
What’s in a Name?

Evaluating Statistical Attacks on
Personal Knowledge Questions

Joseph Bonneau,1 Mike Just,2 Greg Matthews2

1 University of Cambridge
2 University of Edinburgh

Abstract. We study the efficiency of statistical attacks on human au-
thentication systems relying on personal knowledge questions. We adapt
techniques from guessing theory to measure security against a trawl-
ing attacker attempting to compromise a large number of strangers’ ac-
counts. We then examine a diverse corpus of real-world statistical dis-
tributions for likely answer categories such as the names of people, pets,
and places and find that personal knowledge questions are significantly
less secure than graphical or textual passwords. We also demonstrate
that statistics can be used to increase security by proactively shaping
the answer distribution to lower the prevalence of common responses.

1 Introduction

Secret knowledge stored in human memory remains the most widely deployed
means of human-computer authentication. It is often referred to as something
you know in contrast to biometrics (something you are) or hardware tokens
(something you have). While human memory is limited, the high deployment
costs of alternatives mean we will continue to rely on it for the foreseeable
future.

The most common human-memory systems require recalling data specifically
remembered for authentication. Passwords and PINs are the most well-known,
but there exist a variety of graphical and textual schemes to aid in recalling secret
data [31,29,22,6]. Among other problems, passwords are forgotten frequently
enough [31] that many deployed systems also use personal knowledge for backup
authentication. In contrast to passwords, personal knowledge questions such as
“who was my first-grade teacher?” query facts remembered independently of the
system so they are hoped to be recalled successfully when passwords fail.

In the majority of online banking, e-commerce, webmail and social network-
ing websites, users register a question-answer pair on enrolment which can later
be used to authorise a password reset. These systems can be no more secure
than the difficulty of guessing the answers to these questions. This risk was
highlighted in the past year as hackers exploited personal knowledge questions
to compromise accounts of politician Sarah Palin and top executives at Twitter.

Despite their ubiquity, personal knowledge questions have received relatively
little attention from the security community until recently. User studies have
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demonstrated the ability of friends, family, and acquaintances to guess answers
correctly [26,13,24], while other research has found some questions used in prac-
tice have a tiny set of possible answers [15,25]. Many common questions have
also been shown to have answers readily available in public databases or on-
line social networks [18]. For example, at least 30% of Texas residents’ mothers’
maiden names can be deduced from birth and marriage records [12].

Designers may be able to avoid easily looked-up questions, but it remains
an open question as to how secure typical questions are against a statistical
attacker that attempts to break into a small fraction of anonymous accounts by
guessing the most likely answers. While this threat has been briefly touched on
in previous research [15,26], we contribute a formal security model based on the
information-theoretic model of guessing developed over the past decade. We then
examine a range of public statistics that we collected to bound the efficiency of
statistical attacks. Our results show most questions to be highly insecure, calling
into serious question the continued use of personal knowledge questions.

2 Security Model

2.1 Authentication Protocol

Most deployed systems use personal knowledge questions in a simple challenge-
response protocol. The party seeking access, called the prover or claimant, first
sends its identity i to the verifier. The verifier then responds with a challenge
question q, to which the prover sends back an answer x. Unlike most challenge-
response protocols, the prover’s secret knowledge x is usually revealed to the
verifier. Replay attacks can be partially addressed by having the verifier include
a nonce r along with q, and having the prover respond with H(x, q, r) for some
one-way function H. However, an eavesdropper still gains the ability to perform
offline search for likely values of x using H as an oracle (and as we shall see, few
personal-knowledge questions are resistant to offline search).

Additionally, while the challenge from a verifier is typically a fresh random
nonce for cryptographic challenge-response, the set Q of personal knowledge
questions registered with the verifier is often very small or even a single question.
Some non-traditional question types may increase |Q|, such as “preference-based
authentication” [14], but the upper limit appears low due to the fundamental
requirement of human effort to select and answer questions on enrolment.

