectref is null, the getfield_quick_w instruction throws a
Exception NullPointerException.
Notes The opcode of this instruction was originagstfield, operating on

a field determined dynamically to have an offset into the class
instance data of more than 255 words.

AN OPTIMIZATION 397

getfield_quick_w (cont.) getfield_quick_w (cont.)

The operands of thgetfield instruction are not modified. Because
the getfield_quick_w instruction operates on both one- and two-
word wide fields, it needs to know both the field offset and the type
of that field. Because the origingdtfield instruction needed a 16-

bit index, the field offset may be 16 bits wide. As there is insuffi-
cient space in the instruction to store both a 16-bit offset and a field
type, getfield_quick_w retains its original operands and uses them
to index into the constant pool, where the offset and field type are
available in the resolved entry.

398

THE JAVAM VIRTUAL MACHINE SPECIFICATION

getfield2_quick getfield2_quick
Operation Fetchlong ordoubTe field from object
Format getfield2_quick
offset
<unused>
Forms getfield2_quick = 208 (0xd0)
Stack ..., objectref (]
..., value.word1l, value.word?2
Description The objectref, which must be of typeeference, is popped from
the operand stack. Tivalue of the two-word field atffset into the
class instance referenced thjectref is fetched and pushed onto
the operand stack.
Runtime If objectref is null, the getfield2_quick instruction throws a
Exception NullPointerException.
Notes The opcode of this instruction was originagstfield, operating on

a field determined dynamically to have an offset into the class
instance data of 255 words or less and to have a width of two
words.

When the constant pool entry referenced kygtéeld instruction is
resolved, the offset for the field it references is generated. That off-
set replaces the first operand of the origge#field instruction. The
second operand of tigetfield is unused bygetfield2_quick.

AN OPTIMIZATION 399

getstatic_quick getstatic_quick
Operation Get static field from class
Format getstatic_quick
indexbytel
indexbyte2
Forms getstatic_quick = 210 (0xd2)
Stack ey
..., value
Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isiffdexbytel << 8) |indexbyte2. The constant
pool item at that index must beCGANSTANT_Fieldref (84.4.2)
which must already have been resolved and must be a class
(static) field that is one word wide. Thelue of that class field is
fetched and pushed onto the operand stack.
Notes The opcode of this instruction was originaibtstatic, operating on

a static field determined dynamically to be one word wide. The
operands of thgetstatic instruction are not modified. There is no

equivalent to thegetfield_quick instruction, storing a class offset as

an instruction operand, for one-wasdatic fields.

400

THE JAVAM VIRTUAL MACHINE SPECIFICATION

getstatic2_quick getstatic2_quick
Operation Get static field from class
Format getstatic2_quick
indexbytel
indexbyte2
Forms getstatic2_quick = 212 (0xd4)
Stack e, 0
..., value.word1l, value.word?2
Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isitidexbytel << 8) |indexbyte2. The constant
pool item at that index must beCGANSTANT_Fieldref (84.4.2)
which must already have been resolved and must be a class
(static) field that is two words wide. Thalue of that class field
is fetched and pushed onto the operand stack.
The constant pool item is a field reference to a static field of a class.
The type of the field must bing or double. The value of that
field is pushed onto the stack.
Notes The opcode of this instruction was originalbtstatic, operating on

a class field determined dynamically to be two words wide. The
operands of thgetstatic instruction are not modified. There is no
equivalent to theyetfield2_quick instruction, storing a class offset
as an instruction operand, for two-warthtic fields.

AN OPTIMIZATION 401

instanceof quick instanceof quick
Operation Determine if object is of given type
Format instanceof_quick

indexbytel

indexbyte2
Forms instanceof_quick = 225 (Oxel)
Stack ..., Objectref O

..., result

Description The objectref, which must be of typeeference, is popped from

the operand stack. The unsigniediexbytel and indexbyte2 are

used to construct an index into the constant pool of the current class
(83.6), where the value of the index imdexbytel << 8) |
indexbyte2. The class at that index of the constant pool must have
already been successfully resolved and may be a class, array, or
interface.

If objectref is notnull and is an instance of the resolved class,
array, or interface, thiastanceof _quick instruction pushes amt

result of 1 as an int on the operand stack. Otherwise, it pushes an
int result of 0.

The following rules are used to determine whetheobgautref that

is notnul1 is an instance of the resolved typesifs the class of
the object referred to kobjectref and T is the resolved class, array,
or instance typeinstanceof_quick determines whethabjectref is
an instance of as follows:

e If sis an ordinary (non-array) class, then:

= If Tis a class type, thed must be the same class (82.8.1J as
or a subclass of.

= If Tis an interface type, thesy must implement (82.13) inter-
faceT.

402 THE JAVAM VIRTUAL MACHINE SPECIFICATION

instanceof _quick (cont.) instanceof _quick (cont.)

» If Sis aclass representing the array tg£], that is, an array of
components of typsc, then:

= If Tis a class type, thenmust bedbject (82.4.6).

- If Tis an array typgcl], that is, an array of components of
type 7C, then one of the following must be true:

* TC andsc are the same primitive type (§2.4.1).

» TC andsc are reference types (82.4.5) and tyaecan be
cast to7C by these runtime rules.

S cannot be an interface type, because there are no instances of
interfaces, only instances of classes and arrays.

Notes The opcode of this instruction was originailhgtanceof. The oper-
ands of thenstanceof instruction are not modified.

AN OPTIMIZATION 403

invokeinterface_quick invokeinterface_quick
Operation Invoke interface method
Format invokeinterface_quick
idbytel
idbyte2
nargs
guess
Forms invokeinterface_quick = 218 (Oxda)
Stack ..., objectref, [argl, [arg2 ...]] O
Description The unsigneddbytel andidbyte? are used to construct an identifier

for the name and descriptor (84.3.3) of the desired method, where
the value of the identifier isdpytel << 8) |idbyte2.

Thenargs operand is an unsigned byte which must not be zero. The
objectref must be of typereference and must be followed on the
operands stack liyargs — 1 words of arguments. The method table
of the class of the type objectref is determined. lbbjectref is an
array type, then the method table of clalsgect is used.

The unsignedyuess is used to index into the method table. If there
is a method at indeguess, and if its identifier is identical to the
constructed identifier, then that method is selected. Otherwise, the
method table is searched for a method whose identifier is identical
to the constructed identifier. If one is found, the current value of
guess is overwritten by that index.

The result of the search is a method table entry, which includes a
direct reference to the code for the interface method and the
method’s madifier information ((see Table 4.4, “Method access and
modifier flags”). The method table entry must be that @itdic
method.

404

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokeinterface_quick (cont.) invokeinterface_quick (cont.)

Linking
Exceptions

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahjctref and the words

of arguments are made the values of its fissgs local variables,

with objectref in local variablé), argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

If the method isnative and the platform-dependent code that
implements it has not yet been loaded and linked into the Java Vir-
tual Machine, that is done. Tmargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

If no method matching the resolved name and descriptor can be
found in the class obbjectref, invokeinterface_quick throws an
IncompatibleClassChangeError.

Otherwise, if the selected method is a classatic)
method, theinvokeinterface_quick instruction throws an
IncompatibleClassChangeError.

Otherwise, if the selected method is nptblic, the in-
vokeinterface_quick instruction throws afi11egalAccessError.

Otherwise, if the selected method isbstract, invoke-
interface_quick throws ambstractMethodError.

Otherwise, if the selected methodristive and the code that
implements the method cannot be loaded or linkespke-
interface_quick throws arnsatisfiedLinkError.

AN OPTIMIZATION 405

invokeinterface_quick (cont.) invokeinterface_quick (cont.)

Runtime
Exception

Notes

Otherwise, ifobjectref is nu11, the invokeinterface_quick instruc-
tion throws aNu11PointerException.

The opcode of this instruction was originaifwokeinterface. The

initial value of guess is 0, the operand value supplied by
invokeinterface. The identifiers being compared and stored in the
invokeinterface_quick instruction encode a method name and
descriptor as a 16-bit quantity that can be compared quickly. The
details of the encoding are implementation-specific. The bytes of
the identifier for the method being invokadbytel andidbyte2,
replace the original constant pool index bytes. The identifier can be
calculated when each method is loaded, or at run time. The value of
thenargs operand is not modified.

406

invokenonvirtual _quick

Operation

Format

Forms

Stack

Description

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokenonvirtual _quick

Invoke an instance initialization method or a private method, dis-
patching based on compile-time type

invokenonvirtual_quick
indexbytel
indexbyte2

invokenonvirtual_quick = 215 (0xd7)

..., Objectref, [argl, [arg2 ...]] O

The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isifidexbytel << 8) |indexbyte2. The constant

pool item at the index must beCANSTANT_Methodref (84.4.2)
which must already have been resolved successfully. The constant
pool entry representing the resolved method includes a direct refer-
ence to the code for the method, an unsigned hsttgs which

must be greater than zero, and the method’s modifier information
(see Table 4.4, “Method access and modifier flags”).

If the method isynchronized, the monitor associated withjec-
tref is acquired.

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahpctref and the words

of arguments are made the values of its fissys local variables,

with objectref in local variabled, argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

If the method isnative, the nargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

AN OPTIMIZATION 407

invokenonvirtual_quick (cont.) invokenonvirtual _quick (cont.)

Runtime
Exception

Notes

If objectref is nu11, theinvokenonvirtual_quick instruction throws
aNullPointerException.

The opcode of this instruction was originalhywokespecial, and the
method it invoked was determined dynamically to be either an
instance initialization methodinit> or aprivate method. The
operands of thinvokespecial instruction are not modified.

The difference between th@vokenonvirtual_quick and thein-
vokevirtual_quick_w instructions is thatinvokevirtual_quick_w
invokes a method based on the actual (runtime) type of the object.
Theinvokenonvirtual_quick instruction invokes an instance initial-
ization method oprivate method based on the compile-time type
of the object.

408

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokesuper_quick invokesuper_quick

Operation

Format

Forms

Stack

Description

Invoke a superclass method, dispatching based on compile-time
type

invokesuper_quick
indexbytel
indexbyte2

invokesuper_quick = 216 (0xd8)

..., Objectref, [argl, [arg2 ...]] O

The unsignedndexbytel andindexbyte2 are used to construct an
index into the method table of the superclass of the current class
(83.6), where the value of the index imdexbytel << 8) |
indexbyte2. The specified method table entry includes a direct ref-
erence to the code for the method, an unsignedriayts which

must be greater than zero, and the method’s modifier information
(see Table 4.4, “Method access and modifier flags”).

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahjctref and the words

of arguments are made the values of its fiests local variables,

with objectref in local variablé), argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

If the method isnative, thenargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

AN OPTIMIZATION 409

invokesuper_quick (cont.) invokesuper _quick (cont.)

Runtime
Exception

Notes

If objectref is nul1, the invokesuper_quick instruction throws a
NuTT1PointerException.

The opcode of this instruction was originalhywokespecial, and the
method it invoked was determined dynamically to be a method in a
superclass of the current object. The operands ahtloiespecial
instruction are not modified.

The difference between theinvokesuper_quick and the
invokevirtual_quick_w instructions is thatnvokevirtual_quick_w
invokes a method based on the class of the object. The
invokesuper_quick instruction is used to invoke methods in a super-
class of the current class.

The invokesuper_quick instruction was introduced in Sun’s JDK
1.0.2 release to fix a bug in earlier versions of the Java Virtual
Machine. Prior to that release, thevokespecial instruction (then
named invokenonvirtual) would always be converted to the
invokenonvirtual_quick instruction.

410

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokestatic_quick invokestatic_quick

Operation

Format

Forms

Stack

Description

Notes

Invoke a class (static) method

invokestatic_quick

indexbytel

indexbyte2

invokestatic_quick = 217 (0xd9)

..., [argl, [arg2 ...]] O

The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isitidexbytel << 8) |indexbyte2. The constant
pool item at the index must beCANSTANT_Methodref (84.4.2)
which must already have been resolved successfully.

The constant pool entry representing the resolved method includes
a direct reference to the code for the method, an unsigned byte
nargs which may be zero, and the method’s modifier information
(see Table 4.4, “Method access and modifier flags”).

If the method issynchronized, the monitor associated with the
current class is acquired.

If the method is nohative, the nargs words of arguments are
popped from the operand stack. A new stack frame is created for
the method being invoked, and the words of arguments are made
the values of its firstargs local variables, witlargl in local vari-
able0, arg2 in local variablel, and so on. The new stack frame is
then made current, and the Java Virtual Machiads set to the
opcode of the first instruction of the method to be invoked. Execu-
tion continues with the first instruction of the method.

If the method isiative, thenargs words of arguments are popped
from the operand stack; the code that implements the method is
invoked in an implementation-dependent manner.

The opcode of this instruction was originallyvokestatic. The
operands of thinvokestatic instruction are not modified.

AN OPTIMIZATION 411

invokevirtual_quick invokevirtual _quick

Operation Invoke instance method; dispatch based on class

Format invokevirtual_quick

index

nargs
Forms invokevirtual_quick = 214 (0xd6)
Stack ..., objectref, [argl, [arg2 ...]] O

Description The objectref must be of typereference and must reference a
class instance. Thidex operand is an unsigned byte, and the
nargs operand is an unsigned byte, which must not be zero. The
index is an index into the method table of the class of the type of
objectref. The table entry at that index includes the method’s code
and its maodifier information (see Table 4.4, “Method access and
modifier flags”).

If the method isynchronized, the monitor associated wibhjec-
tref is acquired.

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahpctref and the words

of arguments are made the values of its fiestys local variables,

with objectref in local variable, argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

412

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokevirtual _quick (cont.) invokevirtual_quick (cont.)

Linking
Exception

Runtime
Exception

Notes

If the method isnative and the platform-dependent code that
implements it has not yet been loaded and linked into the Java Vir-
tual Machine, that is done. Timargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

If the specified method isative and the code that implements
the method cannot be loaded or linked, theokevirtual_quick
instruction throws atinsatisfiedLinkError.

Otherwise, ifobjectref is nu11, theinvokevirtual_quick instruction
throws aNuT1PointerException.

The opcode of this instruction was originaitywokevirtual, with
objectref not referring to an instance gfva.lang.0Object and

with operands determined dynamically to represent a method with
a method table index of 255 or less. When the constant pool entry
referenced by amvokevirtual instruction is resolved, a one-byte
index for the method it references is generated. That index replaces
the first operand byte of the originialokevirtual instruction. The
second operand byte of thevokevirtual instruction is replaced by
nargs, the number of argument words expected by the method.

An invokevirtual instruction referring to an instance of
java.lang.Object and with operands representing a constant
pool index of 255 or less will instead be converted into an
invokevirtualobject_quick instruction. Anyinvokevirtual instruc-

tion with operands representing a constant pool index greater than
255 will be converted into amvokevirtual_quick_w instruction.

AN OPTIMIZATION 413

invokevirtual_quick_w invokevirtual_quick_w
Operation Invoke instance method, dispatching on class (wide index)
Format invokevirtual_quick_w

indexbytel

indexbyte2
Forms invokevirtual_quick_w = 226 (0xe2)
Stack ..., objectref, [argl, [arg2 ...]] O
Description The unsignedndexbytel andindexbyte2 are used to construct an

index into the constant pool of the current class (83.6), where the
index is {ndexbytel << 8) |indexbyte2. The constant pool item at

the index must be GONSTANT_Methodref (84.4.2) which must
already have been resolved successfully. The constant pool entry
representing the resolved method includes an unsigner into

the method table of the resolved class and an unsignechdrge
which must not be zero.

The objectref must be of typareference. Theindex is used as an
index into the method table of the class of the typebttref. If
theobjectref is an array type, then the method table of ddagect

is used. The table entry at that index includes the method’s code
and its modifier information (see Table 4.4, “Method access and
modifier flags™).

If the method isynchronized, the monitor associated withjec-
tref is acquired.

414

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokevirtual_quick_w (cont.) invokevirtual quick w (cont.)

Linking
Exception

Runtime
Exception

Notes

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahpctref and the words

of arguments are made the values of its fissgs local variables,

with objectref in local variabled, argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

If the method isnative and the platform-dependent code that
implements it has not yet been loaded and linked into the Java Vir-
tual Machine, that is done. Tmargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

If the specified method isative and the code that implements the
method cannot be loaded or linked, timyokevirtual_quick_w
instruction throws atinsatisfiedLinkError.

Otherwise, ifobjectref is nul11, theinvokevirtual _quick w instruc-
tion throws aNul11PointerException.

The opcode of this instruction was originaitywokevirtual, with
operands determined dynamically to represent a method with a
method table index greater than 255. The operands of the
invokevirtual instruction are not modified.

Theinvokevirtual_quick andinvokevirtualobject_quick instructions
only support a one-byte offset into the method tabtijettref. The
invokevirtual_quick_w instruction can be used to for invocations of
methods that cannot be represented usimgkevirtual_quick.

AN OPTIMIZATION 415

invokevirtualobject_quick invokevirtualobject _quick
Operation Invoke instance method of clagsva.lang.0Object
Format invokevirtualobject_quick
index
nargs
Forms invokevirtualobject_quick = 219 (Oxdb)
Stack ..., objectref, [argl, [arg2 ...]] O
Description Theobjectref must be of typeeference. Theindex operand is an

unsigned byte, and thmargs operand is an unsigned byte which
must not be zero. ThHadex is an index into the method table of the
class of the type afbjectref. If the objectref is an array type, then
the method table of clasbject is used. The table entry at that
index includes the method’'s code and its modifier information (see
Table 4.4, “Method access and modifier flags”).

If the method isynchronized, the monitor associated wibhjec-
tref is acquired.

If the method is notative, thenargs — 1 words of arguments and
objectref are popped from the operand stack. A new stack frame is
created for the method being invoked, ahpctref and the words

of arguments are made the values of its fiestys local variables,

with objectref in local variable, argl in local variablel, and so on.

The new stack frame is then made current, and the Java Virtual
Machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction
of the method.

416

THE JAVAM VIRTUAL MACHINE SPECIFICATION

invokevirtualobject_quick (cont.) invokevirtualobject_quick (cont.)

Linking
Exception

Runtime
Exception

Notes

If the method isnative and the platform-dependent code that
implements it has not yet been loaded and linked into the Java Vir-
tual Machine, that is done. Timargs — 1 words of arguments and
objectref are popped from the operand stack; the code that imple-
ments the method is invoked in an implementation-dependent man-
ner.

If the specified method isative and the code that implements the
method cannot be loaded or linkaéayokevirtual _quick throws an
UnsatisfiedLinkError.

Otherwise, if objectref is null, the invokevirtualobject quick
instruction throws &ul1PointerException.

The opcode of this instruction was originallwokevirtual, and it
referred to a method of the clagsva.lang.0Object determined
dynamically to have a method table index of 255 or less. The
invokevirtualobject_quick instruction is specifically for the benefit
of arrays.

