
COMPUTATION: DAY 8

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Alternative Proof systems 1
2. Interactive Proofs 3
3. The class IP 4
4. Zero knowledge proof systems 5
4.1. Cheating Verifiers 7

1. Alternative Proof systems

An algorithm is a proof system for membership in a set. An NP statement

a ∈ A ⇐⇒ ∃π V (π, a) = T

is interpreted as π providing a proof that a ∈ A, and V verifying that the proof is
valid. The requirements are that π must be short as well as convincing.

One has this intuition that a proof π is hard to come by. But there are cases were
proofs are plentiful so that choosing a few at random strings, it is exceedingly likely
that one constitutes a proof.1 For instance, Little Fermat, a theorem in number
theory, says that if n is a prime integer than for all integers w relatively prime to n,

wn−1 = 1 (mod n)

Hence a w that defies this equality proves n not to be a prime. If 1 < w < n is not
relatively prime to n then n is also not a prime.

Example: In Figure 1 we show the result for each w when n = 35. Only 1 through

Date: 28 April 2025.
1The notion of proof as taught by Euclid is one of absolutes, however that is not entirely true

because some sets are undecidable. In the case of a Σ1 set S, if the truth is an s is in S, there is a
proof of this fact. However there are s ̸∈ S for which there is no proof of this fact.

1



2 BURTON ROSENBERG UNIVERSITY OF MIAMI

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
w34(35) 1 9 4 11 30 1 14 29 16 25 11 9 29 21 15 16 4

Figure 1. Witness of 35 being composite

w 1 2 3 4 5 6 7 8 9 10 11 12
w24(25) 1 16 6 6 0 21 1 21 11 0 16 11

Figure 2. Witness of 25 being composite

17 is shown, since 18 = −17, 19 = −16 etc. Any w except 1, 6, 29 and 34 are proofs
that 35 is not prime.

The result cannot be called a proof in the classical sense, because the argument that
an integer is prime is not by a conclusive logical steps, but by a preponderance of
evidence. The algorithm might be wrong, and it is not always wrong for any give
prime. However, if we modify our notion of proof than many more things can be
proven, and the errors can be made practically non-existent.

Definition 1.1. A language A ⊆ Σ∗ is in randomized polynomial time (RP) if there
exists a polynomial time algorithm V (w, a) such that,

a ∈ A ⇐⇒ Prw∈UW [V (w, a) = T ] > 1/2

a ̸∈ A ⇐⇒ ∀w ∈ W,V (w, a) = F

Where w ∈U W is a uniformly random choice of w from W , and the bound is uniform
for all a, according to the case.

The set of composite numbers is RP, and the set of primes is co-RP. Given a com-
posite n, choosing one more numbers at random, will give a witness and the output
of the decider will be true. However with a probability that grows exponentially
smaller with repeated trials, it might mis-classify n as prime. However, the false side
of this set, that n is in fact p a prime, will always yield false.

Note that in use, the algorithm is run k times, and if the number is composite
that then probability it is incorrectly classified will be less than (1/2)k. In fact, since
this is a polynomial time algorithm the algorithm can be repeated a linear number
of times to give an exponentially small error of (1/2)n,

Definition 1.2. The property that a proof system for a ∈ A proves such, is called
completeness. If the proof system is certain to prove a ∈ A for any such a, the proof
system has perfect completeness.



COMPUTATION: DAY 8 3

The property of a proof system such that for a ̸∈ A the system does prove falsely
a ∈ A is called soundness. If for all a ̸∈ A the system never falsely proves otherwise
is called perfect soundness.

When there exists an NP proof system for a language, it has perfect completeness
and perfect soundness. It is also quick — proofs are The result being a lot more
languages had quick proofs that were almost certainly correct. An RP system has
perfect soundness and only probabilistic completeness. However in practice there are
many more things that can be proved to the satisfaction of the user of the system,
with an RP system.

The RP and co-RP classes can be mapped to values T, F and ⊥. Where RP gives
values T and ⊥, and co-RP give values F and ⊥. This makes explicit the caveat
emptor of the asymmetry. In the case of RP, the conclusion of F from ⊥ is by
preponderance of the evidence (likewise inferring T from ⊥ for co-RP.

There is a class ZPP which is the intersection of RP and co-RP which uses this
three value result explicitly. It provides evidence of true, when it finds such, evidence
of false when it finds such, but with a probably less than 1/2 will decide ⊥, which
signifies no evidence has been found either way.

A further approach, which seems to be the most realistic model of computation in
use, as it is sufficiently strong for the intent and sufficiently weak that many things
have proofs, is the class BPP.

Definition 1.3. A language A ⊆ Σ∗ is in Bounded Probabilistic Polynomial-time
(BPP) if there exists a polynomial time algorithm V (w, a) such that,

a ∈ A ⇐⇒ Prw∈UW [V (w, a) = T ] ≥ 2/3

a ̸∈ A ⇐⇒ Prw∈UW [V (w, a) = T ] < 1/3

The choice of w is made uniformly at random from W , and the bound is uniform for
all a, according to the case.

