
COMPUTATION: DAY 4

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. PDA: the push down automata 1
1.1. Some notes on the notation 2
1.2. The language aibi 3
1.3. The language wwR 3
2. Context Free Grammars 4
2.1. The language aibi 4
2.2. The language wwR 5
2.3. The language of balanced parenthesis 5
2.4. Same number a’s and b’s 6
2.5. Unequal a’s and b’s 6
3. Context Free Languages 7
3.1. All regular languages are context free 7
3.2. The class of CFL’s is a algebra with Kleene star 8
3.3. The class of CFL’s is not closed by Intersection 9
3.4. The class of CFL’s is not closed by Complementation 10
4. Chomsky Normal Form and the CYK algorithm 11
Appendix A. The Pumping Lemma for CFL’s 11
A.1. The language aibici is not context free 12
A.2. The language ww is not context free 12
Appendix B. CNF grammar for aibicj 12

1. PDA: the push down automata

We are considering the language,

Lo = { ai bi | i ≥ 0 }
which has been shown to be not regular, but can be recognized by a DFA enriched
with a single counter. The counter contains an integer, and upon which the finite
automata can selectively act with increment and decrement actions, and the finite

1



2 BURTON ROSENBERG UNIVERSITY OF MIAMI

q q′
σ, γ → γ′

Figure 1. A transition of a PDA

automata can select the next state based on a zero predicate returning true only if
the counter is zero.

Another data structure that, if added to a DFA can recognize Lo, is a stack.
Familiar to programmers, we will represent a stack as an element of Γ∗, where Γ is
a finite set of symbols. The actions on this stack are push, pop, and the topmost
element of the stack can be used to determine the state transition.

Definition 1.1. A push down automata (PDA) is a 6-tuple ⟨Q,Σ,Γ, δ, q0, F }, a
finite-automata including a stack with stack symbols from the finite set Γ. The
transition function is

δ : Q× Σε × Γε −→ P(Q× Γε)

That describes the state transition and stack update based on the input symbol
σ ∈ Σ and symbol at the top of the stacks γ ∈ Γ.
A PDA computation on word w ∈ Σ∗

ε, w = w1w2 · · ·wn is a sequence of states and
stacks,

⟨Q ⟩ = q1, q2, . . . , qn

⟨G ⟩ = G1, G2, . . . , Gn where Gi ∈ Γ∗
ε

where,

(qi+1, γi+1) ∈ δ(qi, wi, γi)

where Gi = γiG
′ and Gi+1 = γi+1G

′.

The PDA accepts a string w ∈ Σ∗ if there exists a string w′ ∈ Σ∗
ε with w = w′ and

a computation on w′ beginning at the start state q0 and an empty stack and ending
at any of the accepts states in F .

The graphical notation for a finite automata can be used for a push down automata
with a new convention for the labeling of edges, see Figure 1.

1.1. Some notes on the notation. The push and pop are modeled using the ε
character. Consider the transition,

δ(q, σ, γ) = (q′, γ′).

• If γ ̸= ε and γ′ = ε: The transition requires requires the stack to be γ G and
results in the stack being G, so it is a pop.



COMPUTATION: DAY 4 3

ε, ε → ◦

a, ε → •

b, • → ε

b, • → ε

ε, ◦ → ε

.

Figure 2. PDA accepting aibi

ε, ε → ◦

σ, ε → σ

σ, σ → ε

σ, σ → ε

ε, ◦ → ε

.

Figure 3. PDA accepting wwR

• If γ = ε and γ′ ̸= ε: The transition is from a stack G resulting in a stack γ′G,
so it is a push, regardless of the symbol at the top of the stack.

The other two cases for the use of ε are to ignore the stack completely for this
transition, or a swap of the top of stack element.

1.2. The language aibi. The diagram for the language { aibi | i ≥ 0 } is given in
Figure 2. The machines first step is to push a bottom–of–stack marker. Then it
pushes one stack symbol for every a seen. The machine pops one symbol for every
b seen. The states require that the form be a∗b∗. The mysterious last transition on
empty stack occurs as an ε-move, predicting that there are not more characters in
the input string.

One must verify that,

(1) If the string is of the form aibi, the PDA ends in a final state.
(2) If the string is not of this form, the PDA does not end in a final state.

1.3. The language wwR. The language {wwR |w ∈ Σ } is a CFL. It can be ac-
cepted by the PDA described in Figure 3. The diagram uses so shortcuts to describe
the transitions. The the arrow,

σ, ε → σ

can be explained as “push the input symbol”.. The arrow

σ, σ → ε

can be explained as “match the input symbol against the stack symbol and pop the
statck symbol“.

Note the essential role of non-determinism in the machine of Figure 3. The machine
guesses the mid-point of the string, changing from pushing to match-and-pop. It also



4 BURTON ROSENBERG UNIVERSITY OF MIAMI

guesses the end of the string, transitioning to the final state on view of the bottom-
on-stack marker.