When the constant pool entry referenced by iavokevirtual
instruction is resolved, a one-byte index for the method it refer-
ences is generated. That index replaces the first operand byte of the
original invokevirtual instruction. The second operand byte of the
invokevirtual instruction is replaced hyargs, the number of argu-
ment words expected by the method.

Theinvokevirtualobject_quick instruction only supports a one-byte
index into the method table dfjectref. Objects with large numbers

of methods may not be able to have all their methods referenced
with _quick variants. It is always correct, if less efficient, to re-
fuse to convert an instance of amvokevirtual instruction to
invokevirtualobject_quick.

An invokevirtual instruction not referring to an instance of
java.lang.Object and with operands representing a constant
pool index of 255 or less will instead be converted into an
invokevirtual_quick instruction. Anyinvokevirtual instruction with
operands representing a constant pool index greater than 255 will
be converted into aimvokevirtual_quick_w instruction.

AN OPTIMIZATION 417

Idc_quick Idc_quick

Operation Push item from constant pool

Format Idc_quick
index
Forms Idc_quick = 203 (0xcb)
Stack .. O
..., item

Description Theindex is an unsigned byte that must be a valid index into the
constant pool of the current class (83.6). The constantifeaokt
index must have already been resolved and must be one word wide.
The item is fetched from the constant pool and pushed onto the
operand stack.

Notes The opcode of this instruction was originaltie. The operand of
theldc instruction is not modified.

418

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Idc_w_quick Icd_w_quick
Operation Push item from constant pool (wide index)
Format Idc_w_quick
indexbytel
indexbyte2
Forms Idc_w_quick = 204 (0Oxcc)
Stack . a
..., item
Description The unsignedndexbytel and indexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current class
(83.6), where index isirf{dexbytel << 8) |indexbyte2. The index
must be a valid index into the constant pool of the current class.
The constant pooitem at the index must have already been
resolved and must be one word wide. Tiam is fetched from the
constant pool and pushed onto the operand stack.
Notes The opcode of this instruction was originaitie w. The operands

of theldc_w instruction are not modified.

The Idc_w_quick instruction is identical to thidc_quick instruc-
tion, except for its wider constant pool index.

AN OPTIMIZATION 419

Idc2_w_quick Idc2_w_quick

Operation Pushlong or double from constant pool (wide index)

Format Idc2_w_quick
indexbytel
indexbyte2

Forms Idc2_w_quick = 205 (Oxcd)

Stack .0

..., item.word1, item.word?2

Description The unsignedndexbytel and indexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current class
(83.6), where the value of the index imdexbytel << 8) |
indexbyte2. The index must be a valid index into the constant pool
of the current class. The (64-bit) constant mooktant at the index
must have already been resolved and must be two words wide.

Notes The opcode of this instruction was origindllig2_w. The operands
of the originalldc2_w instruction are not modified.

Only a wide index version of this instruction exists; there is no
Idc2_quick instruction that pushes a two-word constant with a
single-byte index.

420

multianewarray_quick

Operation

Format

Forms

Stack

Description

THE JAVAM VIRTUAL MACHINE SPECIFICATION

multianewarray_quick

Create new multidimensional array

multianewarray_quick
indexbytel
indexbyte2
dimensions

multianewarray_quick = 223 (0xdf)

..., countl, [count2, ...] O
..., arrayref

Thedimensions is an unsigned byte which must be greater than or
equal to 1. It represents the number of dimensions of the array to be
created. The operand stack must condaimensions words, which

must be of type nt and nonnegative, each representing the number
of components in a dimension of the array to be created. The
countl is the desired length in the first dimensiooynt2 in the
second, etc.

All of the count values are popped off the operand stack. The
unsignedndexbytel andindexbyte2 are used to construct an index
into the constant pool of the current class (83.6), where the value of
the index is ifdexbytel << 8) | indexbyte2. The resulting entry
must have already been resolved to an array class type of dimen-
sionality greater than or equaldomensions.

A new multidimensional array of the array type is allocated from
the garbage-collected heap. The components of the first dimension
of the array are initialized to subarrays of the type of second dimen-
sion, and so on. The components of the array in the final dimension
are initialized to the default initial value for its type (82.5.1). A
reference arrayref to the new array is pushed onto the operand
stack.

AN OPTIMIZATION 421

multianewarray_quick (cont.) multianewarray_quick (cont.)

Runtime If any of thedimensions values on the operand stack is less

Exception than zeromultianewarray_quick throws aNegativeArraySize-
Exception.

Notes The opcode of this instruction was originatiyltianewarray. The

operands of thenultianewarray instruction are not modified.

422

THE JAVAM VIRTUAL MACHINE SPECIFICATION

new_quick new_quick
Operation Create new object
Format new_quick
indexbytel
indexbyte2
Forms new_quick = 221 (Oxdd)
Stack .
..., Objectref
Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isiijdexbytel << 8) |indexbyte2. The item at
that index must have already been resolved to a class type. A new
instance of that class is created, and the instance variables of the
new object are initialized to their default initial values (82.5.1). The
objectref, areference to the instance, is pushed onto the operand
stack.
Notes The opcode of this instruction was originatigw. The operands of

the originalnew instruction are not modified.

AN OPTIMIZATION 423

putfield_quick putfield_quick
Operation Set field in object
Format putfield_quick
offset
unused
Forms putfield_quick = 207 (Oxcf)
Stack ..., objectref, value [J
Description Theobjectref, which must be of typeeference, andvalue, which
must be a value of a type appropriate for the specified field, are
popped from the operand stack. Nadue is written atoffset into
the class instance referencedobjectref.
Runtime If objectref is null, the putfield_quick instruction throws a
Exception NullPointerException.
Notes The opcode of this instruction was origingtiytfield, operating on

a field determined dynamically to have an offset into the class
instance data of 255 words or less and to have a width of one word.

When the constant pool entry referenced butdield instruction is
resolved, the offset for the field it references is generated. That off-
set replaces the first operand byte of the origiudfield instruc-

tion. The second operand byte of tpatfield is unused in
putfield_quick.

424

THE JAVAM VIRTUAL MACHINE SPECIFICATION

putfield_quick_w putfield_quick w

Operation Set field in object (wide index)

Format putfield_quick_w

indexbytel
indexbyte2

Forms putfield_quick_w = 228 (Oxe4)

Stack ..., Objectref, value O
OR

Stack ..., objectref, value.wordl, value.word2 [

Description Theobjectref, which must be of typeeference, andvalue, which
must be a value of a type appropriate for the specified field, are
popped from the operand stack. The unsiginaitxbytel and
indexbyte2 are used to construct an index into the constant pool of
the current class (83.6), where the indeximdkbytel << 8) |
indexbyte2. The constant pool item at the index must be a
CONSTANT_Fieldref (84.4.2) which must already have been
resolved and must not be a classaftic) field. Thevalue is writ-
ten atoffset into the class instance referencedhbjgctref.

Runtime If objectref is null, the putfield quick_w instruction throws a

Exception NullPointerException.

Notes The opcode of this instruction was originglytfield, operating on

a field determined dynamically to have an offset into the class
instance data of more than 255 words.

AN OPTIMIZATION 425

putfield_quick_w (cont.) putfield_quick_w (cont.)

The operands of thautfield instruction are not modified. Because
the putfield_quick_w instruction operates on both one- and two-
word wide fields, it needs to know both the field offset and the type
of that field. Because the originatfield instruction needed a 16-

bit index, the field offset may be 16 bits wide. As there is insuffi-
cient space in the instruction to store both a 16-bit offset and a field
type, putfield_quick_w retains its original operands and uses them
to index into the constant pool, where the offset and field type are
available in the resolved entry.

426

THE JAVAM VIRTUAL MACHINE SPECIFICATION

putfield2_quick putfield2_quick

Operation Setlong or double field in object

Format putfield2_quick

offset
unused

Forms putfield2_quick = 209 (0xd1)

Stack ..., Objectref, value.word1l, value.word2 [

Description Theobjectref, which must be of typeeference, andvalue, which
must be a value of a type appropriate for the specified field, are
popped from the operand stack. Nabue is written atoffset into
the class instance referencedobjectref.

Runtime If objectref is null, the putfield2_quick instruction throws a

Exception NullPointerException.

Notes The opcode of this instruction was origingbiytfield, operating on

a field determined dynamically to have an offset into the class
instance data of 255 words or less and to have a width of two
words.

When the constant pool entry referenced pytfield instruction is
resolved, the offset for the field it references is generated. That off-
set replaces the first operand of the origimatifield instruction.

The second operand of thetfield is unused byutfield2_quick.

AN OPTIMIZATION 427

putstatic_quick putstatic_quick
Operation Setstatic field in class
Format putstatic_quick
indexbytel
indexbyte2
Forms putstatic_quick = 211 (0xd3)
Stack ..., value O
Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6) where the
value of the index isiffdexbytel << 8) |indexbyte2. The constant
pool item must be a field reference to a clasafic) field that
must have already been successfully resolved to a type that is one
word wide. Thevalue must be of a type appropriate to that class
field. Thevalue is popped from the operand stack, and that class
field is set tovalue.
Notes The opcode of this instruction was originafiytstatic, operating

on astatic field determined dynamically to be one word wide.
The operands of thgutstatic instruction are not modified. There is
no equivalent to thputfield_quick instruction, storing a class offset
as an instruction operand, for one-wettchti c fields.

428

THE JAVAM VIRTUAL MACHINE SPECIFICATION

putstatic2_quick putstatic2_quick
Operation Setstatic field in class
Format putstatic2_quick
indexbytel
indexbyte2
Forms putstatic2_quick = 213 (0xd5)
Stack ..., value.wordl, value.word2 O
Description The unsignedndexbytel andindexbyte2 are used to construct an
index into the constant pool of the current class (83.6), where the
value of the index isitidexbytel << 8) |indexbyte2. The constant
pool item must be a field reference to a classi{ic) field that
must have already been successfully resolved to a type that is two
words wide. Thesalue must be of a type appropriate to that class
field. Thevalue is popped from the operand stack, and that class
field is set tovalue.
Notes The opcode of this instruction was originaflytstatic, operating

on astatic field determined dynamically to be two words wide.
The operands of thgutstatic instruction are not modified. There is
no equivalent to thputfield2_quick instruction, storing a class off-
set as an instruction operand, for two-wetdt1ic fields.

CHAPTER 10
|

I
Opcode Mnemonics
by Opcode

0 (OX00)....ciiivieeeeeeeeeeiieeeee e NOP 28 (OXLC) wevvvvveeeeeriiiiiieeeens) iload_2
1 (0OX01)uoeoiee aconst_null 29 (OX1d)....ccccemmmrnnnrnnnnnnnnnnnd iload_3
2(0x02).....ccceeevviieii, iconst ML 30 (OX1€) .ccvvvvvvieiiiiiiiiiieeee, lload_0
G (0010) PO iconst 0 31 (OXLH) oo, lload 1
L (0) 0) T iconst 1 32 (0X20) ...ceeveeeeeriiirrriinnnnns lload 2
X (0)(013) I ([o(0] o 1 /ARG C T (0) o2 1) lload_3
6 (OX06).....cceeiriiiieeeeeeie iconst. 3 34 (0x22)......ceeevvvuvvneee..... fload_0
A (000 4 T iconst 4 35 (0x23)....cccceeeeevnnnnnnnnnnnn fload 1
SR (00001 S) P iconst 5 36 (0x24)......cccceeeevvnnnnennnn fload_2
S (00101) P Iconst 0 37 (0x25)....ccccceeeennnnnnnneennn fload_3
O (0) (0) I lconst_ 1 38 (0X26) ... dload 0
I (0)°(0] o) TR fconst_0 39 (OX27) .eveeeeiiiiiiiieeeeeeed dload_1
12 (OXOC) .evvvveeeeeeeeeeeiiiee fconst_1 40 (0X28) ..cccevvviiviiiiieeeeennnd dload_2
RS (0)°(0]0) fconst 2 41 (0X29)..uevveeeeeeeieeeeeeeeeeeans dload_3
I (0)(0) I deonst 0 42 (0X2a)ccceeeeeeeieeeennnnnld aload 0
S (0)(0]) I deonst 1 43 (0X2D)..eevvvvvieeiieviieeeeeeee, aload 1
SR (0)%6K0) P bipush 44 (0X2C) ..ccvvveeeeeeeeeeeeeeeee. aload_2
17 (OX1L) e sipush 45 (0X2d) ...cvvvereeeeiiiiiiiieeeen. aload_3
18 (0X12)..eveeeeeeeeeeiiiiiiiieeee e [dc 46 (0X2€) ..evvvveeeeeeiiiiiiieeee, iaload
19 (0X13)ueeeveeeeeeeeeeiiiieeeeeeen ldc w47 (OX20).eeeeiiiiiieeieeee laload
20 (OX14)..coeeeieeeieieeeeeeee ldc2 w 48 (0x30)........ceeeveeeeeeeeee....... faload
21 (OX15).ccceiiiiiiiiii iload 49 (0X31)..euuvirerinnrinniinniiinnnnnnd daload
22 (0X16)...vvvveeeeeeeeeeinreeeee lload 50 (0X32)...cevvviiiieeeeiiiiiiieee, aaload
23 (0OX17)ceoiiiiieeeeeeeeeeeeee fload 51 (0X33)..ccccviiiiiieeeiiiiiiieee, baload
24 (0X18)...ccevviiieieeeeeeiie dload 52 (0X34)...cccuvviiiiiieeeiiiiiee caload
25 (0X19)..iiiiiieeeeee e aload 53 (0X35) ..cceveriiiiiiiiiiieeeeiines saload
26 (0X1A)....uvveernnrennnnnnnnnninnnd iload 0 54 (0X36)...ccceeeeeeiieiieiicnnns istore
27 (Ox1b)..cooeeee [1ToF: Yo [R T ()16 7 4 Istore

429

430

56 (0X38) ..eevveeeeiiiiiiiiiiiieeeeee fstore
57 (0X39) ..evviiiiieeiiiiiiiiieeeeen dstore
58 (0X38) ...coovvvviiiieeeee e astore
IS (0)76] o) I istore 0
O (0) & To) I istore 1
SN (0o) I istore 2
62 (0X3€) .eevvvieeeeeeeeeeeeee istore_3
63 (0OX3M).eeeeeeeeiiiiiiiieeeeeeee Istore_0O
T (0D 10) Istore 1
R (00) Istore 2
o (0 P Istore 3
67 (0X43) ool fstore_0
68 (0X44)...ccoviiiiiiiiiieennld fstore_1
69 (0X45)...cceviiiiiiiiiiinennnnd fstore_2
70 (OX46)..cceveeeeieeveeevieeeienn fstore 3
4 N () 4 T dstore 0
72 (0X48) .evvveeeeeeeeeeeeiiinnn, dstore 1
73 (0X49) .ccceeiiiiiiiiiiieeeeee dstore_2
T4 (0X4Q) ... dstore_3
75 (0X4D) ..ccooiiiiiiiiiieieee astore_0
76 (OX4AC) covvvveeeeeeeeeeeeeeeeeeee, astore_1
77 (0X4d) ..o, astore 2
F£ (0212 I astore_3
79 (OXA1).eeieeeeiiiiiiiieeeeeeee lastore
(S 0N (0)G10) IR lastore
81 (OX51) ..evveiiiieiiiiiiiieeeen] fastore
82 (0X52)...uvvverrnrrinnrinninnninnnns dastore
83 (0X53)...uvveerinnrinniinniiininnns aastore
YN ()Y) bastore
85 (OX55) ..vvviveeeeiiiiiiiiieeeeenn castore
86 (OX56) ...evvveeeeiiiiiiiiiiiaenn, sastore
A (0) Y 4 T pop
88 (0X58)....uuuvrrrrrinniinniinriiniinnns pop2
e N (01) I dup
90 (0X58) ..ceeeeeeeeeeeeieeeeeee, dup_x1
91 (0X5D) ..cceeeiiiiiiiiiiiieees dup_x2
92 (OX5C) vevvvveeeiiiiiiiiiieeeeee e dup2
XN (0)/6 e) I dup2_x1
94 (0X5€) ..cceveieeieieeieeeee. dup2_x2
N (0]) swap

ST (O510) D iadd

THE JAVAM VIRTUAL MACHINE SPECIFICATION

97 (OX61L) .cceeeviiiiiiieieee e ladd
98 (OX62) ..ccevvveviieeiieeieeeeeeee fadd
99 (0X63) ..cevevvveviiiiiiieeieeeeeeee dadd
100 (OX64) ...evvveeiiiieeeeiiiieeeene isub
101 (OXB5) .evveeeeiirieeeeiiiieeeenne Isub
102 (OX66)evvvvveeeeeeeiiiiiieeeen fsub
103 (OXB7) cooevvvveeeeeeeeeeeiiiieee dsub
104 (0OX68)ccceeeeeeeeeeeeeeeeeeen, imul
O (0)GG1) I Imul
106 (0X6Q) ...ceeeeeeeveevviiiieeeeeeee, foul
107 (OX6D) ... dmul
108 (OXBC) ...vvvvvveeeeeeeeiiiiieeeee idiv
109 (0X6d) ...evvveeiirieeeeiiiieeeee Idiv
O[O (00T I fdiv
1212 (OX6F) e ddiv
D2 () 4 0) irem
113 (OX7L) e Irem
114 (OX72) e frem
SN (0 4<) I drem
116 (OX74) oo ineg
i A (0) 43) I lneg
118 (OXT76) . fneg
119 (OXT77) coiiiieeeeeeeeeeee dneg
120 (OX78) .evvveveeeeeeeeiiiiiieeeeeenn ishl
121 (0X79) e Lshi
2 (0G4) I ishr
IZZCT (007074 o) I Ishr
124 (OXT7C) coovvvveeeeeeee e iushr
125 (0X7d) .o lushr
N (0) I iand
127 (OX7f)eeeeeeee, land
128 (0X80) ...vvveerirriieiiiieeeeeiieee ior
129 (OX8L) .evvveeiiiieeeeiieee e lor
130 (0X82) ...eevvveeeeeeee e ixor
131 (0X83) ..uvvvvvveeeeeeeeiiiiiieeeen Ixor
132 (0X84) oo iinc
133 (0X85) .evvveeiirrieeiiiiiee e i2l
134 (0X86) ..evvveervvreeeiiiieeeeaiieeen i2f
135 (0X87) cevveeeeiiieieeeiieee e i2d
136 (0X88) .vvvveervriieeiiiiiee e 12i
A (0)°¢21) ISR 12f