Finally, unlike many challenge-response protocols, the verifier must maintain
a counter ti of failed authentication attempts from each prover i to limit the
number of guesses an attacker can make. Such a protocol is said to be online, in
contrast to stateless protocols in which the attacker can make as many guesses
as bandwidth allows. Offline protocols rarely use personal knowledge questions
due to the difficulty of preventing brute-force attacks, though systems have been
proposed for personal password-backup which require simultaneously answering
many questions [8,11].
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2.2 Threat Model

Our attacker’s goal is to impersonate some legitimate prover i and successfully
complete the protocol. The attacker may only desire to gain access on behalf of
one specific user in a targeted attack, or may be content to gain access on behalf
of any user in a trawling attack. In the former case, the attacker knows the ac-
count i represents some real-world person Peggy, enabling research attacks using
search engines, online social networks, or public records. An active attacker could
conduct more advanced research by dumpster diving, burgling Peggy’s home, or
social engineering to trick Peggy into revealing her answer. Targeted attacks may
also be performed by somebody who knows Peggy personally. Schechter et al.
explored this attack in a laboratory setting and found a high rate of success by
acquaintances at guessing personal knowledge questions [26].

Targeted attacks are powerful but do not scale. Trawling attacks, in contrast,
require little per-user work and can be used to simultaneously attack many
accounts. We assume that a trawling attacker, although they must provide a
value for i when initiating the protocol, has no information about the real-world
person behind i and must guess answers based on population-wide statistics.

A blind attacker guesses without even understanding the question q [15].
This scenario arises if the question is either not transmitted in the clear [21],
is transmitted in a CAPTCHA-ised form, or is user-generated and difficult to
automatically process.3 We argue that a more successful attack strategy is to
use a weighted combination of answers to likely questions.

An attacker who is able to correctly understand q but not i is a statisti-
cal attacker (called a focused attacker in [15]), whose strategy is to guess the
most likely answers to q. Our main goal is to evaluate the security of common
questions against statistical attack. While some questions (e.g., “What is my
favourite colour?”) obviously have too few plausible answers to be secure, the
most common classes of answer found repeatedly in practice are the “proper
names” of people, pets, and places, whose security against guessing is not obvi-
ous.

The attackers we have identified are not exclusive. While there is a gen-
eral hierarchy between blind, statistical, and research attacks, an attacker may
combine statistics and targeted research. For example, partial knowledge of an
account-holder’s identity may enable an attacker to refine her statistical tables
(see Section 5).

3 Quantifying Resistance to Guessing

3.1 Mathematical Formulation of Guessing

We now turn to the mathematical problem of quantifying how secure a personal
knowledge question q is against guessing. This problem has been previously

3 Some users may even purposefully obfuscate their questions, such as “What do I
want to do?” [15].
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considered abstractly [4,23,3,20] and in the case of PINs [2], graphical pass-
words [6,29,22], and biometrics [1]; we synthesise previous analysis and define
new metrics most applicable to trawling attackers.

Because a statistical attacker will respond equally to “what is my boss’ last
name?” or “who was my kindergarten teacher?” by guessing common surnames,
we seek to measure security of the underlying answer space. We consider the
correct answer to be a random variable X drawn from a finite distribution X
which is known to the attacker, with |X | = N and probability pi = P (X = xi)
for each possible answer xi, for i ∈ [1, N ]. We assume that X is arranged as a
monotonically decreasing distribution with p1 ≥ p2 ≥ · · · ≥ pN . Our attacker’s
goal is to guess X using as few queries of the form “is X = xi?” as possible.

Intuitively, we may first think of the Shannon entropy

H1(X ) = −
N∑
i=1

pi lg pi (1)

as a measure of the “uncertainty” of X. Introduced by Claude Shannon in 1948,
entropy has entered common cryptographic parlance as a measure of security,
with “high-entropy” secrets being considered advantageous [8,11]. As has been
argued previously [4,23,3,20,2,6,1], H1 is a poor estimator of guessing difficulty
for security purposes, as it quantifies the average number of subset membership
queries of the form “Is X ∈ S?” for arbitrary subsets S ⊆ X . 4

Because cryptographic protocols are specifically designed to require sequen-
tial guessing, a better metric is the expected number of attempts required to
correctly guess X if the attacker takes up the obvious strategy of guessing each
possible event in order of its likeliness, known as the guessing entropy :

G(X ) = E
[
#guesses(X

R← X )
]

=
N∑
i=1

pi · i (2)

This measure was introduced by Massey [20] and later named by Cachin [4].

3.2 Marginal Guessing

Guessing entropy models an attacker who will never give up in her search, and
thus it can be skewed by exceedingly unlikely events. A simple thought experi-
ment demonstrates why this is inadequate for our purposes. Suppose Eve must
sequentially guess k challenge questions with answers drawn from X . Some ques-
tions will have uncommon answers, and Eve must make ∼ k ·G(X ) guesses.