What is essential, is that any string accepted by non-deterministic guesses fit the
criteria for being in the language. The paradigm is “guess and check”. If the guess
was correct about the mid-point of the string is correct, and if the guess about the
last symbol in the input is correct, then the word is of the correct form to be in the
language. If any guess is incorrect, the computation does not lead to a final state.

2. Context Free Grammars

A Context Free Grammar is a mathematical complex ⟨V, T,R, S⟩ where,
• V is a finite set of variables, also called non-terminals,
• T is a finite set of terminals,
• R is a set of rules, and is a subset of V × (V ∪ T )∗,
• and S ∈ V is the start symbol.

Computation in this system is to repeatedly apply a rule to a string. The computa-
tion proceeds with a sequence of intermediate strings

⟨R ⟩ = r1, r2, . . . , rn, ri ∈ (Σ ∪ Γ)∗

and r1 is the start symbol and rn is the only ri that is composed of terminals, with
a transition rule,

ri = wXv, ri+1 = wuv, w, v ∈ (Σ ∪ Γ)∗ and (X, u) is a rule.

All strings of terminals that can be generated in this way, starting from the start
symbol, is the language described by the grammar.

The rules are described in the definition as a relation, since for a variable X
there can be many substitutions U1, U2, . . . , Uk. As a relation, this means there are
elements,

(X,U1), (X,U2), . . . , (X,Uk).

We write this in function notation as,

X → U1 |U2 | . . . |Uk.

2.1. The language aibi. We have been interested in the language Lo of strings of
the form aibi. Here is a context free grammar for this language,

S −→ aS b | ε
For instance, the string aaabbb is given by this grammar by the derivation,

S → aSb → aaSbb → aaaSbbb → aaaεbbb = aaabbb

A slight change to the grammar give the language aibj for i ≥ j,

S −→ aS b | aS | ε



COMPUTATION: DAY 4 5

Figure 4. Graph of excess opening parenthesis by string position

2.2. The language wwR. The PDA for wwR would push the σ ∈ Σ on the stack
and then non-deterministically begin a matching phase, popping the σ and matching
them with the input. Here is this language described as a grammar,

S −→ aS a | b S b | ε

2.3. The language of balanced parenthesis. By balanced parenthesis I mean that
the number of a’s equal the number of b’s, and in addition, at any point in the string,
the number of a’s is at least as large as the number of b’s. The notion of balanced
parenthesis is intuitive from our experience writing formulas with parenthesis, in
which every closing parenthesis must exclusively match an opening parenthesis that
appears prior in the string.

For instance, aababbab is a string in this language. It might be more familiar in
the form (()())(). Here is the grammar,

S −→ aS b |S S | ε
To prove this grammar is what we want, two directions of suitability must be con-
sidered. First, does the grammar generate only balanced strings. Second, does any
string of balanced a’s and b’s get generated by the grammar. The first requirement
is easy enough, by inspection of the grammar. The second requirement might need
some structure to ascertain.

Lemma 2.1. Any balanced string in { a, b } can be generated by the above grammar.

Proof: Consider a graph of with the horizontal axis the character index in the string,
and the vertical axis the excess of a’s over b’s seen up the the processing of that index,
see Figure 4 for an example with the string aababbab.

Let s be a string of balanced parenthesis. If |s| = 0 the grammar generates the
string.

Suppose S is a string of length 2i, and for all shorter strings the grammar generates
such strings. There are two cases,



6 BURTON ROSENBERG UNIVERSITY OF MIAMI

(1) The graph drawn for this string shows a return to zero in the middle of the
graph,

(2) or it does not.

In the first case, the rule S → SS applies at the point of return to zero, separating
s into s′s′′ each shorter than s and balanced.
In the second case, the rule S → aSb applies, separating s in a s′b, with s′ shorter

than s and balanced.
In both cases, the induction hypothesis applies. □

2.4. Same number a’s and b’s. The grammar for equal number of a’s and b’s is
given by this gramma,

S −→ aS b | b S a |S S | ε

The proof uses the graph above. The graph begins and ends at zero but can take
negative values. If the graph has some portion negative and some portion positive,
it most be zero somewhere between a negative and positive value, The rule S → SS
applies to drive an induction. Else it remains positive or remains negative, and in
the first case the rule S → aSb applies, in the second the rules S → bSa applies, and
that drives the induction.