OPCODE MNEMONICS BY OPCODE

138 (0X8a)vvveeeeniiieeeiiiieeeean) 12d
139 (0X8D)..eeveeiiiiiieeiiiiee e f2i
140 (OX8BC) .evvveeeeeeriiiiiiiieeeeeeaiies f2l
TN R (0)7¢STo) PR f2d
T (0)7¢CT=) R dzi
143 (OX8f) weveveeeeeiiiiiiiiieee e d2i
144 (0X90)..uuieeeeeeeiiiiiiiieeeeeeeennnd daf
145 (0X91).uuvieeeeeeeieciiiiieeee e i2b
146 (0X92)...uuuniinnrnnnninnniinninnnns i2c
147 (0X93).eeveeeeeeeeeiiiiiieeeee e i2s
148 (0X94)....cceveviiiiieeeeeeeeenie lcmp
LS (0)CC 1) [fempl
150 (0X96)...evveeeeeeiiiiiiiieeeennn fcmpg
151 (OX97).evveeeeeeeeeiiiiiieeeeenn decmpl
SN (0)7C]) dempg
153 (0X99)....uciiiiiiiaens ifeq
Y (0L | I ifne
HESTSN (0076 o) IR iflt
156 (OX9C) .evvvvveeeeiiiiiiiieeeeee e ifge
157 (0X9d)..vvveeeeeieiiiiiieeeee e ifgt
158 (0X9€) ..vvvvvreereeeeeeeeeeeeeeeeeeeee ifle
TSN (0)°CC]) I if_icmpeq
HCTON(0)1C10) IR if. icmpne
161 (0Xal)....ooovcvvveeeneennn. if. icmplt
162 (0X82)ccvvvvvrrreeaannn. if. icmpge
163 (0Xa3) ...ccevvvvvvvrreeeennn. if._icmpgt
164 (0Xa4) .ccceeveeeeieenieenannn, if. icmple
165 (0Xa5) ..cccvvveeereeereenenn. if_acmpeq
166 (0Xa6)...cuueeeeeeeerreennnns if. acmpne
167 (0OXAT7) eeeieeeiiiiiiiiiieeee e goto
168 (0X88) ...eeevivivviiiiieee e jst
169 (0XA9) ...vveveeeeeeeeeeeeeeeeeeeeeeee, ret
170 (Oxad).....................] tableswitch
171 (Oxab)........cceveeeeees lookupswitch
2 ()¢ To) I ireturn
173 (0Xad).....oooevvvverieeeeenie lreturn
174 (0X8L) ...uvvvvveeeieeeeeeiiid] freturn
175 (OXaf)...uveeeieeieieriieeeeeeee, dreturn
G (0)(010) PR areturn
A A (0)7(o)) T return

178 (0XD2)...oveeeeeeeeeiiiie getstatic

179 (OXD3)..ccovviiiiiiieeeen, putstatic
RS O (001 oV) I getfield
RSN (0)(015) I putfield
RSV (0)'(e]1) I invokevirtual
183 (0XD7) .ceveeeeiee invokespecial
184 (0xb8)......ccevvvvrvnee invokestatic
185 (0xh9)................ invokeinterface
186 (Oxba)................ XXxunusedxxx
HESTA(0)(0] o) IS new
RIS (0)'(1) I newarray
189 (Oxbd).......cccvvvriee anewarray
190 (Oxbe)evvvveeeernns arraylength
S (01 o]) T athrow
NS P2 (0)(e10) I checkcast
HESICR(0)'(oli) I instanceof
194 (OXC2) weeveveeeeeeeenene monitorenter
195 (0XC3) .evvveeeeiiiieen monitorexit
196 (OXC4) ..ovveeeiiiiiiiieceeeeee wide
197 (OXC5) ...cvvvveeeee. multianewarray
198 (OXCB) ..vvvvvvvrrreerreereeerennen ifnull
199 (OXC7) eveeeeeeeeeeeieiennnn, ifnonnull
200 (OXC8) .evvvvveeeriiiriiieeeenn goto_w
201 (OXCY) vevvveeeeiiiiiiiiiieeeeeens jsr_w
_quick opcodes:

L0 (0):(e] o) I Idc_quick
204 (0XCC) vovveevvvervvnnnnnn, ldc_w_quick
205 (0XCd) vvvvvveeeerinnns ldc2_w_quick
206 (0XC€) ...ocvvvvvvrenee. getfield_quick
104N (0)Coi) putfield_quick
208 (0xd0)........uuueeee getfield2_quick
209 (0xdl)...............| putfield2_quick
210 (0xd2)........uue..... getstatic_quick
211 (OXd3) .evvveeeeennnn putstatic_quick
212 (0xd4).............. getstatic2_quick
213 (0xd5).....cvvvnneee putstatic2_quick
214 (0xd6)......... invokevirtual_quick
215 (0xd7)...invokenonvirtual _quick
216 (0xd8)........... invokesuper_quick
217 (0xd9)........... invokestatic_quick
218 (Oxda)......d invokeinterface_quick

431

432

219 (Oxdb).invokevirtualobject_quick

221 (0OXdd).....covviiviinen new_quick
222 (Oxde) anewarray_quick
223 (0xdf)......multianewarray_quick
224 (0xe0)............... checkcast_quick
225 (0xel)....ccoueee... instanceof _quick
226 (0xe2).....invokevirtual_quick_w
227 (0x€3)vveee... getfield_quick_w
228 (0xed)............. putfield_quick_w
Reserved opcodes:

202 (0XCA) ...eveeeeeeeeeeeen breakpoint
254 (OXF€)...ceeevvvriieeeeeeene impdepl

255 (OXT) voveeeiiiiiiiiieeeeeenn impdep2

THE JAVAM VIRTUAL MACHINE SPECIFICATION

Index

A
aaloadinstruction, 156
aastoreinstruction, 157
constraints, structural, 123
in Java Virtual Machine assembly language
examples, arrays, 358
abnormal completion
term definition, 68
abstract keyword
See als@bstractMethodError;
ACC_ABSTRACT modifier
class, term definition, 24
methods, 28
as interface members, 32
AbstractMethodError, 44
anewarray 162
checkcastl175
as class preparation error, 39
constant pool resolution generation of, 143
getfield 226
getstatic 228
instanceaf257
invokeinterface260
invokeinterface_quiclkd03
invokespecial263
invokestatic 266
invokevirtual 268
multianewarray 316
new 318
putfield 325
putstatig 327
ACC_ABSTRACT modifier
See alsabstract keyword
(access_flags item ofClassFile
structure), 86
(access_flags item ofmethod_info
structure), 104
ACC_FINAL modifier

See alsdinal keyword

(access_flags item ofClassFile
structure), 86

(access_flags item of field_info
structure), 102

(access_f1lags item ofmethod_info
structure), 104

ACC_INTERFACE modifier

See alsanterfaces

(access_flags item ofClassFile
structure), 86

ACC_NATIVE modifier
See alsmative keyword
(access_f1ags item ofmethod_info
structure), 104
ACC_PRIVATE modifier
See als@rivate keyword
(access_flags item of field_info
structure), 102
(access_f1lags item ofmethod_info
structure), 104
ACC_PROTECTED modifier
See als@rotected keyword
(access_flags item of field_info
structure), 102
(access_f1lags item ofmethod_info
structure), 104
ACC_PUBLIC modifier
See als@ublic keyword
(access_flags item ofClassFile
structure), 86
(access_flags item of field_info
structure), 102
(access_f1lags item ofmethod_info
structure), 104
ACC_STATIC modifier
See alsatatic keyword

433

434

ACC_STATIC modifier - aload_<n>instructions

ACC_STATIC modifier (cont)
(access_flags item of field_info
structure), 102
(access_flags item ofmethod_info
structure), 104
ACC_SUPER modifier
See alsauperclasses
(access_flags item ofClassFile
structure), 86
ACC_SYNCHRONIZED modifier
See als@ynchronization
(access_flags item ofmethod_info
structure), 104
ACC_TRANSIENT modifier
See alsaransient keyword
(access_flags item of field_info
structure), 102
ACC_VOLATILE modifier
See als@olatile keyword
(access_flags item of field_info
structure), 102
access control
See als@ccess_flags item,
IT1legalAccessError
instance initialization methods, access
permissions, 69
qualified names and, 22
access_flags item
See als@ccess control; security
(ClassFile structure), 86
(field_info structure), 102
(method_info structure), 104
accessing
See alsdoading
arrays, 34
hidden fields, 26
jump table
by index and jumptableswitch 335
by key match and jumjgokupswitch300
local variables, structural constraints on
instructions, 122
aconst_nullinstruction, 159
actions
main memory subsystem
lock, 373
read, 373
unlock, 373
write, 373
prescient store, with threads, 378
thread

assign, 372
constraints on relationships among, 373
load, 373
lock, 373
store, 373
unlock, 373
use, 372
active use
term definition, 46
adding
double, dadd 179
float, fadd 207
int, iadd, 238
Tong, ladd, 285
algorithms
class file verification, 125
constant pool resolution of
arrays, 141
classes, 141
classes and interfaces loaded by a class
loader, 144
classes and interfaces not loaded by a
class loader, 141
interfaces, 141
conversion obytes item,
CONSTANT_Float_info structure, 97
conversion ohigh_bytes andlow_bytes
items,CONSTANT _DoubTe_info
structure, 98
finally clause, data-flow analysis during
class file verification, 135
string literals, constant pool resolution, 149
alignment
code array, 111
Java Virtual Machine instructions,
implementation implications, 71
aloadinstruction, 160
See also astormstruction,wide instruction
constraints, static, 121
aload_<n>instructions, 161
See also astore_<ninstructions
constraints, static, 121
in Java Virtual Machine assembly language
examples
arrays, 357, 358
catching exceptions, 363, 364, 365
compilingfinally, 367, 368, 369
invoking methods, 352, 354
operand stack operations, 361

synchronization, 370
throwing exceptions, 362, 363
working with class instances, 355, 356
ANDing
int, bitwise,iand, 240
Tong, bitwise,land, 287
anewarrayinstruction, 162
constraints, static, 120
in Java Virtual Machine assembly language
examples, arrays, 357
anewarray_quickinstruction, 392
API (Application Programmer Interface)
Java Virtual Machine an@ilassLoader
class contract, possible future changes,
144
areturn instruction, 163
constraints, structural, 123
in Java Virtual Machine assembly language
examples
arrays, 358
working with class instances, 355, 356
arithmetic
adding
double, dadd 179
float, fadd 207
int, iadd, 238
Tong, ladd, 285
ArithmeticException, 38
dividing
doubTe, ddiv, 185
float, fdiv, 213
int, idiv, 243
Tong, Idiv, 295
exceptions
ArithmeticException, idiv, 243
ArithmeticException, irem, 271
ArithmeticException, ldiv, 295
ArithmeticException, Irem, 303
instruction set, summary, 75
Java Virtual Machine assembly language
examples, 345
multiplying
double, dmul 189
float, fmul, 217
int, imul, 254
Tong, Imul, 298
negating
double, dneg 191
float, fneg 219
int, ineg 255

ANDing e arrays

long, Ineg 299
remainder
double, drem 192
float, frem 220
int, irem, 271
Tong, Irem, 303
subtracting
double, dsub 197
float, fsuh 225
int, isub 277
Tong, Isub, 309
ArithmeticException, 38
idiv, 243
irem, 271
Idiv, 295
Irem, 303
ArrayIndexOutOfBoundsException
See alsdndexOutO0fBoundsException
aaload 156
aastore 158
baload 169
bastore 170
caload 172
castore 173
daload 181
dastore 182
faload, 209
fastore 210
iaload, 239
iastore 241
laload, 286
lastore 288
saload 331
sastore 332

arraylengthinstruction, 164
arrays
See als@lass(es); interfaces; reference(s);
types
accessing, 34
ArrayStoreException, 38
C-like syntax, use iQlassFile
specification, 83
classes of, 13
components, 33
as kind of variable, 11
constant pool resolution of, 141, 146
creating, 34
creation expression, 9
instruction summary, 79
multidimensionalmultianewarray 316

435

436 arrays e« arrays

arrays (cont) ArrayIndexOutOfBoundsException,

multidimensionalmultianewarray_quick
421
with components of primitive type,
newarray 320
with components of reference type,
anewarray 162
with components of reference type,
anewarray_quick392
dimensions, number limitation, 136
errors
AbstractMethodError, anewarray
143
AbstractMethodError, multianewarray
316
AbstractMethodError, new 318
ClassFormatError, anewarray 142
ClassFormatError, multianewarray 316
ClassFormatError, new 318
ExceptionInInitializerError,
anewarray 143
ExceptionInInitializerError,
multianewarray 316
ExceptionInInitializerError, new
318
I1legalAccessError, anewarray 143,
146
I11egalAccessError, multianewarray
316
I1legalAccessError, new 318
InstantiationError, new 318
NoClassDefFoundError, anewarray 142
NoClassDefFoundError,
multianewarray 316
NoClassDefFoundError, new 318
VerifyError, anewarray 142
VerifyError, multianewarray 316
VerifyError, new 318
exceptions
ArrayIndexOutOfBoundsException, 34
ArrayIndexOutOfBoundsException,
aaload 156
ArrayIndexOutOfBoundsException,
aastore 158
ArrayIndexOutOfBoundsException,
baload 169
ArrayIndexOutOfBoundsException,
bastore 170

caload 172
ArrayIndexOutOfBoundsException,
castore 173
ArrayIndexOutOfBoundsException,
daload 181
ArrayIndexOutOfBoundsException,
dastore 182
ArrayIndexOutOfBoundsException,
faload 209
ArrayIndexOutOfBoundsException,
fastore 210
ArrayIndexOutOfBoundsException,
jaload, 239
ArrayIndexOutOfBoundsException,
iastore 241
ArrayIndexOutOfBoundsException,
laload, 286
ArrayIndexOutOfBoundsException,
lastore 288
ArrayIndexOutOfBoundsException,
saload 331
ArrayIndexOutOfBoundsException,
sastore 332
ArrayStoreException, aastore 158
NegativeArraySizeException,
anewarray 162
NegativeArraySizeException,
multianewarray 316
NegativeArraySizeException, new
318
NegativeArraySizeException,
newarray 320
NegativeArraySizeException,
anewarray_quick392
NegativeArraySizeException,
multianewarray_quick421
Nul1PointerException, aaload 156
Nul1PointerException, aastore 158
NullPointerException, arraylength
164
Null1PointerException, baload 169
Nul1PointerException, bastore 170
Nul1PointerException, caload 172
Nul1PointerException, castore 173
Nul1PointerException, daload 181
Nul1PointerException, dastore 182
Null1PointerException, faload 209

ArrayStoreException ¢ attribute_length item

NullPointerException, fastore 210
Null1PointerException, iaload, 239
NullPointerException, iastore 241
Null1PointerException, laload, 286
Null1PointerException, lastore 288
NullPointerException, saload 331
Nul1PointerException, sastore 332
field descriptor
dimension limits on, 94
name_index item
(CONSTANT_Class_info) reference, 93
specification, 91
initializing, 34
Java Virtual Machine assembly language
examples, 356
length, 33
fetching,arraylength 164
loading
byte orboolean from, baload 169
char from, caload 172
double from, daload 181
float from, faload 209
int from, iaload, 239
Tong from, laload, 286
reference from, aaload 156
short from, saload 331
manipulating, instruction summary, 79
as reference type, 61
runtime exceptions
ArrayStoreException, 38
IndexOutOfBoundsException, 38
NegativeArraySizeException, 38
storing
byte orboolean into, bastore 170
char into, castore 173
double into, dastore 182
float into, fastore 210
int into, iastore 241
Tong into, lastore 288
reference into, aastore 157
short into, sastore 332
term definition, 32
types, 9, 33
Java Virtual Machine mapping, 74
variables, 33
ArrayStoreException, 38
aastore 158
ASCII
term definition, 5

assembly language
Java Virtual Machine, format, 340
assignable
term definition, 18
assignment
compatible, 10
failure,ArrayStoreException thrown
when, 38
term definition, 18
conversion, 17
context, 14
variable
by threads, 54
variable initializers role in, 27
assumptions
meaning of ‘must’ in instruction
descriptions, 151
asterisk (*)
descriptor grammar notation use, 90
astoreinstruction, 165
See also aloadhstruction;ret instruction;
wide instruction
constraints, static, 121
astore_<n>instructions, 166
See also aload_<ninstructionsret
instruction
constraints, static, 121
in Java Virtual Machine assembly language
examples
arrays, 357, 358
catching exceptions, 363, 364, 365
compilingfinally, 367, 368, 369
synchronization, 370
throwing exceptions, 363
working with class instances, 355
athrow instruction, 167
constraints, structural, 123
in Java Virtual Machine assembly language
examples
compilingfinally, 367, 369
synchronization, 370
throwing exceptions, 362
attribute_info structure
(generic structure of items #ttributes
tables), 106
attribute_length item
(attribute_info generic structure), 107
(Code_attribute structure), 111
(ConstantValue_attribute structure), 109

437

438

attribute_length item ¢ branch

attribute_length item (cont)
(Exceptions_attribute structure), 114
(LineNumberTable_attribute structure),
115
(LocalvariableTable_attribute
structure), 117
(SourceFile_attribute structure), 108
attribute_name_index item
(attribute_info generic structure), 107
(Code_attribute structure), 111
(ConstantValue_attribute structure),
109
(Exceptions_attribute structure), 114
(LineNumberTable_attribute structure),
115
(LocalvariableTable_attribute
structure), 117
(SourceFile_attribute structure), 108
attributes
See als@lassFile structure:
attribute_Tlength item
attribute_name_index item
attributes_count item
attributes table
See also predefined attributes
Code_attribute
ConstantValue_attribute
Exceptions_attribute
LineNumberTable_attribute
LocalVariableTable_attribute
SourceFile_attribute
defining and naming new, 107
attributes_count item
(ClassFile structure), 88
(Code_attribute structure), 113
(field_info structure), 103
(method_info structure), 106
attributes table
(ClassFile structure), 89
(Code_attribute structure), 113
(field_info structure), 103
(method_info structure), 106