Now consider a second adversary Mallory whose goal is to guess the answers
to k questions from a set of m > k total questions. Her optimal strategy is to first
guess the most likely value for each question in sequence, then the second-most
4 The proof of this is a straightforward consequence of Shannon’s source coding theo-

rem. Symbols X
R← X can be encoded using a Huffman code with average bit length

≤ H1(X ) + 1, and the adversary can learn one bit at a time with set queries.
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likely value for each question, and so on. Mallory’s efficiency will greatly increase
as m increases, as she may never need to guess uncommon answers. Guessing
entropy is inadequate as it doesn’t account for Mallory’s willingness to give up
on the questions which have less probable answers.

To bound an attacker who only requires some probability α of guessing cor-
rectly, we define the marginal guesswork µα:

µα(X ) = min

{
j ∈ [1, N ]

∣∣∣∣∣
j∑
i=1

pi ≥ α

}
(3)

This function, introduced by Pliam [23], is also referred to as the α-work-factor.
We define a similar metric λβ , the marginal success rate, slightly adapted from
Boztaş [3], as the probability of success after β guesses have been made:

λβ(X ) =
β∑
i=1

pi (4)

3.3 Effective Key Length Metrics

While it is important to remember that µα and λβ are not measures of entropy,
we nonetheless find it convenient to convert them into units of bits. This makes
all the metrics H1, G, µα and λβ directly comparable and has an intuitive
interpretation as (logarithmically-scaled) attacker workload. We convert each
metric by calculating the logarithmic size of a discrete uniform distribution UN
of size |UN | = N with pi = 1

N for all 1 ≤ i ≤ N , which has the same value
of the guessing metric. This can be thought of as the “effective key length” as
it represents the size of a randomly-chosen cryptographic key which would give
equivalent security. The guessing entropy of UN is:

G(UN ) =
N∑
i=1

pi · i =
1
N

N∑
i=1

i =
1
N
· N(N + 1)

2
=
N + 1

2

The entropy of this distribution is lgN , so given the guessing entropy of an arbi-
trary distribution G(X ) we can find the logarithmic size of a uniform distribution
with equivalent guessing entropy as:

G̃(X ) = lg[2 ·G(X )− 1] (5)

The quantity G̃(X ) can then be interpreted as the effective key length of X with
respect to guessing entropy. We can similarly derive formulas for effective key
length with respect to marginal guesswork and marginal success rate:

µ̃α(X ) = lg
(
µα(X )
α

)
λ̃β(X ) = lg

(
β

λβ(X )

)
(6)
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Example Calculation Consider a distribution Z with PZ = { 1
3 ,

1
18 ,

1
18 ,

1
18 , . . . }.

Regardless of the tail probabilities, an attacker will have a 50% chance of success-
fully guessing a random variable drawn from Z after 4 attempts, so λ4(Z) = 1

2 .
The distribution U8 with eight equally likely events would also have λ4(U8) = 1

2 ,
so these two distributions are equivalent with respect to λ4. Since lg |U8| = lg 8 =
3, we expect λ̃4(Z) = 3, and we can verify that by our formula:

λ̃4(Z) = lg
(

4
λ4(Z)

)
= lg

(
4
1
2

)
= lg 8 = 3

3.4 Relationship Between Metrics

A natural question is whether µ̃α and λ̃β are bounded by H1 or G̃; unfortu-
nately this is not the case. The following theorems demontrate the fundamental
incomparability of entropy, guessing entropy, and marginal guesswork:

Theorem 1 (Pliam) Given any m > 0, β > 0 and 0 < α < 1, there exists a
distribution X such that µ̃α(X ) < H1(X )−m and λ̃β(X ) < H1(X )−m.

Theorem 2 (Boztaş) Given any m > 0, β > 0 and 0 < α < 1, there exists a
distribution X such that µ̃α(X ) < G̃(X )−m and λ̃β(X ) < G̃(X )−m.

Theorem 3 (new) Given any m > 0, α1 > 0, and α2 > 0 with 0 < α1 < α2 < 1,
there exists a distribution X such that µ̃α1(X ) < µ̃α1(X )−m.