2. Interactive Proofs

The NP paradigm has made use of a polynomial time verifier V such that for an
A ⊆ Σ∗, then a ∈ A if and only if there exists a y and V (y, a) = T . This y has
various interpretations. It can be a hint, or the answer; it guides the computation to
prove that a is in A. The concept of NP is that one does not specify how y is found.
It is sufficient that it exists.

In an interactive proof two Turing machines converse using a shared tape. One
machine is called the Prover, and the other is called the Verifier. The Verifier is a
PPT; but the Prover can be any Turing Machine. This generalizes the notion of a
hint or proof string, in that the Prover can try to convince the Verifier by providing
this string. In fact, the Prover and Verifier can converse in multiple rounds.



4 BURTON ROSENBERG UNIVERSITY OF MIAMI

Definition 2.1. An interative turing machine is a pair of Turing machines, a proba-
balistic polynomial time (PPT) verifier V and a possibly computational unbounded
prover P . They communicate by a communication tape. Given an input a the prover
can help the verifier come to decision, denoted

⟨P, V ⟩(ω, a) ∈ {T, F }
where ω is the randomness of V chosen over some probability space Ω. The time is
polynomial for V , but the time of P is not generally considered.

Definition 2.2. The class IP is the class of languages A ⊆ Σ∗ such that there exists
a pair of interactive TM’s ⟨P, V ⟩ such that,

(1) For a ∈ A,
PrΩ

(
⟨P, V ⟩(ω, a) = T

)
≥ 2/3

where the probability is over ω ∈ Ω.
(2) For a ̸∈ A, and for any prover P ∗,

PrΩ
(
⟨P ∗, V ⟩(ω, a) = T

)
≤ 1/3

where the probability is over ω ∈ Ω.

Note the asymmetry. The verifier must verify absolutely. So nothing a “cheating
prover” can do will make verifier mistake an a ̸∈ A for one in A, except with limited
probability.

Also note, that because of the power of the prover, the prover is generally not
probabilistic. The ω is only used by the verifier. The reason is, since the Prover
is so powerful, rather than randomize its actions, it will take the one action that
maximizes its advantage, whether that is to convince the verifier to accept or to
convince the verifier to reject.

3. The class IP

Definition 3.1. Graphs G1 = ⟨V1, E1 ⟩ and G2 = ⟨V2, E2 ⟩ are isomorphic if,

(1) There is a bijection on the vertex sets, ϕ : V1 → V2, and
(2) The bijection respects the edge structure if the graph:

(v, v′) ∈ E1 ⇔ (ϕ(v), ϕ(v′)) ∈ E2

We write G1
∼= G2.

Theorem 3.1. The language ISO = { (G1, G2) |G1
∼= G2 } is NP complete.

Proof: It is in NP because given a permutation on the vertices ϕ, it is checkable in
polynomial time that ϕ(G1) ∼= G2.
To establish that it is NP complete, a reduction such as 3-SAT≤P ISO is required.

The proof is omitted. □



COMPUTATION: DAY 8 5

Theorem 3.2. The language NISO = { (G1, G2) |G1 ̸∼= G2 } is in IP.

Proof: We give an ⟨P, V ⟩ system that recognizes NISO.

(1) The Verifier V choses a random bit b and a random permutation ϕ. The
verifier V sends the Prover P the graph H = ϕ(Gb).

(2) The Prover figures out for which b̃ does Gb̃
∼= H, and sends the verifier b̃. If

both or neither, it sends a random b̃.
(3) The Verifier accepts if b = b̃.

If the graphs are not isomorphic, then (G1, G2) ∈ NISO. Then the Prover can

determine for which b̃ that H ∼= Gb̃, and the verifier accepts with probability 1. If
they are isomorphic then H ∼= G1

∼= G2, and it was the verifier’s choice, unknown
to the prover which of these two isomorphisms the verifier is expecting. A random
guess by the prover means the verifier accepts with probability 1/2. This is greater
than the allowed error probability, so two independent trials are made, the the only
accepts if both times the prover has guessed its coin. So the probability the verifier
accepts is 1/4. □

4. Zero knowledge proof systems

What is it about the isomorphism between two graphs that is knowledge? Given
a graph G0, it is not knowledge to create a random permutation ϕ of the vertices of
G0 to create G1 = ϕ(G0). However given a (G0, G1) promised to be isomorphic, it is
knowledge find the permutation ϕ on the vertices of G0 such that G1 = ϕ(G0).

• Polynomial time calculations do not increase knowledge. They reveal aspects
of the same knowledge.

The creation of ϕ does have a strange requirement — that the computer has access
to randomness. However, how is it that the draw of random numbers is knowledge?
Two machines each drawing random numbers, to the learn the same things?