B
B character
field descriptor meaning, 91
backwards branches
structural constraints on instructions, 122
baloadinstruction, 169
bastoreinstruction, 170
big-endian order

bytes item
CONSTANT_Float_info structure, 97
CONSTANT _Integer_info structure, 97

class file data storage order, methods that

can read, 83
high_bytes andlow_bytes items
CONSTANT_DoubTe_info structure, 98
CONSTANT_Long_info structure, 98
multibyte character€ONSTANT_Utf8_info
structure representation of, 100
term definition, 71
binding
See alsdinking; loading

late, frame constant pool reference support

of, 68
bipushinstruction, 171

in Java Virtual Machine assembly language

examples
accessing the constant pool, 347
arrays, 357
constants and local variables iff@r
loop, 341, 342, 345
invoking methods, 352, 353
while loop, 348
bitwise
ANDing
int, iand, 240
Tong, land, 287
ORing
int exclusivejxor, 279
int inclusive,ior, 270
Tong exclusive)xor, 311
Tong inclusive,lor, 302
boolean type
loading from arrayshaload 169
storing into arrayshastore 170
type, 6, 7
field descriptor specification, 91
instruction set handling of, 72
truth values of, 7
values
Java Virtual Machine support for in the
absence ofoolean type support, 60
operators on, 9
branch

code verification, Pass 3 - bytecode verifier,

128
instruction summary, 80
instructions, constraints, static, 119
int comparison
if_icmp<cond>, 245

with zero,if<cond>, 247
reference comparison
if_acmp<cond> 244
with nul1, ifnull, 249
with nu11, ifnonnull, 249
unconditionally
goto 230
wide index,goto_w 231
breakpointreserved opcode, 152
bugs
JDK 1.0.2 implementation
exclusiveend_pc workaround, 112
native method stacks, stack overflow not
detected, 65
string literal resolution, 148
byte type
boolean array values represented as, 60
convertingint to, i2b, 232
field descriptor specification, 91
instruction set handling of, 72
integer arithmetic not directly supported, 75
term definition, 58
value range, 59
bytes
bytecodes
optimization, not specified by Java Virtual
Machine specification, 57
verification process, 128
loading from arraysyaload 169
pushingbipush 171
storing into arrayshastore 170
bytes array
(CONSTANT_Utf8_info structure), 101
bytes item
(CONSTANT_Float_info structure), 97
(CONSTANT_Integer_info structure), 97

C

C character

field descriptor meaning, 91
caching

ACC_VOLATILE modifier,field_info

structure prevention of, 102

caller

term definition, 36
caloadinstruction, 172
casting

See alsmumeric

breakpointreserved opcode+) character 439

checkcasinstruction, constraints, static,
120
checking types
checkcast174
checkcast_quick393
errors
AbstractMethodError, checkcast143
ClassFormatError, checkcast142
ExceptionInInitializerError,
checkcast143
I1legalAccessError, checkcastl43,
146
NoClassDefFoundError, checkcast142
VerifyError, checkcast142
exceptions
ClassCastException, checkcastl75
ClassCastException, checkcast_quick
393
invocation conversion, context, 14
not permitted betweebpolean types and
other types, 9
castoreinstruction, 173
catch clause(s)
See als@xceptions
exception handling role, 36, 69
Java Virtual Machine characteristics, 70
ordering of, 70
try statement, exception handler parameter
variables created by, 11
catch_type item
(Code_attribute structure), 112
“changed” bit
data-flow analysis handling, Pass 3 -
bytecode verifier, 129
char type
convertingint to,i2c, 233
field descriptor specification, 91
instruction set handling of, 72
arithmetic not directly supported, 75
loading from arrays;aload 172
storing into arrays;astore 173
term definition, 58
value range, 59
[character
field descriptor meaning, 91
(character
method descriptor meaning, 91
) character
method descriptor meaning, 91

440

checkcasinstruction « ClassCircularityError

checkcasinstruction, 174
See also instanceaofstruction
constraints, static, 120
checkcast_quicknstruction, 393
checking
types
checkcast174
checkcast_quick393
instanceof256
instanceof_quick401

class(es)

See als@rraysClassFile structure; fields;
interfaces; methods; subclasses;
superclasses

Class object, initialization role, 47

ClassCastException, 38

classFinalize method, invoking during
class finalization, 52

ClasslLoader

API contract between Java Virtual
Machine and, possible future changes,
144

loading performed by, 43

<clinit> special method, as class or
interface initialization method name, 69

constant pool entry resolution, 140

creation and manipulation, instruction
summary, 79

declaration, term definition, 24

errors

ClassFormatError, as loading process
error, 39

ClassFormatError, meaning of, 43

ClassFormatError, constant pool
resolution generation of, 142

NoClassDefFoundError, 48

final, term definition, 24

finalization of, 52

getstatic fields from

getstatic 228

getstatic_quick399
getstatic2_quick400

initial, specifying to Java Virtual Machine,
41

initialization, process, unrecoverable
runtime exceptions associated with, 39

instances

creation expression, 9

uninitialized, structural constraints on
instructions, 122

loader
constant pool resolution of classes and
interfaces loaded by, algorithm, 144
constant pool resolution of classes and
interfaces not loaded by, algorithm,
141
members of, 25
modifiers, term definition, 24
namespame_index item
(CONSTANT_Class_info structure) as
reference to, 93
preparation process, unrecoverable runtime
exceptions associated with, 39
put intostatic fields
putstatic 327
putstatic_quick427
putstatic2_quick428
static methods
invocation instruction summary, 81
invoking, invokestati¢ 265
invoking, invokestatic_quick410
term definition, 24
types, 9
as reference type, 61
compared with, 13
members of, 21
variable, as kind of variable, 11
verification process, unrecoverable runtime
exceptions associated with, 39
class_index item
(CONSTANT_Fieldref_info structure), 95
(CONSTANT_InterfaceMethodref_info
structure), 95
(CONSTANT_Methodref_info structure), 95

ClassCastException, 38
casting conversion cause of, 19
checkcastl75
checkcast_quick393
narrowing reference conversion cause of, 17
ClassCircularityError, 39, 43
anewarray 162
checkcastl75
getfield 226
getstatic 228
instanceaf257
invokespecial263
invokestatic 266
invokevirtual 268
multianewarray 316
new 318

putfield 325
putstatiG 327
ClassFile structure
See als@lassFile substructures:
access_flags item
See also general concep#ecess
control; security
attributes_count item
attributes table
See also general conceptiata types
constant_pool_count item;
constant_poo]l table;
See also general conceptenstants;
data types
field_info structure
fields_count item
fields table
See also general conceptenstants;
data types; fields; methods; variables
interfaces array
See also general concepttass(es);
inheritance; interfaces; superclasses;
subclasses
interfaces_count item
magic item
major_version item
method_info structure
methods_count item
methods table
See also general conceptsethods;
access control; threads;
synchronization
minor_version item
super_class item
See also general concepttass(es);
inheritance; interfaces; superclasses;
subclasses
this_class item
See also general conceptass(es)
End of See also cross references
CONSTANT_Class_info structure
representation, 94
constant_poo]l table, Java Virtual Machine
representation, 64
data storage order and types, methods that
can read, 83
data types, methods that can read, 83
field_info structure access flags, 102
format
ability to read as Java Virtual Machine
implementation requirement, 57
as overview, 70

ClassFile structure « colon (3) 441

(chapter), 83
integrity verification, 125
initialization methodsfield_info
structure access flags ignored, 104
method_info structure access flags, 104
syntax and item descriptions, 84
verification, 124
compiler and language independence, 125
operand stack manipulation constraints
enforced during, 67
procedures, 125
ClassFormatError, 43
anewarray 162
checkcastl75
getfield 226
getstatic 228
instanceof 257
invokespecial263
invokestatic 266
invokevirtual 268
multianewarray 316
new 318
putfield 325
putstatic 327
<clinit> special method
as class or interface initialization method
name, 69
constant_pool table, reference to, 95
invocation of, static constraints, 120
method_info structure access flags ignored,
104
name_index item (nethod_info structure)
reference, 105
code
blocks, synchronization, instruction
summary, 81
code array, data flow analysis, 126
Code_attribute structure
constraints on, structural, 121
support required for, 107
code array
(Code_attribute structure), size and
location, 111
(method_info structure)
constraints, static, 118
constraints, structural, 121
Code_attribute structure
(method_info structure), 110
code_length item
(Code_attribute structure), 111
colon (2)
descriptor grammar notation use, 90

442

comparing « CONSTANT_Utf8_info structure

comparing
double
dcmpg 183
dcmpl 183
float
fcmpg 211
fcmpl 211
int
if_icmp<cond> 245
with zero,if<cond>, 247
Tong, lcmp, 289
reference
if_acmp<condx 244
with nu11, ifnull, ifnonnull, 249
comparisons
numerical
floating-point positive and negative zero,
59
implications of unordered NaN values, 60
compilation
code, Java Virtual Machine assembly
language examples, format, 340
for the Java Virtual Machine, (chapter), 339
types, term definition, 10
completion
abnormal, term definition, 68
normal, term definition, 68
concurrency
See alsdhreads
conditional
See als@ontrol flow
branch, instruction summary, 80
operator (?:)boolean expressions use
with, 9
CONSTANT_Class_info structure
class names referenced from, 89
components and meaning, 93
super_class item, aXlassFile structure
reference to a, 87
this_class item, aXClassFile structure
reference to a, 87
CONSTANT_Class tag
(CONSTANT_Class_info structure), 93
CONSTANT_Double_info structure
(constant_poo1 table), 97
CONSTANT_Double tag
(CONSTANT_DoubTe_info structure), 98
CONSTANT_Fieldref_info structure
(constant_poo1 table), 94, 95

CONSTANT_Fieldref tag
(CONSTANT_Fieldref_info structure), 95
CONSTANT_Float_info structure
(constant_poo1 table), 96
CONSTANT_Float tag
(CONSTANT_Float_info structure), 96
CONSTANT_Integer_info structure
(constant_pool table), 96
CONSTANT_Integer tag
(CONSTANT_Integer_info structure), 96
CONSTANT_InterfaceMethodref_info
structure
(constant_poo1 table), 94
CONSTANT_InterfaceMethodref tag
(CONSTANT_InterfaceMethodref_info
structure), 95
CONSTANT_Long_1info structure
(constant_poo1 table), 97
CONSTANT_Long tag
(CONSTANT_Long_info structure), 98
CONSTANT_Methodref_info structure
(constant_poo1 table), syntax and item
descriptions, 94
CONSTANT _Methodref tag
(CONSTANT_Methodref_info structure), 95
CONSTANT_NameAndType_info structure
class names referenced from, 89
(constant_poo1 table), 99
CONSTANT_NameAndType tag
(CONSTANT _NameAndType_info structure), 99
constant_pool_count item
(ClassFile structure), 85
constant_pool table
(ClassFile structure)
detailed description, 85
overview, 92
constantvalue_index item values (table),
110
tag values table, 93
CONSTANT_String_info structure
(constant_poo1 table), 96
CONSTANT_String tag
(CONSTANT_String_info structure), 96
CONSTANT_Utf8_info structure
attribute_name_index item
(Code_attribute structure), 111
(ConstantValue_attribute structure),
109
(Exceptions_attribute structure), 114

(LineNumberTable_attribute
structure), 115
(LocalvariableTable_attribute
structure), 117
(SourceFile_attribute structure), 107,
108
class names represented as, 89
(constant_poo1 table), 100
(name_index item),
(CONSTANT_Class_info structure) as
reference to a, 93
(string_index item),
(CONSTANT_String_info structure) as
reference to, 96
CONSTANT_Utf8 tag
(CONSTANT_Utf8_info structure), 101
constants
See als@onstant_pool table; literals;
variables
attribute type values (table), 110
compilation of, Java Virtual Machine
assembly language examples, 341
CONSTANT_Class_info structure, constant
pool resolution of, 140
CONSTANT_Double_info structure
components and meaning, 98
constant pool resolution of, 149
CONSTANT_Fieldref_info structure,
constant pool resolution of, 147
CONSTANT_Float_info structure, constant
pool resolution of, 149
CONSTANT_Integer_info Sstructure,
constant pool resolution of, 149
CONSTANT_InterfaceMethodref_info
structure, constant pool resolution of,
147, 148
CONSTANT_Long_info structure
components and meaning, 98
constant pool resolution of, 149
CONSTANT_Methodref_info structure,
constant pool resolution of, 147
CONSTANT_NameAndType_info structure,
constant pool resolution of, 149
constant pool, 64
frame reference, dynamic linking
supported by, 67
resolution, (chapter), 139
size limitation, 136
static constraint checking, 126
CONSTANT_String_info Sstructure,
constant pool resolution of, 148

CONSTANT_Utf8 tag constraints

CONSTANT_Utf8_info structure
bibliographic reference, 101
constant pool resolution of, 149
CONSTANT_String_info reference, 148
descriptor_index item,
CONSTANT_NameAndType_info
reference, 100
name_index item,
CONSTANT_NameAndType_info
reference, 100
name_index item, field_info reference,
103
ConstantValue_attribute Sstructure
field_info structure value, 103
support required for, 107
fields, 31
as interface members, 30
final, 26
floating-point
doub1e CONSTANT _Doub1e_1info structure
representation, 97
float CONSTANT_Float_info structure
representation, 97
increment local variable binc, 251
integer
int CONSTANT _Integer_info structure
representation, 97
Tong CONSTANT_Long_info structure
representation, 97
load and store instructions, summary, 74
pushing
double, dconst_<d> 184
float, fconst_<f>, 212
int, iconst_<i>, 242
Idc, 291
Idc_quick 417
Tong, Iconst_<I>, 290
wide index,ldc_w 292
wide index,Jdc_w_quick 418
ConstantValue_attribute structure
(field_info structure), 103, 109
constantvalue_index item
(ConstantValue_attribute structure),
109

constraints
enforcement of, bylass file verifier,
151
Java Virtual Machine, component limits,
136
Java Virtual Machine code

443

444

constraints ¢ creating

constraints (cont)

static, 118
structural, specification of, 121
structural, theorem prover use in checking,
124
meaning of the term ‘must’, in instruction
descriptions, 151
operand stack manipulation, 67

constructors

default, 30

instance creation procedures, 50
as instance initialization method, 69
as not members of a class, 25
parameters, as kind of variable, 11
term definition, 29

context

switching, frame use for, 66

control flow

See alsdhreads
branch orreference comparison,
if_ acmp<cond> 244
branch onint comparisonif_icmp<cond>
245
branch onint comparison with zero,
if<cond>, 247
branch orreference comparison, with
null, ifnull, ifnonnull, 249
compilation of constructs
Java Virtual Machine assembly language
examplesfor keyword, 341
virtual machine assembly language
exampleswhile keyword, 348
instruction summary, 80
instructions, code verification, Pass 3 -
bytecode verifier, 128
unconditional goto
goto 230
wide index,goto_w 231
conversions
See alsaumeric; primitive types;
assignment, 17
bytes item,CONSTANT_Float_info
structure, algorithm, 97
casting, term definition, 19
contexts, 14
method invocation, term definition, 18
narrowing
numeric, support for, 77

numeric, impact on precision, 78
reference, term definition, 15
narrowing primitive
double to float, d2f, 176
double toint, d2i, 177
double to Tong, d2I, 178
float toint, f2i, 205
float to long, f2I, 206
int tobyte, i2b, 232
int tochar, i2c, 233
int to short, i2s, 237
Tong toint, 12i, 284
support for, 77
term definition, 16
numeric promotion
binary, term definition, 19
unary, term definition, 19
types, 14
instructions, 77
widening
numeric, impact on precision, 77
reference, term definition, 16
widening primitive
float todouble, f2d, 204
int todouble, i2d, 234
int to float, i2f, 235
int to long, i2l, 236
Tong to double, 12d, 282
Tong to float, I12f, 283
support for, 77
term definition, 16
cp_info structure
(generic form of items in the
constant_pool table), 92
cp_info tags values (table), 93
creating
arrays
multidimensionalmultianewarray 316
multidimensionalmultianewarray_quick
421
primitive type,newarray 320
reference type,anewarray 162
reference type,anewarray_quick392
class instances
instruction summary, 79
new 318
new_quick422
threads, 386

D
D character
field descriptor meaning, 91
d2finstruction, 176
d2iinstruction, 177
d2l instruction, 178
daddinstruction, 179
in Java Virtual Machine assembly language
examples
constants and local variables iffer
loop, 343, 344
while loop, 349
daemon threads
term definition, 53
daloadinstruction, 181
dastoreinstruction, 182
data
areas
runtime,pc register, 61
runtime, Java stacks, 62
runtime, heap, 63
runtime, method area, 63
runtime, constant pool, 64
runtime, native method stacks, 65
structuresglass files, (chapter), 83
types, Java Virtual Machine, 57
data types, 6
See alsattributes table;boolean type;
byte type;char type;constant_pool
table;double type;fields table;float
type;int type; integraljong type;null
type; reference type;returnAddress
type; short type;String type
arguments, structural constraints on
instructions, 122
arrays, Java Virtual Machine mapping, 74
categories, 7
checking
checkcastl74
checkcast_quick393
instanceof256
instanceof_quick401
class file data, methods that can read, 83
classes compared with, 13
conversion
and numeric promotion impact on, 13
instructions, 77
Java storage, mapping between Java Virtual
Machine computational types and
(table), 74

D character ¢ descriptors

Java Virtual Machine instruction set
encoding of, 72
mapping between Java storage types and
computational types (table), 74
support for (table), 73
primitive, 7
two-word, structural constraints on
instructions, 122
data-flow analysis
code array, 126
initialization, Pass 3 - bytecode verifier, 129
running, Pass 3 - bytecode verifier, 129
dcmpginstruction, 183
in Java Virtual Machine assembly language
examples
constants and local variables i@
loop, 343
while loop, 349, 350
dcmplinstruction, 183
in Java Virtual Machine assembly language
exampleswhile loop, 350
dconst_<d>instructions, 184
in Java Virtual Machine assembly language
examples
constants and local variables iff@r
loop, 343
while loop, 349
ddiv instruction, 185
debugging
Java Virtual Machine implementation
issues, 82
defineClass method
ClassLoader class, constant pool
resolution of classes and interfaces
loaded by, 145
defining
new attributes, 107
denormalized
term definition, 8
descriptor_index item
(CONSTANT_NameAndType_info structure),
100
(field_info structure), 103
(LocalvariableTable_attribute
structure), 117
(method_info structure), 106
descriptors
characteristics and use, 89
field