The first two results were demonstrated previously [23,3] but we combine
the proof techniques here to prove both at once. We construct a pathological
distribution X with one likely event and many very-unlikely events. We set
p1 = 1

2 and pi = 1
22m+4 for the remaining symbols (|X | = 22m+3 + 1). This gives

H1(X ) > m + 3 and G̃(X ) > m + 1, following from Massey’s proof that G̃ is
bounded from below by (H1 − 2) [20]. But µ̃ 1

2
(X ) = λ̃1(X ) = 1, proving the

theorem. Note that this construction requires |X | ∈ Θ(4m), the result does not
hold if we impose limits on |X |.

The third theorem, a new result, is proved similarly by setting p1 = α1 and
pn = 1

(α2−α1)·2m for all n > 1. This gives µ̃α1 = lg
(

1
α1

)
= − lgα1, but µ̃α2 =

lg
(

2m+1
α2

)
> lg

(
2m

α1

)
= m− lgα1, giving the desired gap m with |X | ∈ Θ(2m).

These results demonstrate that no measure is adequate for all security pur-
poses, but that context-specific µ̃α and λ̃β must be used which reflect only the
values in the distribution likely to be guessed. A highly-skewed distribution like
human names might have high H and G̃ can be very easy to guess despite having
many unlikely events which inflate its apparent security.

3.5 Applicability to Personal Knowledge Questions

Assuming that a targeted attacker is likely to use victim-specific research, we
are most concerned with a trawling attacker who will never guess uncommon
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answers, simply trying a new target if common answers fail. The most useful
metric we have is the marginal success rate λβ . Assuming the system imposes a
limit of tmax incorrect guesses for each account, the critical value is the fraction
of accounts the attacker can expect to compromise, which is λtmax . In the limit
of an attacker trying only the single most likely answer for multiple accounts,
our security is λ̃1(X ) = − lg(p1), which is also called the min-entropy H∞(X ).

For offline attacks, λβ is less meaningful because an attacker won’t limit their
guessing nearly as much. In this case, µ̃ 1

2
is a reasonable metric in that it avoids

G̃’s dependence on very unlikely events, while still measuring the cost for an
attacker to compromise a majority of available accounts.

3.6 Estimation from Statistics

A final subtlety is estimating our metrics from publicly available statistics based
on random sampling from X and not on complete knowledge of the distribution.
This, too, strongly favours the use of µα and λβ because they only reflect the
most likely events and are not affected by large uncertainty on the tail probabil-
ities of X . Estimating µα and λβ from a statistical sample is straightforward: we
simply take the most likely events from the sample and use them to compute our
metric. It is possible to compute a p-confidence interval for µα or λβ by comput-
ing p-confidence intervals for each individual event probability, and using all of
the minimum (eq. maximum) estimates to compute minimum estimates µ−α and
λ−β (eq. µ+

α and λ+
β ). This technique strictly overestimates uncertainty, but in

practice we’ve found most of the statistics which influence µα or λβ have strong
enough statistical support that the confidence interval is quite tight.5

In contrast, since H1 and G̃ depend on the entire distribution, they are much
more difficult to reliably estimate from statistics. If we don’t a priori know |X |, it
is impossible to provide any upper bound because we cannot know the number of
events which haven’t been observed by sampling. As a lower bound for security
purposes, we simply assume no unobserved events exist.

A second problem is that unlikely events are often suppressed for privacy or
brevity in published census data. Again in the name of a lower bound, we simply
take the least-likely observed event and insert copies of it until the probability
space is filled. In the case of surname data, for instance, which is given exactly
for names shared by at least k people but suppressed for less common names, we
repeatedly insert fictitious names shared by k people until the data set contains
as many people as the target population. This crude approximation lowers our
estimates of H1 and G̃, but doesn’t influence µα or λβ .

5 Indeed, for α ≤ 1
2

and β < N
2

we are always able to calculate µα and λ̃β to within
0.1 bit with p > 99%. We expect errors from divergence between the population
distribution and answers which humans actually choose to use to be so much greater
than sampling error that we ignore it in the remainder of this paper.
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4 Information Sources

4.1 Question Types and their Use

Based upon recent research into deployed personal knowledge authentication
systems, we focus our analysis on questions that ask for proper names, as sum-
marised in Table 1. Rabkin collected 216 questions used by 11 financial institu-
tions [25], and Schecter et al. collected 29 questions used for webmail services
provided by AOL, Google, Yahoo!, and Microsoft [26]. These provide some hints
at the type of questions used—Rabkin found approximately 1

3 soliciting a per-
son’s name and 1

5 asking for place names, while Schechter et al. found 1
4 solicit-

ing a person’s name and 1
6 asked for a place name. Unfortunately, this research

provides no insight as to which questions users actually select. For example, rel-
atively few questions asked for pet names, though this may be because there is
only one way to phrase this question and not because it is unpopular.