2.5. Unequal a’s and b’s. In general, the complement of a context free language
is not a context free language. However, in this case it is. We work in steps. First
we need a grammar for exactly one more a’s than b’s,

Sa −→ T aT

T −→ a T b | b T a |T T | ε

To prove this, the graph begins at zero and ends at one. Draw a line at one, and find
the rightmost point the graph goes below this line. Such a point must exist, and is
happens when an a is countered, and divides the string s into s′a s′′ where s′ and s′′

are both balanced.
Likewise a grammar with the roles a and b reversed,

Sb −→ U bU

U −→ aU b | b U a |U U | ε

The the (almost) union of the two languages (rules for U and T above are included
in the grammar), and finally the union of the two languages,

S −→ Sa |Sb

T −→ a T

U −→ b U



COMPUTATION: DAY 4 7

ε, ε → ◦

a, ε → •

b, • → ε

b, • → ε

ε, ◦ → ε

.

Figure 5. NFA accepting strings that begin and end on with the
same letter

3. Context Free Languages

A subset S ⊆ Σ∗, some finite alphabet, is context free if either,

• There exists a PDA that accepts exactly the set S or,
• There exists a CFG that generates exactly the set S.

Theorem 3.1. The two conditions above are equivalent. If there is a PDA accepting
a language, there is a CFG generating that language. If there is a CFG generating
a language, there is a PDA accepting that language.

Proof: The proof is in the book and omitted from the content of this course.

3.1. All regular languages are context free. An NFA is a PDA where all stack
operations are ε → ε. Hence that can be accepted by an NFA can be accepted by a
PDA. Assuming PDA’s are the same as context free languages, the same as languages
generated by context free grammars, then we have our proof.

Here is a way to directly create a NFA into a CFG that has the identical language.

(1) For each each state r ∈ Q, in the state set of M , define a variable R ∈ V in
the CFG.

(2) For each transition δ(r, σ) = r′, define a grammar rule R → σR′.
(3) For each final state f ∈ F , define a grammar rule F → ε.
(4) For the start state ro of M , add the rule S → Ro, with S a fresh variable.

Example: Consider the NFA accepting

(a { a, b }∗a) ∪ (b { a, b }∗b)



8 BURTON ROSENBERG UNIVERSITY OF MIAMI

qo

qb qbb

qa qaa

b

a

a, b

a, b

b

a

.

Figure 6. NFA accepting a {a, b}∗ a ∪ b {a, b}∗ b

There is a five state NFA accepting this language. A rule set derived from this
machine can be,

S −→ Ro

Ro −→ aRa | bRb

Ra −→ aRa | bRa | aRaa

Rb −→ aRb | bRb | bRbb

Raa −→ ε

Rbb −→ ε

3.2. The class of CFL’s is a algebra with Kleene star. The class of regular
languages formed an algebra with the operations union and concatenation. It also
had the Kleene start operation. This is also true for context free languages, although
context free languages are not closed by complementation and intersection, where
regular languages are.

Lemma 3.1. Context languages are closed by union.

Proof: Given CFG A,
⟨VA, T, RA, SA ⟩

and B,
⟨VB, T, RB, SB ⟩

We assume VA and VB contain no symbols in common and the symbol S is in neither.
The grammar for the union A ∪B is,

⟨V, T,R, S ⟩
where,

V = VA ∪ VB ∪ {S }
R = RA ∪RB ∪ {S → SA |SB }



COMPUTATION: DAY 4 9

□

Lemma 3.2. Context languages are closed by concatenation.

Proof: Notation as above the languages A and B, the grammar for the concatenation
A ◦B is,

V = VA ∪ VB ∪ {S }
R = RA ∪RB ∪ {S → SA SB }

□

Lemma 3.3. Context languages are closed by Kleene star.

Proof: Notation as above for language A, the language for the Kleene star A∗ is,

V = VA ∪ {S }
R = RA ∪ {S → SA S | ε }

□

3.3. The class of CFL’s is not closed by Intersection. Given CFL’s A and B,
it is not always true that A ∩B is a CFL.
Consider the languages,

A = { aibicj | i, j ≥ 0 }
B = { aibjcj | i, j ≥ 0 }

then

A ∩B = { aibici | j ≥ 0 }

No CFG or PDA can accept exactly this language (see the appendix of the pumping
lemma for CFL’s).

However, each term of the intersection is context free. For instance, the language
for A is generated by,

SA → V R

V → ε | a V b

R → ε | cR

See the appendix for this grammar in Chomsky Normal Form.



10 BURTON ROSENBERG UNIVERSITY OF MIAMI

3.4. The class of CFL’s is not closed by Complementation. Given CFL A,
its complement is not always a CFL.
Consider the grammar,

S → U T |T U

T → V T V | a
U → V U V | b
V → a | b

Lemma 3.4. The above grammar generates the language,

{w v ∈ { a, b }∗ |w ̸= v, }

Proof: To reduce notational clutter, and string denoted by x, x′ or x′′ has length i,
and any string denoted by y, y′ or y′′ has length j.