445

446 descriptors « dstoreinstruction

descriptors (cont)
as value of ONSTANT_Utf8_info
structure referenced by
descriptor_index item,
CONSTANT_NameAndType_info
structure, 100
as value of ONSTANT_Utf8_info
structure referenced by
descriptor_index item,
field_info structure, 103
structural constraints on instructions, 123
syntax and item descriptions, 90
syntax and meaning, 90
grammar for specification of, 90
method
argument number limitation, 136
as value ofONSTANT_Utf8_info
structure referenced by
descriptor_index item,
CONSTANT_NameAndType_info
structure, 100
syntax and item descriptions, 91
dimensions
arrays, field descriptor specification, 91
direct
directly implement, term definition, 30
extension, term definition, 30
subclass, term definition, 25
superclass, term definition, 25
dividing
doubTe, ddiv, 185
float, fdiv, 213
int, idiv, 243
Tong, Idiv, 295
dloadinstruction, 187
constraints, static, 121
dload_<n>instructions, 188
constraints, static, 121
in Java Virtual Machine assembly language
examples
constants and local variables ifar
loop, 343, 344
while loop, 349, 350
dmul instruction, 189
dneginstruction, 191
do nothing
nop, 322
double type
See alsdloating-point
adding,dadd 179

characteristics and values, 59
comparing
dcmpg 183
dcmpl 183
compilation of, Java Virtual Machine
assembly language examples, 343
converting
float to, f2d, 204
int to,i2d, 234
Tong to,12d, 282
to float, d2f, 176
toint, d2i, 177
to Tong, d2I, 178
data-flow analysis handling, 131
dividing, ddiv, 185
double-precision floating-point constant,
representation, syntax and item
descriptions, 97
field descriptor specification, 91
fields
getting from class instances,
getfield2_quick398
putting into class instances,
putfield2_quick426
loading from
arraysdaload 181
local variablesdload 187
local variablesdload_<n>, 188
multiplying, dmul, 189
negatingdneg 191
pushing
wide index,ldc2_w 294
wide index,ldc2_w_quick419
pushing constantglconst_<d> 184
remainderdrem 192
storing into
arraysdastore 182
local variablesdstore 195
local variablesgstore_<n> 196
subtractingdsul 197
term definition, 58
values, 7
return from methodjreturn 194
dreminstruction, 192
dreturn instruction, 194
constraints, structural, 123
in Java Virtual Machine assembly language
examples, constants and local variables
in afor loop, 344
dstoreinstruction, 195

constraints, static, 121
in Java Virtual Machine assembly language
examples, accessing the constant pool,
347
dstore_<n>instructions, 196
constraints, static, 121
in Java Virtual Machine assembly language
examples
constants and local variables i@
loop, 343
while loop, 349
dsubinstruction, 197
dupinstruction, 198
dup instructions
in Java Virtual Machine assembly language
examples
arrays, 358
operand stack operations, 361
throwing exceptions, 362
working with class instances, 355
operand stack manipulation constraints, 67
dup_xZlinstruction, 199
dup_x2instruction, 200
dup2instruction, 201
dup2_xlinstruction, 202
in Java Virtual Machine assembly language

examples, operand stack operations, 361

dup2_x2instruction, 203
duplicating
See alsaup instructions
top operand stack word
dup, 198
dup_x1 199
dup_x2 200
top two operand stack words
dup2 201
dup2_x1202
dup2_x2 203

E
encapsulation
frames, locality of, 66
end_pc item
(Code_attribute structure), 112
entering
monitor for objectmonitorenter 312
Error
asThrowable class direct subclass, 38
as unrecoverable runtime exception class,
39

dstore_<n>instructions ¢ exceptions

errors
See als@xceptions
handling, exceptions use for, 34
heap-relatedjutOfMemoryError, 63
Java stack-related
OutOfMemoryError, 62
StackOverflowError, 62
loading, 43
method area-relatedytOfMemoryError,
64
native method stack-related
OutOfMemoryError, 65
StackOverflowError, 65
preparation, 44
throwing,athrow 167
verification, 44
events
execution order of, constraints on
relationships among, 373
Exception
asThrowable class direct subclass, 38
exception_index_table array
(Exceptions_attribute structure), 114
exception_table array
(Code_attribute structure), 112
exception_table_length item
(Code_attribute structure), 112
ExceptionInInitializerError, 39
anewarray 162
checkcast175
constant pool resolution generation of, 143
getfield 226
getstatic 228
instanceof 257
invokespecial263
invokestatic 266
invokevirtual 268
multianewarray 316
new 318
putfield 325
putstatic 327
when thrown during initialization, 39
exceptions
See als@atch clause(s); errorg;ry-
catch-finally statementtry-
finally statement
abnormal completion, 68
asynchronous, reasons for and handling of,
37
causes of, 35

447

448

exceptions« fields

exceptions(cont)
conversions
narrowing primitive, 16
widening primitive, not possible, 15
dispatching, frame use for, 66
(Exceptions_attribute structure),
support required for, 107
handler parameters, as kind of variable, 11
handlers
code verification, Pass 3 - bytecode
verifier, 128
Sun’s Java compiled code characteristics,
133
handling, 36
instruction summary, 81
structural constraints on instructions, 122
Java Virtual Machine handling procedures,
69
normal completion, characterized by lack
of, 68
requirements for throwing, 114
standard unchecked runtime, list of
unrecoverable, 39
term definition, 34
throwing,athrow 167
Exceptions_attribute structure
(method_info structure), 113
execution
Java program, life cycle, 40
order, thread rules, 373
paths, structural constraints on instructions,
122
exit
Java Virtual Machine, conditions for, 52
monitor for objectmonitorexit 314
exit method
Java Virtual Machine exit activated by, 52
expressions
interface type, implications, 13
extend
local variable index by additional bytes,
wide, 337
extends clause
term definition, 25

F

F character
field descriptor meaning, 91

f2d instruction, 204
f2i instruction, 205
21 instruction, 206
fadd instruction, 207
faload instruction, 209
fastoreinstruction, 210
fcmpginstruction, 211
fcmpl instruction, 211
fconst_<f>instructions, 212
fdiv instruction, 213
field_info structure, 88
(fields table ofClassFile structure), 101
fields
See als@onstants; data typesields
table; methods; variables
access expressions, access control and, 22
class,field_info structure access flags,
102
constant, 46
constant pool
references, verification process, 126
resolution of, 147
constants, as interface members, 30
creation and manipulation, instruction
summary, 79
data flow analysis, 126
descriptor
as value of ONSTANT_Utf8_info
structure referred by
descriptor_index item,
CONSTANT_NameAndType_info
structure, 100
syntax and meaning, 90
get from class instances
getfield 226
getfield_quick395
Tong or doubTe, getfield2_quick398
wide index getfield_quick_w396
initialization of, 27
interfaces, 31
field_info structure access flags, 102
Tength as array type member, 22
modifiers, 26
number limitation, 136
protected structural constraints, 123
put into class instances
putfield 325
putfield_quick423

Tong or double, putfield2_quick426
wide index,putfield_quick_w424
references, constant pool resolution, 147
static
get from classegetstatic 228
get from classegetstatic_quick399
get from classegetstatic2_quick400
put into classegqutstatic_quick427
put into classegqutstatic2_quick428
put into classegutstatic 327
term definition, 26
types, 91
volatile term definition, 27
fields_count item
(ClassFile structure), 88
fields table
(ClassFile structure), 88
final keyword
See als@CC_FINAL modifier
class
and method constraint checking, 126
term definition, 24
methods, 28
term definition, 24
finalization
of class instances;inalize method, 51
finalizer term definition, 51
finally clause
data-flow analysis duringlass file
verification, 134
exception handling role, 36
implementation of
in catch_type item (Code_attribute
structure), 113
instruction summary, 81
try-finally clause, Sun’s Java compiled
code characteristics, 133
uninitialized object restrictions, Pass 3 -
bytecode verifier, 133
findSystemClass method
ClassLoader class, constant pool
resolution of classes and interfaces
loaded by, 145
finite nonzero floating-point values
IEEE 754 standard, Java Virtual Machine
specification conformance to, 59
fload instruction, 215
See also widinstruction
constraints, static, 121

fields_count item « forward slashes (/)

fload_<n>instructions, 216
constraints, static, 121
float type
See alsdloating-point
adding,fadd 207
comparing
fcmpg 211
fcmpl 211
converting
double to,d2f, 176
int to,i2f, 235
Tong to, 12, 283
to double, f2d, 204
to int, f2i, 205
to long, f21, 206
dividing, fdiv, 213
loading from
arrays faload 209
local variablesfload, 215
local variablesfload_<n>, 216
multiplying, fmul, 217
negatingfneg 219
pushing constantégonst_<f> 212
remainderfrem, 220
storing into
arrays fastore 210
local variablesfstorg 223
local variablesfstore_<n>, 224
subtractingfsuly 225
value, return from methodteturn, 222
floating-point
comparison, IEEE 754 conformance, 80
types
casting not permitted betwebnolean
type and, 9
characteristics and values, 59
components, and values, 7, 58
field descriptor specification, 91
underflow and overflow, Java Virtual
Machine handling, 76
values, operators on, 8
fmul instruction, 217
fneginstruction, 219
for keyword
compilation of, Java Virtual Machine
assembly language examples, 341
forward slashes (/)
class name use, 89

449

450

frames ¢ i2sinstruction

frames
See als®tacks
exception handling impact on, 70
local variables, 66
term definition, 66
frem instruction, 220
freturn instruction, 222
constraints, structural, 123
fstoreinstruction, 223
constraints, static, 121
fstore_<n>instructions, 224
constraints, static, 121
fsub instruction, 225

G
garbage collection
algorithm, not specified by Java Virtual
Machine specification, 57
as implementation of automatic storage
management system, 63
method area relationship to, 64
getfieldinstruction, 226
constraints
static, 120
structural, 123
in Java Virtual Machine assembly language
examples
operand stack operations, 361
working with class instances, 356
getfield_quickinstruction, 395
getfield_quick_winstruction, 396
getfield2_quickinstruction, 398
getstaticinstruction, 228
constraints, static, 120
getstatic_quickinstruction, 399
getstatic2_quicknstruction, 400
gotoinstruction, 230
constraints, static, 119
in Java Virtual Machine assembly language
examples
compilingfinally, 368
constants and local variables iffer
loop, 341, 343, 345
while loop, 348, 349
goto_winstruction, 231
constraints, static, 119
gradual underflow
conformance
adddouble, dadd 180

addfloat, fadd 208
dividing
double conformanceddiv, 186
float conformancefdiv, 214
multiplying
double conformancegdmul 190
float conformancefmul, 218
subtracting
double conformancegdsuh 197
float conformancefsuh 225
term definition, 8
grammar
descriptor specification, 90

H

handler_pc item
(element okxception_table array of
Code_attribute structure), 112
handles
term definition, 36, 69
hash sign (#)
use in Java Virtual Machine assembly
language examples, 340
heap
See alsanemory
errors,0utOfMemoryError, 63
term definition, 9
hiding
term definition, 26
hierarchy
exception, 38
reference types, 10
high_bytes item
(CONSTANT_Double_info structure), 98
(CONSTANT_Long_info structure), 98

I
| character
field descriptor meaning, 91
i2b instruction, 232
i2c instruction, 233
i2d instruction, 234
i2f instruction, 235
i2l instruction, 236
i2sinstruction, 237
in Java Virtual Machine assembly language
examples, constants and local variables
in afor loop, 345

iadd instruction, 238
in Java Virtual Machine assembly language
examples
arithmetic, 346
constants and local variables iffer
loop, 345
receiving arguments, 351
iaload instruction, 239
in Java Virtual Machine assembly language
examples, arrays, 357
iand instruction, 240
in Java Virtual Machine assembly language
examples, arithmetic, 346
iastoreinstruction, 241
in Java Virtual Machine assembly language
examples, arrays, 357
iconst_<i>instructions, 242
in Java Virtual Machine assembly language
examples
arithmetic, 346
arrays, 358
compiling switches, 359, 360
constants and local variables iff@r
loop, 341, 345
while loop, 348, 350
identifiers
See alsmames; strings
non-name use in Java programs, 20
term definition, 6
as value ofONSTANT_Utf8_info structure
referenced byiame_index item
(CONSTANT_NameAndType_info
structure), 100
referenced byiame_index item
(field_info structure), 103
referenced byiame_index item
(method_info structure), 105
identity
conversions, 14
idiv instruction, 243
IEEE 754 standard
comparing
double conformancegdcmpg 183
double conformancedcmp| 183
float conformancefcmpg 211
float conformancefcmpl 211
conformance
adddouble, dadd 179
addfloat, fadd 208

iadd instruction ifgt instruction

dividing
double conformanceddiv, 185
float conformancefdiv, 214
float anddouble type conformance, 59
floating-point
comparison, conformance, 80
doubTe bit layout,high_bytes and
Tow_bytes items,
CONSTANT_Double_info structure, 98
operation conformance to, 76
multiplying
double conformancegmul 189
float conformancefmul, 218
remainder
dremnot the same as thadrem 192
fremnot the same as thieem, 221
subtracting
double conformancegsul 197
float conformancefsuh 225
if_acmpeaqinstruction, 244
constraints, static, 119
if_acmpneinstruction, 244
constraints, static, 119
if_icmpeqinstruction, 245
constraints, static, 119
if_icmpgeinstruction, 245
constraints, static, 119
if_icmpgtinstruction, 245
constraints, static, 119
if_icmple instruction, 245
constraints, static, 119
if_icmplt instruction, 245
constraints, static, 119
in Java Virtual Machine assembly language
examples
constants and local variables i@
loop, 341, 342, 345
while loop, 348
if_icmpneinstruction, 245
constraints, static, 119
ifeq instruction, 247
constraints, static, 119
ifge instruction, 247
constraints, static, 119
in Java Virtual Machine assembly language
exampleswhile loop, 350
ifgt instruction, 247
constraints, static, 119

451

452

ifle instruction « implementation

ifle instruction
constraints, static, 119
in Java Virtual Machine assembly language
exampleswhile loop, 350
iflt instruction, 247
constraints, static, 119
in Java Virtual Machine assembly language
examples
constants and local variables iffa
loop, 343
while loop, 349
ifne instruction, 247
constraints, static, 119
in Java Virtual Machine assembly language
examples, throwing exceptions, 362
ifnonnull instruction, 249
constraints, static, 119
ifnull instruction, 250
constraints, static, 119
in Java Virtual Machine assembly language
examples, working with class instances,
355
iinc instruction, 251
constraints, static, 121
in Java Virtual Machine assembly language
examples
constants and local variables iffa
loop, 341, 342
while loop, 348
I1legalAccessError, 45
anewarray 162
checkcast175
constant pool resolution generation of, 143,
146
during field reference resolution, 147
during method reference resolution, 148
getfield 226
getstatic 228
instanceof257
invokeinterface260
invokeinterface_quickd03
invokespecial263
invokestatic 266
invokevirtua) 268
as linking error, 39
multianewarray 316
new 318
putfield 325

putstatic 327
I1legalMonitorStateException, 38
monitorexit 314
iload instruction, 252
See also istorestruction;wideinstruction;
constraints, static, 121
iload_<n>instructions, 253
See also istore_<ninstructions
constraints, static, 121
in Java Virtual Machine assembly language
examples
arithmetic, 346
arrays, 357
compiling switches, 359, 360
constants and local variables iffar
loop, 341, 342, 345
receiving arguments, 351
throwing exceptions, 362
while loop, 348
working with class instances, 356
impdeplreserved opcode, 152
impdep2reserved opcode, 152
implementation
attributes
optional, handling, 107
predefined, support requirements, 107
bugs
exclusiveend_pc workaround, 112
native method stacks, stack overflow not
detected, 65
string literal resolution, 148
class files verification issues, 124
considerations
constant pool, 64
exception handling, 114
frames, extensions permitted, 68
heap, 63
Java stacks, 62
JDK 1.0.2 release, boolean arrays as byte
arrays, 60
JDK 1.0.2 release, Java stacks, 62
JDK 1.0.2 release, Java stacks, size limit
use, 63
JDK 1.0.2 release, heap, 63
JDK 1.0.2 release, method area, 64
JDK 1.0.2 release, constant pool, 64
JDK 1.0.2 release, native method stacks,
65

local variables, 66
method area, 64
native method stacks, 65
operand stacks, 67
word specification, 61
constraint enforcement strategies, 151
constraints
Java Virtual Machine code, 118
Java Virtual Machine code, static, 118
Java Virtual Machine code, structural, 121
decisions, constant pool entries for eight-
byte constants, 98
exception handlers
Sun’s Java compiled code characteristics,
133
try-finally clause, Sun’s Java compiled
code characteristics, 133
future possibilities, APl changes in contract
between Java Virtual Machine and
ClassLoader class, 144
implications, opcode design and alignment,
71
integer data type underflow and overflow,
not detected by Java Virtual Machine, 76
Java Virtual Machine, strategies and
requirements, 81
JDK 1.0.2
line number - source code mapping issues,
115
major_version andminor_version
numbers, 85
verification ofclass files restricted to
those with class loaders, 142
object representation, 69
optimization, alternative instruction use,
127
requirements and non-requirements, 57
import declaration
type declaration effects, 21
imul instruction, 254
IncompatibleClassChangeError, 45
getfield 226
getstatic 228
invokeinterface259
invokeinterface_quickd03
invokespecial263
invokestatic 266
invokevirtua) 269
as linking error, 39
putfield 325