Just and Aspinall collected approximately 500 user-generated challenge ques-
tions and categorised these questions into a small number of types [15], which
we consider to be a more insightful data set. Most notably, they found that
34% of user questions asked for a human name, 15% asked for a pet name and
20% asked for a place name. Of the remainder, 22% asked for a user’s favourite
item amongst films, singers, car brands, etc., 5% asked for a time, date, or num-
ber, and the remainder were ambiguous. Thus, we estimate that a few simple
categories of proper names cover roughly 70% of real-world questions. The re-
mainder, many of which ask for the user’s “favorites,” appear trivially vulnerable
to guessing attacks and we ignore them in our study.

One subtlety with name data is that it is not always clear if users will respond
with a forename (also called a ‘first name’ or ‘given name’), surname (also ‘last
name’), or both. In such cases, a statistical attacker can simply estimate what
probability of users will respond with which, and then combine the two probabil-
ity distributions, scaling each by its sampling frequency. This should slow down
attacks by no more than a factor of two. We also assume that middle names
(though less commonly asked for) are reasonably approximated by forenames.
In reality, middle names probably have slightly higher diversity, but the most
common names are likely the same and an attacker can use a forename table in
an attack without much slowdown.

4.2 Data Collection

To our knowledge, this is the first time a breadth of data has been collected
for analysing personal knowledge questions. We collected data from government
sources where possible, as many developed nations keep near-complete records
of citizens’ names. In some cases the data is not made publicly available but is
acquired and published by media organisations, as in the case of pet registration
lists which are compiled by smaller local government bodies. We were also able
to gather school and city data from official sources.
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Category Example Questions

Forename What is your grandfather’s first name?
What is your father’s middle name?

Surname What is your mother’s maiden name?
What was the last name of your favourite school teacher?

General Name Who was your childhood best friend?
Pet Name What was your first pet’s name?
Place In what city were you born?

Where did you go for your honeymoon?
What is the name of your high school?

Other What was your grandfather’s occupation?
What is your favourite movie?

Table 1: Common answer categories

Official sources often omit items occurring less than some minimum thresh-
old. As mentioned in Section 3.6, we used estimates of the total population to
overcome the missing data. A complete list of our data sources, as well as scripts
used for calculations on the data, is made available on our project website.6 We
also provide a summarised list of official sources used in Appendix A.

We found no official sources which provide lists of full names, so we collected
names from 269 million randomly-crawled public profiles on the popular online
social network Facebook. The demographic for this data is less clearly delineated,
but can be used to roughly approximate the global Internet user population.

5 Results and Discussion

Our calculations of the metrics defined in Section 3 are displayed in Table 2.7

For online attacks, the marginal success rate λ̃3 models an attacker limited to
3 guesses on each available account. For almost all of our data (exclusive of full
names and primary schools), we have λ̃3 / 8, indicating that the majority of
deployed challenge questions systems are insecure against trawling attackers. If 3
guesses are allowed, an attacker can compromise roughly 1 in 80 accounts. This
may even be an overestimate of security: the most extreme trawling attacker will
make only 1 guess per account, represented by λ̃1 = H∞.

For offline attacks, we mostly find µ̃ 1
2

/ 12, meaning an attacker can com-
promise the majority of accounts with only a few thousand guesses per account.

Our analysis demonstrates weak subspaces in the answer distribution for most
personal knowledge questions which can be directly compared to weak answer

6 http://groups.inf.ed.ac.uk/security/KBA/
7 We also include the Rényi entropy Hα(X ) = 1

1−α lg
“PN

i=1 p
α
i

”
for α ∈ {0, 2,∞}.