Any string generated is in the language: Any string generated by the grammar
can be written as,

s = x a x′ y b y′ or x b x′ y a y′

The string x′y can be re-parsed as y′′x′′ because both strings are of length i+ j, so,

s = x a y′′x′′ b y′ or x b y′′x′′ a y′.

These strings are of the form w v with w ̸= v. For instance, in the first case,
w = x a y′′ and v = x′′ b y′.
This is a picture of what is happening. The black dot (•) is any a or b. Here is

two 4 length strings re-parsed as a 5 length string followed by an 3 length string,

(• • a • •) (• b •)

Here is two 5 length strings re-parsed as a 3 length string followed by a 7 length
string,

(• a •) (• • • b • • •)
Any string in the language is generated: Consider s = v w where v and w are
equal length and unequal. v and w must be unequal in at least one place, so either

v = x a y and w = x′ b y′

or

v = x b y and w = x′ a y′.

Write y x′ = x′′ y′′ and so,

s = x a x′′ y′′ b y′



COMPUTATION: DAY 4 11

or

s = x b x′′ y′′ a y′

which are of the form of a string generated by the language. □

Theorem 3.2. The complement of this language,

{ s ∈ { a, b }∗ | |s| is odd or s = v w and v = w }

is not a CFL.

Proof: See appendix.
Hence by example, CFL’s are not closed by complement.

4. Chomsky Normal Form and the CYK algorithm

Neither the CFG generation model nor the PDA machine model are simple to
compute with. An algorithm to determine membership in a language, given the
grammar for the language, exists if the grammar is properly prepared.

If rules never decrease the length of an intermediary product the number of rules
applied can never exceed the length of the final string that is generated. The Chom-
sky Normal Form (CNF) of a grammar allows only three types of rules,

(1) S −→ ε provide that S is the start symbol.
(2) X −→ x where X ∈ V and x ∈ T .
(3) X −→ Y Z where Y, Z ∈ V .

There are algorithms to transform a CFG into CNF.
All CFL’s have a CNF grammar.
Given a grammar in CNF and a word w of length n, the Cocke-Younger-Kasami

algorithm (CYK) uses dynamic programming to determine if the grammar generates
w in time O(n3).

Appendix A. The Pumping Lemma for CFL’s

Theorem A.1. Given a CFL L, there exists a p such that for all s ∈ L, |s| ≥ p,
then s = uvxyz such that,

(1) |vxy| < p,
(2) vy ̸= ε
(3) ∀i, uvixyiz ∈ L.

The proof is by considering the parse tree. Any path of depth exceeding the number
of variable in a grammar for the language will have a repeated variable on the path.
The section between occurrences of this variable can be removed or repeated, giving
the pumped versions of the string.



12 BURTON ROSENBERG UNIVERSITY OF MIAMI

A.1. The language aibici is not context free. Select s = apbpcp, If the language
were a CFL the pumping lemma would find a vxy that can be pumped. However
vxy cannot contain all three of the characters a, b and c. Therefore pumping will
make the frequency of at least one of these letters different than one of the others.
Hence the language is not context free.

A.2. The language ww is not context free. Select s = apbpapbp. If the language
were a CFL the pumping lemma would find a vxy that can be pumped. Investigating
cases, every such vxy cannot be pumped, so the language is not a CFL.

Appendix B. CNF grammar for aibicj

A grammar for,

A = { aibicj | i, j ≥ 0 }

was, given,

SA → V R

V → ε | a V b

R → ε | cR

To change this to CNF, step one is to introduce variables for each terminal and
reduce rules with more than three on the right hand side,

SA → V R

V → ε |AV1

V1 → V B

R → ε |C R

A,B,C → a, b, c

Then to absorb ε productions into the rule calling the variable that can produce a ε,

SA → ε |V |R |V R

V → AV1

V1 → V B |B
R → C R |C

A,B,C → a, b, c



COMPUTATION: DAY 4 13

Then remove unit productions,

SA → ε |AV1 | c |C R |V R

V → AV1

V1 → V B | b
R → C R | c

A,B,C → a, b, c


	1. PDA: the push down automata
	1.1. Some notes on the notation
	1.2. The language aibi
	1.3. The language wwR

	2. Context Free Grammars
	2.1. The language aibi
	2.2. The language wwR
	2.3. The language of balanced parenthesis
	2.4. Same number a's and b's
	2.5. Unequal a's and b's

	3. Context Free Languages
	3.1. All regular languages are context free
	3.2. The class of CFL's is a algebra with Kleene star
	3.3. The class of CFL's is not closed by Intersection
	3.4. The class of CFL's is not closed by Complementation

	4. Chomsky Normal Form and the CYK algorithm
	Appendix A. The Pumping Lemma for CFL's
	A.1. The language aibici is not context free
	A.2. The language ww is not context free

	Appendix B. CNF grammar for aibicj