453

import declaration « instances

putstatic 327
increment
local variable by constaritnc, 251
index item
(LocalvariableTable_attribute
structure), 118
IndexOutOfBoundsException, 38
ineginstruction, 255
inexact
term definition, 8
infinities
IEEE 754 standard, Java Virtual Machine
specification conformance to, 59
info array
(attribute_info generic structure), 106
inheritance
class hierarchy, 25
in interfaces, 32
methods, 27
term definition, 25
<init> special method
as instance initialization method name, 69
constant_pool reference to, 95
invocation of
static constraints, 120
structural constraints, 122
method_info structure access flags, 104
name_index item (method_1info) reference,
105
initialization
detailed procedure description, 47
instance, structural constraints on
instructions, 122
instances, data-flow analysis duritithss
file verification, 131
methods, 69
overview, 42
static initializers, 29
term definition, 46
instanceofinstruction, 256
instanceof_quickinstruction, 401
instances
See alsarrays
creating
new 318
new_quick422
creation, 49
instruction summary, 79
situations that cause the, 49
determining if an object is a particular type

instancese 1int type

instances(cont)
instanceaf 256
instanceof_quick401
entering monitor formonitorentey 312
exiting monitor formonitorexit 314
field descriptor specification, 91
getting values of fields from
getfield 226
getfield_quick395
getfield_quick_w396
Tong or double, getfield2_quick398
initialization
data-flow analysis duringlass file
verification, 131
field_info structure access flags, 104
structural constraints on instructions, 122
instanceofnstruction, constraints, static,
120
Java Virtual Machine support for, 58
manipulation, instruction summary, 79
methods, 28
accessing, structural constraints on
instructions, 122
data-flow analysis duringlass file
verification, 132
initialization, invoking,
invokenonvirtual_quick406
invoking, instruction summary, 80
invoking, invokespecigl261
invoking, invokevirtual 267
invoking, invokevirtual_quick411
invoking, invokevirtual_quick_w413
invoking, forjava.lang.0Object class,
invokevirtualobject_quick415
method_info structure access flags, 104
operators on, 10
putting values into fields into
putfield 325
putfield_quick423
putfield2_quick426
wide index,putfield_quick_w424
reference type relationship to, 58
representation of, in Java Virtual Machine,
69
term definition, 9
this object role in creation of, 50
uninitialized, restrictions, Pass 3 - bytecode
verifier, 133
unreachable, finalization of, 51

variables, 11
accessing, structural constraints on
instructions, 122
getting fields fromgetfield 226
getting fields fromgetfield_quick395
getting fields fromgetfield_quick_w396
getting fields fromgetfield2_quick398
putting fields intoputfield 325
putting fields intoputfield_quick423
putting fields intoputfield2_quick426
InstantiationError, 45
as linking error, 39
new 318
instructions
alternative forms, optimization use of, 127
constraints, static, 118
Java Virtual Machine instruction set
execution loop, 71
format, 71
load, summary, 74
opcodes
data flow analysis, 126
verification process, 128
operands, verification process, 128
set
arithmetic, summary, 75
notation for families of, 75
summary, 71
type encoding limitations of, 72
store, summary, 74
untyped, handling ofong anddouble
values, data-flow analysis durin@ass
file verification, 131
int type
adding,iadd, 238
ANDing, bitwise,iand, 240
branchint comparison
if_icmp<cond> 245
with zero,if<cond>, 247
converting
double to,d2i, 177
float to, f2i, 205
Tong to, 12i, 284
to byte, i2b, 232
to char, i2c, 233
to double, i2d, 234
to float, i2f, 235
to Tong, i2l, 236
to short, i2s, 237

dividing, idiv, 243
field descriptor specification, 91
loading from
arrays,jaload, 239
local variablesiload, 252
local variablesiload_<n>, 253
multiplying, imul, 254
negatingjneg 255
ORing
bitwise, exclusiveixor, 279
bitwise, inclusivejor, 270
pushing constantgonst_<i>, 242
remainderjrem, 271
shift left, arithmeticjshl, 273
shift right
arithmetic,ishr, 274
logical, iushr, 278
storing into
arrays,astore 241
local variablesistore 275
local variablesistore_<n>, 276
subtractingjsub, 277
value, return from methodeturn, 272
integer
See alstyte type;char type;int type;
Tong type;short type
data types, underflow and overflow, not
detected by Java Virtual Machine, 76
int type
boolean values represented as, 60
compilation of, Java Virtual Machine
assembly language examples, 341
instruction set handling of, 72
term definition, 58
value range, 59
integral
types
components, 7, 58
values, 58
values, operators on, 8
interfaces, 30
See als@CC_INTERFACE modifier; arrays;
class(es)jnterfaces array,
(ClassFile structure)
constant pool entry resolution, 140
extends clause use, 31
fields, 31
finalization of, 52
implements clause use, 31
members, 31

integer « invokevirtualinstruction 455

methods
constant pool resolution of, 148
invocation instruction summary, 80
invoking, invokeinterface258
invoking, invokeinterface_quickd03
method_info structure access flags, 104
modifiers, 31
term definition, 30
types, 9
as reference type, 61
implications for variables and expressions,
13
members of, 22
interfaces array
(ClassFile structure), 87
interfaces_count item
(ClassFile structure), 87
InternalError
as asynchronous exception cause, 37
as Java Virtual Machine error, 40
invokeinterfaceinstruction, 258
constraints, static, 120
invokeinterface_quickinstruction, 403
invokenonvirtual_quickinstruction, 406
invokespecialnstruction, 261
See als@CC_SUPER modifier
access flag use to select alternative
semantics, 86
constraints
static, 120
structural, 122
instance initialization by, 69
in Java Virtual Machine assembly language
examples
arrays, 358
invoking methods, 354
throwing exceptions, 362
working with class instances, 355
invokestaticinstruction, 265
constraints, static, 120
in Java Virtual Machine assembly language
examples, invoking methods, 353
invokestatic_quickinstruction, 410
invokesuper_quicknstruction, 408
invokevirtual instruction, 267
constraints, static, 120
in Java Virtual Machine assembly language
examples
catching exceptions, 363, 364, 365

456

invokevirtual instruction « Java Virtual Machine

invokevirtual instruction (cont)
compilingfinally, 367, 368, 369
invoking methods, 352
synchronization, 370
throwing exceptions, 362, 363
working with class instances, 355
invokevirtual_quickinstruction, 411
invokevirtual_quick_winstruction, 413
invokevirtualobject_quickinstruction, 415
invoking
methods
class,invokestatic 265
class,invokestatic_quick410
instancejnvokespecial261
instancejnvokevirtual 267
instancejnvokevirtual_quick411
instancejnvokevirtual_quick_w413
instance, fojava.lang.0Object class,
invokevirtualobject_quick415
instance initialization,
invokenonvirtual_quick406
interface invokeinterface258
interface invokeinterface_quiclkd03
private,invokenonvirtual_quick406
superclasse#vokesuper_quickd08
ior instruction, 270
irem instruction, 271
ireturn instruction, 272
constraints, structural, 123
in Java Virtual Machine assembly language
examples
arithmetic, 346
compiling switches, 359, 360, 361
invoking methods, 352, 353, 354
receiving arguments, 351
while loop, 350
ishl instruction, 273
ishr instruction, 274
istoreinstruction, 275
See also iloadnstruction
constraints, static, 121
istore_<n>instructions, 276
See alsoiload_<nnstructions
constraints, static, 121
in Java Virtual Machine assembly language

examples
accessing the constant pool, 347
arrays, 357
constants and local variables iffer
loop, 341, 345

while loop, 348
isub instruction, 277
in Java Virtual Machine assembly language
examples, arithmetic, 346
items
class file items, 83
jushr instruction, 278
ixor instruction, 279
in Java Virtual Machine assembly language
examples, arithmetic, 346

J
J character
field descriptor meaning, 91
Java
concepts, (chapter), 5
digits, 6
letters, 6
Virtual Machine, See Java Virtual Machine;
java.io package
java.io.Datalnput interface
class file data format support by, 83
readInt methodclass file data type
support by, 83
readUnsignedByte methodclass file
data type support by, 83
readUnsignedShort methodclass file
data type support by, 83
java.io.DataInputStream classclass
file data format support by, 83
java.io.DataOutput interfaceclass file
data format support by, 83
java.io.DataOutputStream classclass
file data format support by, 83
java.lang package
java.lang.Object class, as interpretation
of zero value fosuper_class item
(ClassFile structure), 87
java.lang.String
CONSTANT_String_info structure
representation, syntax and item
descriptions, 96
string literals, constant pool resolution of,
148
Java Virtual Machine
assembly language, format, 340
compiling for, (chapter), 339
life cycle, 40
startup, 40
structure of, (chapter), 57

JIT (Just-In-Time) code generation * LineNumberTable_attribute Structure

unrecoverable runtime exceptions
associated with, 39
JIT (Just-In-Time) code generation
Java Virtual Machine implementation
issues, 82, 339
jsr instruction, 280
constraints
static, 119
structural, 124
in Java Virtual Machine assembly language
examples, compilinginally, 367, 368
returnAddress type used by, 60
try-finally clause implementation use,
Sun’s Java compiled code
characteristics, 134
jsr_winstruction, 281
constraints
static, 119
structural, 124
returnAddress type used by, 60
jump table
access
by index and jumptableswitch 335
by key match and jumjpokupswitch300
alignment concerns, 111
jump to subroutine instructions
constraints, static, 119
jsr, 280
wide indexjsr_w, 281

L

L<classname>;
field descriptor meaning, 91
|12d instruction, 282
|2f instruction, 283
I2i instruction, 284
ladd instruction, 285
in Java Virtual Machine assembly language
examples, operand stack operations, 361
laload instruction, 286
land instruction, 287
lastoreinstruction, 288
late binding
frame constant pool reference support of, 68
Icmp instruction, 289
Iconst_<I>instructions, 290
in Java Virtual Machine assembly language
examples
accessing the constant pool, 347

457

operand stack operations, 361
Idc instruction, 291
constraints, static, 120
in Java Virtual Machine assembly language
examples, accessing the constant pool,
347
ldc_quickinstruction, 417
ldc_winstruction, 292
constraints, static, 120
ldc_w_quickinstruction, 418
ldc2_winstruction, 294
constraints, static, 120
in Java Virtual Machine assembly language
examples
accessing the constant pool, 347
constants and local variables iff@r
loop, 343
while loop, 349, 350
ldc2_w_quickinstruction, 419
Idiv instruction, 295
left angle bracket (<)
in CONSTANT _Methodref_info and
CONSTANT_InterfaceMethodref_info
names, significance of, 95
left parentheses (
method descriptor meaning, 91
left square bracket [
field descriptor specification, 91
length
arrays, fetchingarraylength 164
Tength item
(CONSTANT_Utf8_info structure), 101
(LocalvariableTable_attribute
structure), 117
limitations
Java Virtual Machine components, 136
Tine_number item
(element ofline_number_table array of
LineNumberTable_attribute
structure), 116
Tine_number_table array
(LineNumberTable_attribute structure),
116
Tine_number_table_length item
(LineNumberTable_attribute structure),
115
LineNumberTable_attribute structure
(element ofattributes table of
Code_attribute structure), 115

458

LinkageError ¢ local variables

LinkageError, 43, 44
as unrecoverable runtime exception class,
39
verification pass 4 occurrence of, 127
linking
See alsoerification
class files verification issues, 124
dynamic
frame use for, 66
support, frame constant pool reference, 67
errors
I1legalAccessError, 39
IncompatibleClassChangeError, 39
InstantiationError, 39
LinkageError as unrecoverable runtime
exception class, 39
LinkageError loading errors thrown by,
43
LinkageError verification errors thrown
by, 44
LinkageError verification pass 4
occurrence of, 127
NoSuchFieldError, 39
NoSuchMethodError, 39
overview, 41
term definition, 43
unrecoverable runtime exceptions
associated with, 39
literals
See als@onstants; strings; variables
false term definition, 6
null term definition, 6
strings
constant pool resolution of, 148
constant pool resolution of, JDK 1.0.2
implementation bug, 148
term definition, 6
true term definition, 6
lload instruction, 296
lload_<n>instructions, 297
Imul instruction, 298
Ineg instruction, 299
loading
See als@ccessing; linking; retrieving;
verification
errors,NoClassDefFoundError, 39
from arrays
byte orboolean, baload 169
char, caload 172

double, daload 181
float, faload 209
int, iaload, 239
Tong, laload, 286
reference, aaload 156
short, saload 331
from local variables
double, dload 187
doubTe, dload_<n>, 188
float, fload 215
float, fload_<n>, 216
int, iload, 252
int, iload_<n>, 253
Tong, lload, 296
Tong, lload_<n>, 297
reference, aload, 160
reference, aload_<n>, 161
lload instruction, constraints, static, 121
lload_<n> instructions, constraints, static,
121
load instructions, summary, 74
ToadClass method, constant pool
resolution of classes and interfaces
loaded by, algorithm, 145
overview, 41
term definition, 43
unrecoverable runtime exceptions
associated with, 39

Tocal_variable_table array

(LocalvariableTable_attribute
structure), 117

Tocal_variable_table_length item

(LocalvariableTable_attribute
structure), 117

local variables

See alsgarameters; variables
accessing, structural constraints on
instructions, 122
code verification, Pass 3 - bytecode verifier,
128
compilation of, Java Virtual Machine
assembly language examples, 341
data flow analysis, 126
exception handling impact on, 70
extend index by additional byteside, 337
frames used to hold, 66
instructions
for accessing more, summary, 75
load and store, summary, 74

LocalVariableTable_attribute structure lookupswitchinstruction

specialized to handle, advantages of, 342

loading
double from, dload, 187
double from,dload_<n>, 188
float from, fload 215
float from, fload_<n>, 216
int from,iload, 252
int from,iload_<n>, 253
Tong from, lload, 296
Tong from, lload_<n>, 297
reference from, aload 160
reference from,aload _<n>, 161
location of, 118
maximum number, 111
number limitation, 136
reuse, advantages of, 342
states, merging, during data-flow analysis,
130
storing
double into, dstore 195
double into, dstore_<n> 196
float into, fstore 223
float into, fstore_<n>, 224
int into, istore, 275
int into, istore_<n>, 276
Tong into, Istore, 307
Tong into, Istore_<n>, 308
reference into, astore 165
reference into, astore_<n> 166
term definition, 12
LocalVariableTable_attribute structure
(Code_attribute structure), 116
locks
See alsdhreads
ACC_SYNCHRONIZED modifier,field_info
structure, 104
(chapter), 371
errors,ITlegalMonitorStateException
thrown, 38
interaction with variables, rules about, 377
managing shared variables with, 27
multithreaded synchronization with, 54
rules about, 376
synchronization and, 386
synchronized method use of, 29
term definition, 10, 53
Tong type
adding,ladd, 285

ANDing, bitwise,land, 287
comparingjcmp, 289
constantCONSTANT_Long_info structure
representation, syntax and item
descriptions, 97
converting
double to,d2l, 178
float to, f2I, 206
int to,i2l, 236
to double, 12d, 282
to float, I2f, 283
toint, 12i, 284
data-flow analysis handling, 131
dividing, Idiv, 295
field descriptor specification, 91
fields
getting from class instances,
geftfield2_quick398
putting into class instances,
putfield2_quick426
loading
from arraysjaload, 286
from local variabled)oad, 296
from local variabled)oad_<n>, 297
multiplying, Imul, 298
negatingjneg 299
ORing
bitwise, exclusivelxor, 311
bitwise, inclusiveor, 302
pushing
constantsiconst_<I>, 290
wide index,ldc2_w 294
wide index,Jdc2_w_quick419
remainder|rem, 303
shift left, Ishl, 305
shift right
arithmetic,Ishr, 306
logical, lushr, 310
storing into
arraysjastore 288
local variableslstore, 307
local variableslstore_<n>, 308
subtracting)sub, 309
term definition, 58
value, return from methotteturn, 304
value range, 59
lookupswitchinstruction, 300
See also tableswitdnstruction

459

460

lookupswitchinstruction « methods

lookupswitchinstruction (cont)
code array alignment effect, 111
constraints, static, 119
in Java Virtual Machine assembly language
examples, compiling switches, 360
lor instruction, 302
Tow_bytes item
(CONSTANT _Double_info structure), 98
(CONSTANT_Long_1info structure), 98
Irem instruction, 303
Ireturn instruction, 304
constraints, structural, 123
in Java Virtual Machine assembly language
examples, operand stack operations, 361
Ishl instruction, 305
Ishr instruction, 306
Istoreinstruction, 307
constraints, static, 121
Istore_<n>instructions, 308
constraints, static, 121
in Java Virtual Machine assembly language
examples, accessing the constant pool,
347
Isubinstruction, 309
lushr instruction, 310
Ixor instruction, 311

M
magic item
(ClassFile structure), 84
magic number
See alsmagic item (ClassFile structure)
class file verification of, 125
main method
invocation of, 40
major_version item
(ClassFile structure), 84
manipulation
objects, instruction summary, 79
mapping
symbolic references to concrete values,
constant pool resolution, (chapter), 139
max_locals item
(Code_attribute structure), 111
max_stack item
(Code_attribute structure), 111
members
class, term definition, 25
term definition, 21
memory

allocation during instance creation, 49
errors,0utOfMemoryError constant pool
resolution generation of, 143

garbage collection

and finalization, 51

as memory management technique, 9
limiting use of, Java stack size limit use for,

63

main, term definition, 371
master, of variables, term definition, 371
runtime data areas

constant pool, 64

heap, 63

Java stacks, 62

layout not specified by Java Virtual

Machine specification, 57

method area, 63

native method stacks, 65

pc register, 61
term definition, 371
thread interaction with, ordering rules, 54
working, term definition, 371

method

super term definition, 30

method_info structure

(methods table ofClassFile structure),
104

methods

See alsdields
abnormal completion, 68
abstract, 28
abstract, as interface members, 32
area
constant pool allocation from, 64
term definition, 63
Character.isJavalLetter method, 6
Character.isJavalLetterOrDigit
method, 6
class
invoking, invokestatic 265
invoking, invokestatic_quick410
classFinalize method, invoking during
class finalization, 52
<c1init> special method
as class or interface initialization method
name, 69
constant_pool reference to, 95
invocation of, static constraints, 120
method_info structure access flags
ignored, 104

name_index item (ethod_info
structure) reference, 105
code
location, 111
size limitation, 136
verification, Pass 3 - bytecode verifier, 128
compilation of, Java Virtual Machine
assembly language examples, 341
constant pool
references, verification process, 126
resolution of, 147
data flow analysis, 126
defineClass methodClassLoader class,
145
descriptor
argument number limitation, 136
as value off ONSTANT_Utf8_info
structure referenced by
descriptor_index item,
CONSTANT_NameAndType_info
structure, 100
syntax and meaning, 91
errors,AbstractMethodError, 44
exit method, Java Virtual Machine exit
activated by, 52
final, 28
finalize method, 51
findSystemClass methodClassLoader
class, 145
frames use with, 66
<init> special method
as instance initialization method name, 69
constant_pool reference to, 95
invocation of, static constraints, 120
invocation of, structural constraints, 122
method_1info structure access flags, 104
name_index item method_info)
reference, 105
initialization, 69
instance, 28
data-flow analysis duringlass file
verification, 132
invoking, invokespecial261
invoking, invokevirtual 267
invoking, invokevirtual_quick411
invoking, invokevirtual_quick_w413
invoking forjava.lang.0Object class,
invokevirtualobject_quick415
invoking initialization,
invokenonvirtual_quick406

methods ¢« methods 461

interface
constant pool resolution of, 148
invoking, invokeinterface258
invoking, invokeinterface_quickd03
invocation
conversion, context, 14
conversion, 18
expressions, access control and, 22
instruction summary, 80
structural constraints on instructions, 123
main method, invocation of, 40
modifiers, 28
native, 29
invoking, invokenonvirtual_quick406
pc register state, 62
stacks, 65
newInstance methodClass class, 9
normal completion, 68
notify method, multithreaded actions, 54
notifyAll method, multithreaded actions,
54
number and size limitation, 136
operand stack use by, 67
parameters, as kind of variable, 11
private, 28
invoking, invokenonvirtual_quick406
protected, structural constraints, 123
public, 28
readInt method,java.io.DataInput
interfaceclass file data type support
by, 83
readUnsignedByte method,
java.io.DataInput interfaceclass
file data type support by, 83
readUnsignedShort method,
java.io.DataInput interfaceclass
file data type support by, 83
references, constant pool resolution, 148
requirements for throwing exceptions, 114
resolveClass methodClassLoader class,
145
return
double value fromdreturn, 194
float value from/freturn, 222
instruction summary, 80
int value from,ireturn, 272
Tong value from/return, 304
reference value fromareturn, 163
type, structural constraints on instructions,
123