As predicted by Boztaş [3], H2 seems to provide a good estimate for µ̃ 1
2

http://groups.inf.ed.ac.uk/security/KBA/
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Source H0 H1 G̃ H2 µ̃ 1
2

λ̃3 H∞ x1

Full Names

Facebook 26.9 25.2 26.0 21.1 24.3 14.0 13.9 John Smith

Surnames

South Korea 7.5 4.6 4.5 3.5 3.3 2.7 2.2 Kim
Chile 6.8 6.6 6.3 6.3 6.0 4.9 4.5 González
Spain 9.6 8.9 9.1 7.6 8.8 5.4 5.0 Garcia
Japan 14.5 11.3 12.0 9.0 9.2 6.2 6.0 Satō
Finland 13.8 12.2 12.3 10.5 10.5 7.9 7.8 Virtanen
England 17.4 13.3 14.6 10.2 11.0 6.7 6.4 Smith
Estonia 11.9 11.7 11.7 11.3 11.6 7.9 7.6 Ivanov
Australia 18.6 14.1 15.3 10.9 11.8 7.4 6.8 Smith
Norway 13.7 12.5 13.0 9.9 11.9 6.5 6.4 Hansen
USA 19.1 14.9 16.9 10.9 12.3 7.2 6.9 Smith
Facebook (Sp.) 20.3 13.5 16.6 9.5 10.4 6.4 6.4 Rodriguez
Facebook 23.1 16.6 19.2 12.3 14.0 8.3 8.0 Smith

Forenames, Mixed

Spain 9.7 9.0 8.9 8.1 7.9 6.0 5.9 Jose
Iceland 8.9 8.5 8.3 7.9 7.7 5.9 5.8 Jón
Belgium 15.0 10.2 10.3 8.8 8.7 6.1 5.7 Maria
USA 16.7 11.2 14.0 8.7 8.6 6.2 5.9 Michael
Facebook (Sp.) 19.5 11.4 14.9 8.5 8.7 5.8 5.7 Maria
Facebook 22.7 13.6 17.8 10.7 10.7 7.6 7.5 David

Forenames, Female (♀)
Spain 8.3 7.9 7.8 7.3 7.1 5.3 5.1 Maria
Iceland 7.9 7.5 7.3 6.9 6.8 5.1 4.9 Gukrún
Belgium 15.2 10.1 10.9 8.1 8.2 5.5 4.9 Maria
USA 15.1 10.9 12.9 8.7 8.3 6.5 6.3 Jennifer

Forenames, Male (♂)

Spain 8.6 7.8 7.8 6.9 6.6 4.9 4.8 Jose
Iceland 7.9 7.5 7.3 6.9 6.8 5.0 4.8 Jón
USA 15.2 9.4 12.0 7.2 6.9 5.2 5.0 Michael
Belgium 15.0 9.7 10.4 8.2 7.8 6.1 5.7 Jean

Forenames by Birth Decade

USA, 1950 (♀) 11.8 8.6 9.1 7.1 6.8 5.2 5.0 Mary
USA, 1950 (♂) 11.7 7.7 8.3 6.2 5.8 4.6 4.6 James
USA, 1960 (♀) 11.9 9.1 9.5 7.6 7.1 5.6 5.2 Lisa
USA, 1960 (♂) 11.9 7.9 8.6 6.4 5.9 4.7 4.6 Michael
USA, 1970 (♀) 12.1 9.7 10.3 7.7 7.6 5.5 4.8 Jennifer
USA, 1970 (♂) 12.1 8.4 9.3 6.7 6.3 5.0 4.6 Michael
USA, 1980 (♀) 12.2 9.7 10.4 7.7 7.6 5.4 5.3 Jessica
USA, 1980 (♂) 12.2 8.6 9.6 6.9 6.4 5.1 4.9 Michael
USA, 1990 (♀) 12.3 10.3 10.8 8.4 8.3 6.1 6.0 Jessica
USA, 1990 (♂) 12.3 9.3 10.0 7.5 7.1 5.7 5.5 Michael
USA, 2000 (♀) 12.4 10.8 11.1 9.1 9.0 6.6 6.5 Emily
USA, 2000 (♂) 12.2 9.9 10.4 8.2 7.8 6.4 6.2 Jacob

Pet Names

Los Angeles 15.8 11.7 13.1 9.2 9.4 6.5 6.4 Lucky
Des Moines 13.6 11.6 12.4 9.4 9.7 6.5 6.2 Buddy
San Francisco 13.7 11.6 12.0 9.6 9.8 6.7 6.7 Buddy