In the following diagram,

G1
ϕ1−−→ G̃

ϕ2←−− G2

The graph G̃ is chosen randomly among graphs isomorphic to G1. We assume G2

is isomorphic to G1. The two permutations ϕ1 and ϕ2 are equally likely, and the
composition ϕ−1

2 ϕ1 is the isomorphism between G1 and G2.
The presentation of just ϕ1 or just ϕ2 is not knowledge. As G̃ can be selected by

first selecting b and the ϕb. Such an activity is polynomial time. However the chance
that G̃ happens twice, once as ϕ1(G1) and again as ϕ2(G2) is exponentially small.

An interactive proof has the prover propose a random G̃, and the verifier selects
b. The prover then provides ϕb. That the verifier is free to challenge either b = 1 or



6 BURTON ROSENBERG UNIVERSITY OF MIAMI

b = 2 means that if the prover consistently returns ϕb it must also know the “other”
ϕb̄, and hence the isomorphism between the graphs.

Theorem 4.1. Graph isomorphism can be proved in zero-knowledge.

Proof: An interactive proof system ⟨P, V ⟩ decides ISO by this algorithm,

(1) The prover chooses a random permutation ϕ of the vertices of G1 and sends
the verifier H = ϕ(G1).

(2) The verifier chooses are random bit b and sends it to the prover.
(3) The prover sends the isomorphism ϕ′ such that H = ϕ′(Gb).

This is an interactive proof system. If the graphs are isomorphic, the prover can
always provide ϕ′ and the verifier accepts with probability 1. If the graphs are not
isomorphic, no prover can convince the verifier with probability greater than 1/2,
because half the time the H it provided is not isomorphic to the Gb the verifier
choose.

To show it is zero-knowledge, we need to show that for the case of isomorphic
graphs nothing the verifier experiences in the course of the computation is anything
it could not have computed itself. It if does receive knowledge, it does so from the
communication with the prover. In this algorithm that communication is a triple
drawn from a probability space of triples,

X = { (H, b, ϕ) |H = ϕ(Gb) },
where H is a graph, G1 and G2 are the given graphs, b chosen randomly, and ϕ is a
random permutation of vertices on Gb.

We think of the random sampler that delivers one of this triples. In the algorithm,
it is drawn by first the Prover providng H, then the Verifier providing b and the the
Prover responding with the only correct ϕ that satisfies the constraint for the triples.
Because of this solving an instance of ISO, this sampler is NP hard.

However, a sampler with the same distribution could start with a random ϕ and
b and set H to satisfy the constraint. This sampler, called the simulator can be a
PPT.

A simple case is where the verifier flips a fair coin for b. In which case without
changing any computation it can let the simulator flip the coin. In this case, that of
honest verifier zero-knowledge, we have our proof. The Prover-Verifier combination
is replaced with this Simulator-Verifier combination for a PPT computation.

The prover might also bias the choice of H (equivalently, ϕ). Since we prove zero-
knowledge in the positive case of accepting the input, we can choose our prover, and
we choose one that does not do this. The verifier does not have the flip a fair coin.
It can react to H is it cares to, thereby shaping the distribution X. The simulator
must match this distribution. The formal definition of zero-knowledge does require
that the proof hold for any verifier.



COMPUTATION: DAY 8 7

The formal definition of zero-knowledge only asks for a proof in the accepting
case, and in this case the simulator is working fine. Fortunately, nothing has to be
proven in the rejecting case, since in this case the simulator cannot simulate the
prover. The prover will recognize that in has been given an impossible task and
modify its answers. The simulator however must continue to produce answers the
same as always, where H = ϕ(Gb), and therefore incapable of rejecting an input.
The algorithm will become completely unsound.

4.1. Cheating Verifiers. The simulation of X when the protocol is instantiated
with an arbitrary V must by necessity use V to mold the distribution. A copy of
V is made, that references the same randomness string, and the x = (H, b, ϕ(Gb)) is
tested against the V . Specifically, V is run up to its decision on b, and if it agrees
with that in the drawn x, the simulation outputs that x. Else it retries. If at last
it never succeeds, it marks its failure outputing the value ⊥. The repetition limit is
set to satisfy an error bound to be determined later.

We claim that this stochastic process of generating a uniform distribution underly-
ing X, then selecting, gives the distribution on X of the original protocol. However,
what we mean is when conditioned on x ̸= ⊥. Left to consider is how the case of
indeterminacy x = ⊥ is to be handled.

We can choose our prover in the case of accept, and therefore a verifier must reject
on ⊥. Else a cheating prover can send ⊥ in place of valid arguments and cause a
false accept. This will mean that completeness will not be perfect. That is, with an
(exponentially) small probability, isomorphic graphs will be mis-classified.

The non-zero knowledge protocol had perfect completeness. This approach to
zero-knowledge sacrifices perfect completeness. And with that I leave you to ponder.