methods « negating

methods(cont)
void from, return, 330
setDaemon method, creating daemon
threads with, 53
stop method
Thread class, as exception cause, 35
Thread class, as asynchronous exception
cause, 37
String.intern, 6
superclasses, invokinmvokesuper_quick
408
synchronization, instruction summary, 81
synchronized methods, 29
double value return fromgreturn, 194
float value return fromfreturn, 222
int value return fromireturn, 272
Tong value return fromireturn, 304
reference value return fromareturn,
163
void return fromreturn, 330
table, preparation phase use of, 45
term definition, 27
uncaughtException method, exception
handling use, 35, 36
wait method, multithreaded actions, 54
methods_count item
(ClassFile structure), 88
methods table
(ClassFile structure), 88
minor_version item
(ClassFile structure), 84
monitor
enter for objectmonitorenter 312
exit for objectmonitorexit 314
term definition, 53
monitorenterinstruction, 312
in Java Virtual Machine assembly language
examples, synchronization, 370
monitorexit instruction, 314
in Java Virtual Machine assembly language
examples, synchronization, 370
multianewarrayinstruction, 316
constraints, static, 120, 121
in Java Virtual Machine assembly language
examples, arrays, 358
multianewarray_quickinstruction, 421
multiplying
double, dmul 189
float, fmul, 217

int, imul, 254
Tong, Imul, 298
must
instruction description implications, 151

N
name_and_type item
(CONSTANT_Fieldref_info structure), 95
(CONSTANT_InterfaceMethodref_info
structure), 95
(CONSTANT_Methodref_info structure), 95
name_index item
(CONSTANT_Class_info structure), 93
(CONSTANT_NameAndType_info structure),
99
(field_info structure), 103
(LocalvariableTable_attribute
structure), 117
(method_info structure), 105
names
See alsadentifiers
attributes, avoiding conflicts in, 108
class, term definition, 24
classes, internal representation, 89
fully qualified, 23
new attributes, 107
qualified
access control and, 22
term definition, 20
simple, term definition, 20
NaN (Not-a-Number)
conversion of
bytes item,CONSTANT_Float_info
structure into, 97
high_bytes andlow_bytes items,
CONSTANT_DoubTe_info structure, 99
|IEEE 754 standard, Java Virtual Machine
specification changes from, 60
operations that produce, 76
term definition, 7
narrowing primitive conversions
See conversions, narrowing primitive
native keyword
See als@CC_NATIVE modifier
methods, 29
pc register state, 62
stacks, 65
negating
double, dneg 191

float, fneg 219
int, ineg 255
Tong, Ineg 299
negative infinity
conversion of
bytes item,CONSTANT_Float_info
structure into, 97
high_bytes andlow_bytes items,
CONSTANT _Double_info structure, 99
NegativeArraySizeException, 38
anewarray 162
anewarray_quick392
multianewarray 316
multianewarray_quick421
newarray 320
newinstruction, 318
constraints, static, 120, 121
data-flow analysis duringlass file
verification, 132
in Java Virtual Machine assembly language
examples
arrays, 358
throwing exceptions, 362
working with class instances, 355
new_quickinstruction, 422
newarrayinstruction, 320
constraints, static, 121
in Java Virtual Machine assembly language
examples, arrays, 357
NoClassDefFoundError, 43
anewarray 162
checkcastl75
constant pool resolution generation of, 142
getfield 226
getstatic 228
instanceof257
invokespecial263
invokestatic 266
invokevirtual 268
as loading process error, 39
multianewarray 316
new 318
putfield 325
putstatiG 327
when thrown during initialization, 48
nonterminal symbols
descriptor grammar notation, 90
nop instruction, 322
normal completion

negative infinity « NulTPointerException

term definition, 68
NoSuchFieldError, 39, 45
constant pool resolution generation of,
during field reference resolution, 148
getfield 226
getstatic 228
as linking error, 39
putfield 325
putstatic 327
NoSuchMethodError, 46
constant pool resolution generation of,
during method reference resolution, 148
invokespecial263
invokestatic 266
invokevirtua) 268
as linking error, 39
notation
class file format descriptions, 83
descriptor grammar, 90
instruction families, 75
notification
notify method, multithreaded actions, 54
notifyAll method, multithreaded actions,
54
wait sets and, 387
null object reference
pushing,aconst_null 159
null reference
null type, 6
term definition, 61
testing for, 80
NullPointerException, 39
aaload 156
aastore 158
arraylength 164
athrow 167
baload 169
bastore 170
caload 172
castore 173
daload 181
dastore 182
faload, 209
fastore 210
getfield 226
getfield_quick395
getfield_quick_w396
geftfield2_quick398
iaload, 239

464 NullPointerException < ORing

Nul1PointerException (cont)
iastore 241
invokeinterface260
invokeinterface_quickd03
invokenonvirtual_quick406
invokespecial263
invokesuper_quiclkd08
invokevirtual 269
invokevirtual_quick411
invokevirtual_quick_w413
invokevirtualobject_quick415
laload, 286
lastore 288
monitorentey 312
monitorexit 314
new 318
putfield 325
putfield_quick423
putfield_quick_w424
putfield2_quick426
saload 331
sastore 332
number_of_exceptions item
(Exceptions_attribute structure), 114
numeric
comparisons
floating-point positive and negative zero,
59
implications of unordered NaN values, 60
conversions
binary promotion, term definition, 19
narrowing, support for, 77
narrowing, impact on precision, 78
unary promotion, term definition, 19
widening, impact on precision, 77
promotions, 13
types
components, 7, 58
promotion conversion, context, 14

O
Object class, 10
objects
See als@rrays; instances
term definition, 9
opcodes
mnemonics by opcode (table), 429
reserved, 152
term definition, 71

operand(s)
constraints, static, 119
implicit, compilation advantage of, 342
instructions, verification process, 128
Java Virtual Machine instructions, storage
order and alignment, 71
stack
code verification, Pass 3 - bytecode
verifier, 128
data flow analysis, 126
duplicating top operand odup, 198
duplicating top operand on, and put three
down in stackdup_x2 200
duplicating top operand on, and put two
down in stackdup_x1 199
duplicating top two operand wordiyp2
201
duplicating top two operand words, and
put four down in stackdup2_x2 203
duplicating top two operand words, and
put three down in stackup2_x1 202
exception handling impact on, 70
frames used to hold, 67
management instruction summary, 79
maximum number of words, 111
merging, during data-flow analysis, 130
pop two wordspop2 324
pop word,pop, 323
size limitation, 136
structural constraints on instructions, 122
swap top two wordswap 334
term definition, 71
types, how distinguished by Java Virtual
Machine instruction set, 57
optimization
alternative instruction use, 127
order
execution, thread rules, 373
ordered values
floating point values, 60
NaN values not ordered, implications of, 60
ORing
int
bitwise, exclusiveixor, 279
bitwise, inclusivejor, 270
Tong
bitwise, exclusivelxor, 311
bitwise, inclusivelor, 302
OutOfMemoryError

constant pool
related error, 64
resolution generation of, 143
heap-related error, 63
Java stack-related error, 62
as Java Virtual Machine error, 40
method area-related error, 64
native method stack-related error, 65
when thrown during initialization, 48
overflow
floating-point, Java Virtual Machine
handling, 76
integer data types, not detected by Java
Virtual Machine, 76
overloading
in interfaces, 32
term definition, 22
overriding
ACC_FINAL modifier,method_info
structure prevention of, 104
in interfaces, 32
methods, term definition, 27
term definition, 22

P

packages
members of, 21
term definition, 20
parameters
See alsdocal variables
constructors, as kind of variable, 11
descriptor, syntax and meaning, 91
exception handler, as kind of variable, 11
formal, 28
methods, as kind of variable, 11
passive use
term definition, 46
pc (program counter) register
term definition, 61
performance
implications, opcode design and alignment,
71
pointers
term definition, 9
pop
stack operand
pop one wordspop, 323
pop two wordspop2 324

overflow « public keyword 465

popinstruction, 323
pop2instruction, 324
positive infinity
conversion of
bytes item,CONSTANT_Float_info
structure into, 97
high_bytes andlow_bytes items,
CONSTANT_ _Double_info structure, 99
pound sign (#)
use in Java Virtual Machine assembly
language example, 340
precise
term definition, 37
precision
See alsaumeric
narrowing numeric conversion impact on,
78
widening numeric conversion impact on, 77
preparation
overview, 41
term definition, 44
prescient store
actions, with threads, 378
primitive
See alsoolean; char type; conversions;
floating-point; integers
types
as Java Virtual Machine data type, 57
term definition, 58
values, term definition, 58
private keyword
See als@CC_PRIVATE modifier
access implications, 23
methods, 28
invoking, invokespecial261
invoking, invokenonvirtual_quick406
program counter
Seepc (program counter) register
protected keyword
See als@CC_PROTECTED modifier
access implications, 23
fields, structural constraints, 123
methods, structural constraints, 123
public keyword
See als@aCC_PUBLIC modifier
access implications, 23
class, term definition, 25
methods, 28

466 pushing * resolveClass method

pushing
byte, bipush 171
constants
Idc, 291
Idc_quick 417
wide index,Idc_w 292
wide index,ldc_w_quick 418
double
dconst_<d> 184
wide index,|dc2_w 294
wide index,Jdc2_w_quick419
float, fconst_<f>, 212
int, iconst_<i>, 242
Tong
constantsiconst_<I>, 290
wide index,|dc2_w 294
wide index,Jdc2_w_quick419
nul1 object referencesconst_null 159
short, sipush 333
putfield instruction, 325
constraints
static, 120
structural, 123
in Java Virtual Machine assembly language
examples
operand stack operations, 361
working with class instances, 356
putfield_quickinstruction, 423
putfield_quick_winstruction, 424
putfield2_quickinstruction, 426
putstaticinstruction, 327
constraints
static, 120
structural, 123
putstatic_quickinstruction, 427
putstatic2_quickinstruction, 428

qualified access
term definition, 22

R
readInt method
java.io.DataInput interfaceclass file
data type support by, 83
readUnsignedByte method
java.io.DataInput interfaceclass file
data type support by, 83
readUnsignedShort method

java.io.DataInput interfaceclass file
data type support by, 83
recursion
controlling runaway
Java stack size limit use for, 63
native method stack size limit use for, 65
reference(s)
field, constant pool resolution, 147
final fields, 26
method, constant pool resolution, 148
symbolic, mapping to concrete values,
constant pool resolution (chapter), 139
reference type
branch ifreference
comparison succeed§,acmpeq 244
comparison succeed§,acmpne 244
is nul11, ifnull, 250
notnull, ifnonnull, 249
determining if an object is a particular
instanceaf 256
instanceof_quick401
Java Virtual Machine
data type, 57
handling of, 58
null, testing for, 80
values, 9
components and, 61
register
pc, 61
remainder
double, drem 192
float, frem, 220
int, irem, 271
Tong, Irem, 303
representation
internal, class names, 89
reserved opcodes
breakpoint 152
impdepl 152
impdep2 152
resolution
constant pool, (chapter), 139
lazy, term definition, 44
overview, 41
static, term definition, 44
term definition, 45
types of, 42
resolveClass method
ClassLoader class, constant pool
resolution of classes and interfaces
loaded by, 145

retinstruction, 329
See also astormstruction;astore_<n>
instructions jsr instruction;jsr_w
instruction
constraints
static, 121
structural, 124
in Java Virtual Machine assembly language
examples, compilinginally, 367, 369
returnAddress type used by, 60
try-finally clause implementation use,
Sun’s Java compiled code
characteristics, 134
retrieving
See accessing; loading
return
descriptor, syntax and meaning, 91
from method
double value,dreturn, 194
float value,freturn, 222
int value,ireturn, 272
Tong value,lreturn, 304
void, return, 330
from subroutineret, 329
reference value,areturn, 163
type, method, structural constraints on
instructions, 123
return instruction, 330
constraints, structural, 123
in Java Virtual Machine assembly language
examples
arrays, 357, 358
catching exceptions, 363, 364, 365, 366
compilingfinally, 367, 368
constants and local variables iffer
loop, 341, 343, 345
synchronization, 370
throwing exceptions, 362, 363
while loop, 348, 349
working with class instances, 354, 356
returnAddress type
characteristics and values, 60
instance constraints, 124
local variable constraints, 123
term definition, 58
right parentheses)
method descriptor meaning, 91
round-to-nearest
See alsqumeric

ret instruction « shift

term definition, 8, 76
round-towards-zero
See alsamumeric
in narrowing numeric conversions, 78
term definition, 8, 76
runFinalizersOnExit method
Java Virtual Machine exit role, 52
runtime
class files verification issues, 124
data areas
constant pool, 64
heap, 63
Java stack, 62
method area, 63
native method stacks, 65
pc register, 61
exceptionsNul1PointerException,
geftfield 226
RuntimeException asException class
direct subclass, 38
type, as incorrect terminology, 13
RuntimeException
asThrowabTle class direct subclass, 38

S

S character
field descriptor meaning, 91
saloadinstruction, 331
sastoreinstruction, 332
security
See als@access_flags item
verification ofclass files, 124
SecurityException, 39
semantics
attributes, optional, 107
invokespeciainstruction, access flag use to
select alternatives, 86
Java integer and floating-point operator
support, 76
Java types that have no direct integer
arithmetic support, 75
Java Virtual Machine, strategies for
implementing, 82
shadowing
See overriding
shift
left int, ishl, 273
left Tong, Ishl, 305
rightint

467

468

shift « standards

shift (cont)
arithmetic,ishr, 274
logical,iushr, 278
right Tong
arithmetic,Ishr, 306
logical, lushr, 310
short type
convertingint to, i2s, 237
field descriptor specification, 91
instruction set handling of, 72
integer arithmetic not directly supported, 75
loading from arrayssaload 331
pushing sipush 333
storing into arrayssastore 332
term definition, 58
value range, 59
signature
term definition, 28
sipushinstruction, 333
size
heap, setting withms and-mx flags, JDK
1.0.2 implementation, 63
Java stack, setting witloss flag, JDK 1.0.2
implementation, 63
local variables, 66
method area, JDK 1.0.2 implementation
constraints, 64
native method stacks, setting witks flag,
JDK 1.0.2 implementation, 65
operand stacks, 67
slashes (/)
class name use, 89
source code
compiled, Java Virtual Machine assembly
language examples, format, 340
SourceFile_attribute structure
(element ofexception_table array of
ClassFile structure), 108
sourcefile_index item
(SourceFile_attribute structure), 108
StackOverflowError, 40
as Java stack-related error, 62
as native method stack-related error, 65
stacks
errors
OutOfMemoryError, 65
StackOverflowError, 62, 65
Java, 62
frames allocated from, 66

size, setting with-oss flag, JDK 1.0.2
implementation, 63

native method, 65

JDK 1.0.2 implementation bug, 65
size, setting with-oss flag, JDK 1.0.2
implementation, 63

operand

code verification, Pass 3 - bytecode
verifier, 128

data flow analysis, 126

duplicating topdup, 198

duplicating top and put three down in,
dup_x2 200

duplicating top and put two down in,
dup_x1199

duplicating top two wordsjup2 201

duplicating top two words and put four
down in,dup2_x2 203

duplicating top two words and put three
down in,dup2_x1 202

frames used to hold, 67

management instruction summary, 79

maximum number of words, 111

merging, during data-flow analysis, 130

pop two wordspop2 324

pop word,pop, 323

size limitation, 136

structural constraints on instructions, 122

swap top two wordswap 334

standards
IEEE 754, 7

addingdouble, conformancedadd 179

addingfloat, conformancefadd 208

comparingdouble, conformancegcmpg
183

comparingdouble, conformancedcmp|
183

comparingfloat, conformancefcmpg
211

comparingfloat, conformancefcmpl
211

dividing doub1e, conformanceddiv, 185

dividing f1oat, conformancefdiv, 214

float anddouble type, conformance, 59

floating-point comparison, conformance,
80

floating-point double format bit layout,
high_bytes andlow_bytes items, 98

floating-point operation conformance to,

76

multiplying doub1le, conformancegdmul
189

multiplying f1oat, conformancefmul,
218

remainderdremnot the same as thadrem
192

remainderfremnot the same as thieem,
221

subtractingdouble, conformancedsuh
197

subtractingfloat, conformancefsuh 225
UTF-8 format, bibliographic reference, 101
start_pc item
(element ofxception_table array of
Code_attribute structure), 112
(element ofline_number_table array of
LineNumberTable_attribute
structure), 116
(element oflocal_variable_table array
of LocalvariableTable_attribute
structure), 117
startup
Java Virtual Machine, overview, 40
state
capture, frame use for, 66
objects, persistentransient variables
not part of, 26
term definition, 9
of types, static initializer role in ensuring a
consistent, 46
static
See als@CC_STATIC modifier
fields
get from classegetstatic 228
get from classegetstatic_quick399
get from classegetstatic2_quick400
put into classegutstatic 327
put into classequtstatic_quick427
put into classequtstatic2_quick428
initializers, 29
as not members of a class, 25
execution of during initialization, 46
methods
invoking, invokestati¢ 265
invoking, invokestatic_quick410
stop method
Thread

start_pcitem ¢ strings

as asynchronous exception cause, 37
as exception cause, 35
ThreadGroup as asynchronous exception
cause, 37
storage
automatic management system, garbage
collection as, 63
data, frame use for, 66
frame allocation, 66
instructions, summary, 74
requirements, Java Virtual Machine,
platform independent characterization,
61
runtime data areas
constant pool, 64
heap, 63
Java stacks, 62
method area, 63
native method stacks, 65
pc register, 61
storing into
arrays
byte orboolean, bastore 170
char, castore 173
double, dastore 182
float, fastore 210
int, iastore 241
Tong, lastorg 288
reference, aastore 157
short, sastore 332
local variables
double, dstore 195
doubTe, dstore_<n> 196
float, fstorg 223
float, fstore_<n>, 224
int, istore 275
int, istore_<n>, 276
Tong, Istore, 307
long, Istore_<n>, 308
reference, astore 165
reference, astore_<n>, 166
String class, 10

string_index item
(CONSTANT_String_info structure), 96
String type, 6
strings
See alsGtring class,
CONSTANT_Utf8_info structure

469

470

strings « tag item

strings (cont)
constant pool resolution of, 148
JDK 1.0.2 implementation bug, 148
conversion context, 14
String new instances creation triggered by,
49
term definition, 6

structures
class file structures, 83

subclass
term definition, 25
subpackages
term definition, 21
subroutine
jump to
jsr, 280
wide indexjsr_w, 281
return fromret, 329
subtracting
double, dsubh 197
float, fsuh 225
int, isub, 277
Tong, Isub, 309
super_class item
(ClassFile structure), 87
super method
term definition, 30
superclasses
See als@CC_SUPER modifier
checking for, 126
methods, invokinginvokesuper_quicki08
super keyword
accessing, overridden methods with, 27
accessing hidden fields with, 26
super method as constructor invocation, 30
term definition, 25
superinterfaces
term definition, 31
swap
operand stack wordsyap 334
swapinstruction, 334
swapping
swapinstruction, operand stack
manipulation constraints, 67
threads example, 380
symbolic references
mapping to concrete values, constant pool
resolution, (chapter), 139
symbols