Place Names

UK Primary Schools 14.0 13.8 13.5 13.6 13.3 12.1 12.1 Essex
UK High Schools 8.7 8.5 8.2 8.3 8.0 7.4 7.3 Holyrood
School Mascots (US) 11.8 8.1 9.3 6.2 5.7 4.5 4.1 Eagles
UK Cities 9.2 8.5 8.8 5.9 8.7 4.4 3.0 London
Tourist Destinations 13.0 12.0 12.5 9.5 12.4 6.3 5.9 London

Table 2: Summary of statistics on real data
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spaces found in other authentication systems. In Figure 1 we plot the Face-
book name distributions against textual passwords [16,28,27], mnemonic pass-
words [17], the Pass-Go user-drawn password system [22], the Passfaces graphical
PIN system [29], the PassPoints visually-cued clicked password system [6] and a
handwriting-recognition biometric system [1]. We also include a recently-leaked
dataset of 32 M passwords from the gaming website rockyou.com. Aside from
the badly-broken Passfaces system, personal knowledge questions compare un-
favorably to other methods unless full names are required.

We summarise further interesting trends below:

Diversity effects The difficulty of guessing surnames correlates with ethnic
diversity. American surnames were the most difficult to guess in our survey, pre-
sumably because the population is a blend of immigrants from many ethnicities.
Facebook provides even more diversity as a blend of users from around the world.
Surnames from Japan and South Korea, which are ethnically homogeneous and
have relatively few immigrants, provide low resistance to guessing.

Naming trends Given names are a matter of fashion and vary in several in-
teresting dimensions. In the countries studied, female names seem to provide
slightly higher resistance to guessing than male names.8 Over the past 6 decades
in the USA, diversity of forenames has been increasing slowly but steadily. Cu-
riously, pet names are slightly harder to guess than human names.

Ethnic correlations The Facebook data provides ample evidence that fore-
names and surnames are not independent variables. They are correlated via an
individual’s ethnicity and possibly further in that some name combinations are
considered more pleasing to the ear. Maria Gonzalez and Jose Rodriguez are
the most statistically over-represented names in our data set given the inde-
pendent frequency of the forename and surname component. Each appears with
extremely high statistical significance (p � 0.001 in a χ2 test). Similarly, there
are a number of highly statistically under-represented name pairs, mostly curi-
ous cross-cultural pairings like Francesco Smith or Juan Khan. Frequent names
like Maria Gonzalez appear because both components share a common ethnicity
(Hispanic). A χ2 test on the entire forename distribution given a Spanish sur-
name such as Gonzalez confirms with high significance (p� 0.001) that naming
patterns change amongst individuals of this ethnicity.

This dependence between forenames and surnames indicates that guessing
difficulty will be lower if an attacker knows the target’s ethnicity. To quantify
this, we clustered the names and identified a set of 250 common Spanish sur-
names, which cover 10.1% of all individuals in the dataset. The guessing difficulty
for these 4 million individual’s forenames is shown in Table 2 under “Facebook
(Sp.)”.9 We similarly took 250 common Spanish forenames, representing nearly
8 Security increases, of course, if a question doesn’t specify gender.
9 Note that this is not the difficulty of guessing a typical Spanish forename, it is the

difficulty of guessing the forename of a person with a typically Spanish surname.
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Fig. 1: Comparison of weak subspaces in name distributions (Facebook dataset)
to those found in other authentication systems [16,28,27,29,22,6,1].

22 million people, and computed the guessing difficulty of their surnames. In
both cases µ̃ 1

2
and λ̃3 drop by about a bit, indicating that identifying an indi-

vidual’s ethnicity may roughly double a statistical attacker’s efficiency.

Power-law models The frequencies of English surnames have previously been
posited to be well-fitted by a discrete Pareto distribution [10], with the proba-
bility that a surname X’s frequency is f(X) is greater than x being proportional
to x−(c+1). Fox et al. found this to hold for c ≈ 1.4. This is thought to occur be-
cause surnames are inherited but don’t strongly correlate to reproductive fitness,
leading to a Pareto-like distribution through random genetic drift.

We found the Pareto distribution with c ≈ 1 to be a reasonable model for
the Facebook surname dataset, though the head of the distribution skewed sig-
nificantly away from the Pareto model, with the most common names being
less popular than expected. Still, support for a power-law model of surname fre-
quency suggests the inappropriateness of this distribution for security purposes.