See names
synchronization
See alsACC_SYNCHRONIZED modifier;
threads
exception handling integration with, 35
instruction summary, 81
Java Virtual Machine assembly language
examples, 369
locks, 386
synchronized method
double value return fromdreturn, 194
float value return fromfreturn, 222
int value return fromireturn, 272
Tong value return fromlreturn, 304
reference value return fromareturn,
163
void return from return, 330
synchronized keyword
methods, 29
multithreaded actions, 53
operations, 386
specification, 386
thread-memory interaction, ordering rules,
54
syntax
class file, 84
class names references, 89
ClassFile structure, 84
descriptor grammar, 90
system services
transient variables potential role in, 26

T
tables
class file tables, 83
tableswitchinstruction, 335
See also lookupswitdhstruction
code array alignment effect, 111
constraints, static, 119
in Java Virtual Machine assembly language
examples, compiling switches, 359
tag item
(CONSTANT_Class_info structure), 93
(CONSTANT_DoubTe_info structure), 98
(CONSTANT_Fieldref_info structure), 95
(CONSTANT_Integer_info structure), 96
(CONSTANT_InterfaceMethodref_info
structure), 95

(CONSTANT_Long_1info structure), 98
(CONSTANT _Methodref_info structure), 95
(CONSTANT_NameAndType_info structure),
99
(CONSTANT_String_info structure), 96
(CONSTANT_Utf8_info structure), 101
term definition
objects, 9
term definitions
abnormal completion, 68
abstract
class, 24
methods, 28
active use, 46
arrays, 32
access expression, 34
component types, 33
components, as kind of variable, 11
components, 33
creation expression, 9, 34
element types, 33
elements, 33
empty, 32
initializer, 34
length of, 33
types, 9
variables, 33
ASCII, 5
assign, as thread action, 372
assignable, 18
assignment
compatible, 10, 18
variable, by threads, 54
big-endian, 71
bytecodes, 2
caller, 36
catch clauses, 35
caught, 34
class
abstract, 24
class file tables, 83
current, 66
declaration, 24
final, 24
instance creation expression, 9
instances, 9
methods, 28
modifiers, 24
public, 24

term definition < term definitions

types, 9

variable, 11
compile-time type, 10
complete abruptly, 34
constant fields, 46
constant pool, 64
constructors, 29

default, 30

parameters, as kind of variable, 11
conversions, 13

assignment, 17

casting, 19

contexts, 14

identity, 14

method invocation, 18

narrowing primitive, 15

narrowing reference, 16

numeric promotion, binary, 19

numeric promotion, unary, 19

widening primitive, 15

widening reference, 16
daemon threads, 53
default value, 12
denormalized, 8

floating-point numbers, 76
descriptors, 89
digits

Java, 6

Unicode, 6
direct

directly implement, 30

extension, 30

subclass, 25

superclass, 25

superinterfaces, 31
dynamic linking, 67
dynamically enclosed, 36
exceptions, 34

classes, 36

handler parameters, as kind of variable, 11

extends clause, 25

fields, 26
final, 26
private, 26
protected, 26
public, 26
static, 26
transient, 26
volatile, 27

471

472

term definitions ¢ term definitions

term definitions (cont)

final

class, 24

fields, 26

methods, 28
finalizer, 51
floating-point types, 58
formal parameters, 28
frames, 66

current, 66
garbage collection, 9, 63
gradual underflow, 8, 76
handles, 36, 69
heap, 63
hiding, 26
identifier, 6
implement, 31
inexact, 8

results, 76
infinities, 7
inheritance, 25
initialization, 46
instance

methods, 28

variable, 11
integral types, 58
interface, 30

types, 9
items, 83
Java

heap, 9

stack, 62

JIT (Just-In-Time) code generation, 82, 339

late binding, 68
lazy resolution, 44
letters
Java, 6
Unicode, 6
linking, 43
literals, 6
false, 6
null, 6
true, 6
loading, 43
action by thread, 373
local variables, 12, 66
locks, 10, 53, 371
lock action, by main memory subsystem,
373
operation, action by thread, 373

unlock action, by main memory
subsystem, 373
master copy, 371
meaning of ‘must’ in instruction
descriptions, 151

members, 21

class, 25
memory

main, 371

working, 371
methods, 27

abstract, 28

area, 63

current, 66

final, 28

native, 28

parameters, as kind of variable, 11

private, 28

protected, 28

public, 28

static, 28

synchronized, 28
monitors, 53
names

class, 24

qualified, 20

simple, 20
NaN, 7
native methods, 28, 29
native method stacks, 65
normal completion, 68
null reference, 61
numeric

promotions, 13

types, 58
objects, 9, 58
opcode, 71
operands, 71

stacks, 67
overloading, 22

in interfaces, 32
overriding, 22

in interfaces, 32
packages, 20
passive use, 46
pc register, 61
pointers, 9
precise, 37
preparation, 44
primitive

types, 7, 58

values, 7, 58
private

fields, 26

methods, 28
protected methods, 28
public

class, 25

fields, 26

methods, 28
qualified access, 22
read action by thread, 373
reference

types, 9, 61

values, 9
resolution, 45
returnAddress type, 58
round-to-nearest, 8, 76
round-towards-zero, 8, 76
signature, 28
state, 9
static

fields, 26

methods, 28
static

initializers, 29

resolution, 44
store action by thread, 373
strings, 6
subclass, 25
subpackages, 21
super method, 30
superclass, 25
superinterfaces, 31

synchronized methods, 28, 29

synchronizing, 53
this object, 29
thrown, 34
transient fields, 26
try statements, 35
unlock action by thread, 373
use

action by thread, 372

of values, by threads, 54
variables, 10, 371

class, 26

instance, 26

transient, 26
verification, 44
version skew, 124
volatile fields, 27

terminal symbols * transient keyword

wait set, 387
word, 61
working copy, 371
write action by thread, 373
zeroes, 7
terminal symbols
descriptor grammar notation, 90
this_class item
(ClassFile structure), 87
this object
instance creation role, 50
locks use with, 29
method descriptor inclusion, 92
term definition, 29
threads
See alssynchronization
actions, term definition, 371
(chapter), 371
constraints on relationships among actions
of, 373
creation, 386
frames use with, 66
Java stacks, 62
memory interaction with, ordering rules, 54
native method stacks, 65
out-of-order writes example, 384
pc register, 61
shared
data areas, heap, 63
data areas, method area, 63
variables, mechanisms for handling, 26
swapping example, 380
synchronization issues during initialization,
47
term definition, 53
ThreadGroup exception handling use of,
35, 36
throw
Throwable exceptions as instances or
subclasses of, 35
Throwable class

exceptions as instances or subclasses of, 35

throwing
exceptionsathrow 167
throw statement, as exception cause, 35
Throwable as exception hierarchy root, 38
timing
dependencies, in concurrent programming,
54
transient keyword, 26
See als@CC_TRANSIENT modifier

473

474

try-catch-finally statement « variables

try-catch-finally statement
See als@xceptions
as exception handling statement, 70
exception handling use of, 37
try-finally statement
See als@xceptions
as exception handling statement, 70
exception handling use of, 37
Sun’s Java compiled code characteristics,
133

U
ul
asclass file data type, 83
u2
asclass file data type, 83
u4
asclass file data type, 83
underflow
floating-point, Java Virtual Machine
handling, 76
integer data types, not detected by Java
Virtual Machine, 76
Unicode
digits, 6
letters, 6
references and characteristics, 5
UnknownError
as Java Virtual Machine error, 40
unloading
object reachability impact on, 52
UnsatisfiedLinkError
See alstinkageError
invokeinterface260
invokeinterface_quickd03
invokespecial263
invokestatic 266
invokevirtua) 269
invokevirtual_quick411
invokevirtual_quick_w413
invokevirtualobject_quick415
URLs
ftp://unicode.org, 5
http://java.sun.com/Series, 5
use
of values, by threads, 54
UTF-8 format
See als@ONSTANT_Utf8_info structure
bibliographic reference, 101

standard, differences between Java Virtual
Machine UTF-8 strings and, 101

\%

V character
method descriptor meaning, 91
values, 7
concrete, mapping symbolic references to,
constant pool resolution (chapter), 139
default, 12
floating-point, 7
primitive, 7
return, frame use for, 66
variables
See als@onstants; literals
array type, 33
of a class, fields defined as, 26
doubTe nonatomic treatment of, memory
operations on, 376
initial values of, term definition, 12
of an instance, 26
interaction with locks, rules about, 377
interface type, implications, 13
kinds of, 11
local
accessing, structural constraints on
instructions, 122
code verification, Pass 3 - bytecode
verifier, 128
data flow analysis, 126
exception handling impact on, 70
extend index by additional byteside,
337
frames used to hold, 66
instruction specialized to handle,
advantages of, 342
instructions for accessing more,
summary, 75
load and store instructions, summary, 74
loadingdouble from, dload 187
loadingdouble from, dload_<n>, 188
loadingfloat from, fload 215
loadingfloat from, fload_<n>, 216
loadingint from, iload, 252
loadingint from,iload_<n>, 253
loadinglong from, lload, 296
loading1ong from, lload_<n>, 297
loadingreference from, aload 160
loadingreference from,aload_<n>, 161

verification « zeroes 475

location of, 118 invokestatic 266
maximum number, 111 invokevirtua) 268
number limitation, 136 multianewarray 316
reuse, advantages of, 342 new 318
states, merging, during data-flow analysis, putfield 325
130 putstatic 327
storingdoubTe into, dstore 195 versions
storingdouble into, dstore_<n>, 196 binary compatibility issues, 124
storingfloat into, fstore 223 major,major_version item (ClassFile
storingfloat into, fstore_<n>, 224 structure) representation of, 84
storingint into, istore, 275 minor,minor_version item (ClassFile
storingint into, istore_<n>, 276 structure) representation of, 84
storinglong into, Istore, 307 VirtualMachineError, 39
storinglong into, Istore_<n>, 308 constant pool resolution generation of, 140
storingreference into, astore 165 reasons for throwing instances of, 152
storingreference into, astore_<n> 166 void
term definition, 12 field descriptor specification, 91
Tong nonatomic treatment of, memory return from methodeturn, 330
operations on, 376 volatile keyword
shared See als@ACC_VOLATILE modifier
mechanisms for handling, 26 variables, rules about, 378
multithreaded actions, 54
state among, 9 w
term definition, 10 wait
thread use constraints, 374 See alsdocks, threads, notification
transient, 26 wait method, multithreaded actions, 54
volatile rules about, 378 wait sets, notification and, 387
verification while keyword
class files, 124 compilation of, virtual machine assembly
compiler and language independence, 125 language examples, 348
Pass 3, 128 wide instruction, 337
procedures, 125 constraints, static, 119, 121
errors widening primitive conversions
VerifyError as class verification error, See conversions, widening primitive
39 words
VerifyError meaning of, 44 as platform-specific size specifier, term
VerifyError constant pool resolution definition, 61
generation of, 143 term definition, 61
overview, 41
term definition, 44 Z
VerifyError, 44 Z character
anewarray 162 field descriptor meaning, 91
checkcast175 zeroes
getfield 226 IEEE 754 standard, Java Virtual Machine
getstatic 228 specification conformance to, 59
instanceof 257 positive and negative, operations that

invokespecial263 distinguish between, 59

	The Java™ Virtual Machine Specification
	The Java™ Virtual Machine Specification
	Contents
	Introduction
	Java Concepts
	2.1 Unicode
	2.2 Identifiers
	2.3 Literals
	2.4 Types and Values
	2.4.1 Primitive Types and Values
	2.4.2 Operators on Integral Values
	2.4.3 Operators on Floating-Point Values
	2.4.4 Operators on boolean Values
	2.4.5 Reference Types, Objects, and Reference Valu...
	2.4.6 The Class Object
	2.4.7 The Class String
	2.4.8 Operators on Objects

	2.5 Variables
	2.5.1 Initial Values of Variables
	2.5.2 Variables Have Types, Objects Have Classes

	2.6 Conversions and Promotions
	2.6.1 Identity Conversions
	2.6.2 Widening Primitive Conversions
	2.6.3 Narrowing Primitive Conversions
	2.6.4 Widening Reference Conversions
	2.6.5 Narrowing Reference Conversions
	2.6.6 Assignment Conversion
	2.6.7 Method Invocation Conversion
	2.6.8 Casting Conversions
	2.6.9 Numeric Promotion
	2.7.1 Names
	2.7.2 Packages
	2.7.3 Members
	2.7.4 Package Members
	2.7.5 The Members of a Class Type
	2.7.6 The Members of an Interface Type
	2.7.7 The Members of an Array Type
	2.7.8 Qualified Names and Access Control
	2.7.9 Fully Qualified Names

	2.8 Classes
	2.8.1 Class Names
	2.8.2 Class Modifiers
	2.8.3 Superclasses and Subclasses
	2.8.4 The Class Members

	2.9 Fields
	2.9.1 Field Modifiers
	2.9.2 Initialization of Fields

	2.10 Methods
	2.10.1 Formal Parameters
	2.10.2 Signature
	2.10.3 Method Modifiers

	2.11 Static Initializers
	2.12 Constructors
	2.13 Interfaces
	2.13.1 Interface Modifiers
	2.13.2 Superinterfaces
	2.13.3 Interface Members
	2.13.4 Interface (Constant) Fields
	2.13.5 Interface (Abstract) Methods
	2.13.6 Overriding, Inheritance, and Overloading in...

	2.14 Arrays
	2.14.1 Array Types
	2.14.2 Array Variables
	2.14.3 Array Creation
	2.14.4 Array Access

	2.15 Exceptions
	2.15.1 The Causes of Exceptions
	2.15.2 Handling an Exception
	2.15.3 The Exception Hierarchy
	2.15.4 The Classes Exception and RuntimeException

	2.16 Execution
	2.16.1 Virtual Machine Start-up
	2.16.2 Loading
	2.16.3 Linking: Verification, Preparation, and Res...
	2.16.4 Initialization
	2.16.5 Detailed Initialization Procedure
	2.16.6 Creation of New Class Instances
	2.16.7 Finalization of Class Instances
	2.16.8 Finalization and Unloading of Classes and I...
	2.16.9 Virtual Machine Exit

	2.17 Threads

	Structure of the Java Virtual Machine
	3.1 Data Types
	3.2 Primitive Types and Values
	3.2.1 Integral Types and Values
	3.2.2 Floating-Point Types and Values
	3.2.3 The returnAddress Type and Values
	3.2.4 There Is No boolean Type

	3.3 Reference Types and Values
	3.4 Words
	3.5 Runtime Data Areas
	3.5.1 The pc Register
	3.5.2 Java Stack
	3.5.3 Heap
	3.5.4 Method Area
	3.5.5 Constant Pool
	3.5.6 Native Method Stacks

	3.6 Frames
	3.6.1 Local Variables
	3.6.2 Operand Stacks
	3.6.3 Dynamic Linking
	3.6.4 Normal Method Completion
	3.6.5 Abnormal Method Completion
	3.6.6 Additional Information

	3.7 Representation of Objects
	3.8 Special Initialization Methods
	3.9 Exceptions
	3.10 The class File Format
	3.11 Instruction Set Summary
	3.11.1 Types and the Java Virtual Machine
	3.11.2 Load and Store Instructions
	3.11.3 Arithmetic Instructions
	3.11.4 Type Conversion Instructions
	3.11.5 Object Creation and Manipulation
	3.11.6 Operand Stack Management Instructions
	3.11.7 Control Transfer Instructions
	3.11.8 Method Invocation and Return Instructions
	3.11.9 Throwing and Handling Exceptions
	3.11.10 Implementing finally
	3.11.11 Synchronization

	3.12 Public Design, Private Implementation

	The class File Format
	4.1 ClassFile
	4.2 Internal Form of Fully Qualified Class Names
	4.3 Descriptors
	4.3.1 Grammar Notation
	4.3.2 Field Descriptors
	4.3.3 Method Descriptors

	4.4 Constant Pool
	4.4.1 CONSTANT_Class
	4.4.2 CONSTANT_Fieldref, CONSTANT_Methodref, and C...
	4.4.3 CONSTANT_String
	4.4.4 CONSTANT_Integer and CONSTANT_Float
	4.4.5 CONSTANT_Long and CONSTANT_Double
	4.4.6 CONSTANT_NameAndType
	4.4.7 CONSTANT_Utf8

	4.5 Fields
	4.6 Methods
	4.7 Attributes
	4.7.1 Defining and Naming New Attributes
	4.7.2 SourceFile Attribute
	4.7.3 ConstantValue Attribute
	4.7.4 Code Attribute
	4.7.5 Exceptions Attribute
	4.7.6 LineNumberTable Attribute
	4.7.7 LocalVariableTable Attribute

	4.8 Constraints on Java Virtual Machine Code
	4.8.1 Static Constraints
	4.8.2 Structural Constraints

	4.9 Verification of class Files
	4.9.1 The Verification Process
	4.9.2 The Bytecode Verifier
	4.9.3 Long Integers and Doubles
	4.9.4 Instance Initialization Methods and Newly Cr...
	4.9.5 Exception Handlers
	4.9.6 Exceptions and finally

	4.10 Limitations of the Java Virtual Machine and c...

	Constant Pool Resolution
	5.1.1 Current Class or Interface Not Loaded by a C...
	5.1.2 Current Class or Interface Loaded by a Class...
	5.1.3 Array Classes
	5.2 Field and Method Resolution
	5.3 Interface Method Resolution
	5.4 String Resolution
	5.5 Resolution of Other Constant Pool Items

	Java Virtual Machine Instruction Set
	6.1 Assumptions: The Meaning of “Must”
	6.2 Reserved Opcodes
	6.3 Virtual Machine Errors
	6.4 The Java Virtual Machine Instruction Set

	Compiling for the Java Virtual Machine
	7.1 Format of Examples
	7.2 Use of Constants, Local Variables, and Control...
	7.3 Arithmetic
	7.4 Accessing the Constant Pool
	7.5 More Control Examples
	7.6 Receiving Arguments
	7.7 Invoking Methods
	7.8 Working with Class Instances
	7.9 Arrays
	7.10 Compiling Switches
	7.11 Operations on the Operand Stack
	7.12 Throwing and Handling Exceptions
	7.13 Compiling finally
	7.14 Synchronization

	Threads and Locks
	8.1 Terminology and Framework
	8.2 Execution Order and Consistency
	8.3 Rules About Variables
	8.4 Nonatomic Treatment of Double and Long Variabl...
	8.5 Rules About Locks
	8.6 Rules About the Interaction of Locks and Varia...
	8.7 Rules for Volatile Variables
	8.8 Prescient Store Operations
	8.9 Discussion
	8.10 Example: Possible Swap
	8.11 Example: Out-of-Order Writes
	8.12 Threads
	8.13 Locks and Synchronization
	8.14 Wait Sets and Notification

	An Optimization
	9.1 Dynamic Linking via Rewriting
	9.2 The _quick Pseudo-instructions

	Opcode Mnemonics by Opcode