Interestingly, our forename and pet name distributions were also approxi-
mated well by the Pareto distribution, with c ≈ 0.8 in the Facebook data set.
The reasons for this fit are less well-understood, though this is close to the classic
Zipf distribution (c = 1) which is known to model many natural-occurring phe-
nomena such as word frequency in natural languages. If it is true that humans
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Fig. 2: Effectiveness of shaping a distribution as a function of r∗

naturally produce names following the Zipf distribution, this too suggests that
human-provided name spaces will not provide adequate guessing resistance.

6 Countermeasures

Up to this point, we have assumed a passive enrolment server which accepts
any answers and has no influence on the resulting answer distribution X . If we
assume the server knows X , it is possible to actively shape the answer space into
a more secure distribution X ′ by probabilistically rejecting some users’ answers.
There is a growing literature on proactively encouraging users to select diverse
textual [9] or graphical [5] passwords, Bentley et. al previously considered the
problem of “grooming” a skewed probability distribution to uniform [2].

The process of a user answering is equivalent to randomly drawing X R← X .
The server can examine the result and if X = xi, reject with probability ri and
force the user to answer a differently-worded question with the same answer-
space, in practice re-drawing X R← X . We assume the process is recursive: the
user’s second answer xj may also be rejected with some probability rj . This
process results in a modified distribution X ′ of answers which are accepted.
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If we are constrained by a maximum-allowable overall rejection probability
r∗, it is simple to find the optimum rejection probabilities r1, . . . rN which will
most increase security. This comes from the observation that, given the ability to
lower any single pi by any fixed ∆, lowering p1 will result in the greatest increase
for each of Hα, G̃, µ̃α and λ̃β . The optimal r1, . . . rN are thus computed by an
iterative algorithm. First r1 is increased until p′1 = p′2, namely by setting r1 =
1− p2

p1
. Next, we increase r1 and r2 together until p′1 = p′2 = p′3. We repeatedly

increase r1 through rm so that p′1 = · · · = p′m+1, stopping when r∗ =
∑m
i=0 ri ·pi

and we have reached our maximum overall rejection probability.10 The m most
likely events are equiprobable in X ′. The remaining events are never rejected;
their probabilities each increase by 1

1−r∗ .
Shaping is very effective at increasing λ̃β as the most likely events are greatly

reduced in probability. As shown in Figure 2, shaping the name distributions in
the Facebook corpus drives λ̃3 close to µ̃ 1

2
even for reasonable r∗ < 0.5. Even

relatively mild shaping with r∗ = 0.1 of increases λ̃3 by 3.6 bits for surnames.
Although the overall rejection rate is low, though, it is highly unequal: for r∗ =
0.1 the rejection rate r1 for the surname “Smith” is 94.3%.

7 Concluding Remarks

We have applied marginal guessing metrics to the security analysis of common
personal knowledge questions. We then used a diverse collection of real-world
statistical data to estimate the strength of these questions against a trawling
attacker with a large number of accounts to test. We believe this is an increas-
ingly important attacker model and our methods provide a useful framework for
evaluating human-computer authentication.

We have not assessed a ground-truth answer space; the actual distribution
of surnames provided to a deployed authentication server will vary based on
the precise question wording and specific user population. Still, we have found
strong evidence that across a broad range of cultures and contexts, human-
created names simply don’t have enough diversity to provide serious resistance to
guessing attacks. In combination with recent results demonstrating vulnerability
to targeted attacks, our work casts serious doubt on the continued use of personal
knowledge questions for backup authentication.
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A Sources of Statistical Data

Below is a summary of statistical data sources used in compiling this paper.
Complete information on the data sets is provided on our project website http:
//groups.inf.ed.ac.uk/security/KBA/.

– Chile Civil Identification and Registration Service
– Des Moines Register
– Eeski Ekspress
– Euromonitor International
– Finland Population Register Center
– Intellectual Property Australia
– Japanese Surname Dictionary
– Los Angeles Department of Animal Licensing
– San Francisco Animal Licensing Department
– Scottish Government School Education Statistics
– Spanish National Institute of Statistics
– Statistics Belgium
– Statistics Iceland
– Statistics Korea
– Statistics Norway
– United Kingdom Department for Children, Schools, and Families
– United Kingdom Office for National Statistics
– United States Census Bureau
– United States Social Security Administration

http://groups.inf.ed.ac.uk/security/KBA/
http://groups.inf.ed.ac.uk/security/KBA/
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