LLRU is Better than FIFO

Marek Chrobak* John Noga'

January 15, 1998

Abstract

In the paging problem we have to manage a two-level memory system, in which the first level
has short access time but can hold only up to k£ pages, while the second level is very large but slow.
We use competitive analysis to study the relative performance of the two best known algorithms
for paging, LRU and FIFO. Sleator and Tarjan proved that the competitive ratio of LRU and FIFO
is k. In practice, however, LRU is known to perform much better than FIFO. It is believed that
the superiority of LRU can be attributed to locality of reference exhibited in request sequences. In
order to study this phenomenon, Borodin, Irani, Raghavan and Schieber [2] refined the competitive
approach by introducing the concept of access graphs. They conjectured that the competitive ratio
of LRU on each access graph is less than or equal to the competitive ratio of FIFO. We prove this
conjecture in this paper.

1 Introduction.

In the paging problem we have a two-level memory system, in which the first level is small and has
short access time, while the second level is very large but slow. We will refer to the first memory level
as the cache, and we denote its size by k. A request to a page p can result either in a hit, when p
is in the cache, or a foult, when it isn’t. In response to a fault we need to bring p into the cache. If
the cache is already full, some other page ¢ currently in the cache needs to be evicted. The goal of
a paging algorithm is to choose the evicted page for each fault so as to minimize the cost, defined as
number of faults.

The eviction decisions are made on-line, without the knowledge of future requests. It is not
difficult to see that no such on-line algorithm can achieve optimal cost on all request sequences. The
competitive ratio is a performance measure designed to quantify the ability of an on-line algorithm to
minimize faults, and is defined as follows: Let A be an on-line algorithm for paging. We say that A
s C'-competitive if, for any request sequence p,

cost4(0) < C - opt(o) + D, (1)

where cost 4(p) is the cost of A on p, opt(p) is the optimal cost of serving p, and b is a constant
independent of p. The competitive ratio of A is the smallest C' for which A is C-competitive. An
algorithm A will be called strongly competitive if its competitive ratio is within a constant factor of
the best possible competitive ratio.

Paging has been extensively studied in the literature on competitive on-line algorithms. Belady
[1] gave an optimal offline algorithm defined by

*Department of Computer Science, University of California, Riverside, CA 92521, USA. Email: marek@cs.ucr.edu.
Research supported by the NSF grant CCR-9503498.

"Department of Mathematics, University of California, Riverside, CA 92521, USA. Email: jnoga@cs.ucr.edu. Re-
search supported by the NSF grant CCR-9503498.

BEL: When a fault occurs, evict the page whose next request is furthest in the future.

The two best known on-line algorithms for paging are Least-Recently-Used (LRU) and First-In-First-
Out (FIFO), defined as follows:

LRU: When a fault occurs, evict the page that was accessed least recently.
FIFO: When a fault occurs, evict the page that was brought into the cache least recently.

Sleator and Tarjan [9] proved that the competitive ratio of LRU and FIFO is k.

The competitive approach has been criticized by practitioners for being overly pessimistic. For
example, the experiments reported in [10] indicate that the ratio of LRU’s cost to the optimal cost on
some typical program traces is nearly independent of the cache size. Another problem with competitive
analysis is that algorithms with different performance in practice may have the same competitive ratio.
The best example of this are LRU and FIFO. In practice, LRU performs much better than FIFO.

One reason for this discrepancy may to be the fact that typical request sequences exhibit locality
of reference: whenever a page p is requested, the next request is most likely to be chosen from a small
set of pages “local” to p (see [1, 3, 7, 8]). It appears that LRU takes advantage of the locality more
effectively than FIFO, but competitive analysis does not reflect this superiority of LRU.

These concerns were addressed by Borodin, Irani, Raghavan and Schieber [2] who model the locality
of reference by an access graph which is known by the online algorithm. The vertices of an access graph
G are pages, and G has an edge from p to ¢ if ¢ can be requested immediately after p. As in [2] and
[5], we will assume that G is undirected (or, equivalently, that the locality relation is symmetric). We
define an algorithm A to be C-competitive on G if the inequality (1) holds for each p that is a walk in
G. The competitive ratio of A on G, denoted by C 4 ¢ is the smallest C' for which A is C-competitive
on G. Under this model, LRU is not an optimally competitive algorithm for most graphs. Although it
is computationally difficult, an optimally competitive algorithm can be found for any particular finite
graph. Both [2] and [6] investigate the problem of finding a natural algorithm which has near optimal
competitive ratio. Fiat and Karlin [4] give strongly competitive algorithms for both the deterministic
and randomized cases. Since the access graph may not be known by the online algorithm or may
require a prohibitive amount of memory to store, Fiat and Mendel [5] define an algorithm as ¢ruly
online if its decisions are based solely on the request sequence. A strongly competitive algorithm for
the deterministic, truly online case is given in [5]. Note that both LRU and FIFO are truly online
paging algorithms.

One of the problems addressed in [2] is the relative performance of LRU and FIFO. They provide
some estimates on the competitive ratios of LRU and FIFO, and they prove that for each access graph
G, Ciuo,¢ < 2C50,g. They also conjecture that the constant 2 can be removed. (This conjecture was
also stated in [6].) In other words, the conjecture states that LRU is never worse than FIFO.

In this paper we prove that for all G, Cy.,¢ < Crro,i, thus settling the conjecture from [2, 6]. Our
proof is based on new estimates on the competitive ratios for LRU and FIFO, both of which are of
independent interest.

2 Analysis of FIFO and LRU

Throughout the paper the cache size k is an arbitrary but fixed positive integer. By G we will denote
a given access graph, and we assume that, without loss of generality, G is connected and has at least
k + 1 vertices.

Both FIFO and LRU can be viewed as keeping the k pages which are in the cache in an ordered
list (s1,89,...,8k). For both algorithms, when a fault p occurs, the last page sj in the list is removed
from the cache and p is placed at the head of the list. When a hit s; occurs, FIFO does not alter its
list, but LRU brings s; to the head of its list. When FIFO’s cache is (s, $2, ..., $x) then, for i < j, s;
entered the cache more recently than s;. Similarly, when LRU’s cache is (s1, s2, ..., s3) then, for ¢ < j,
s; was requested more recently than s;.

Let H be a connected subgraph of G. A vertex v of H is called an articulation point of H if the
graph H — v, obtained from H by removing v, is not connected. By a(H) we denote the number of
articulation points of H. Define

— minalH
ag m}}na()s

where the minimum is taken over connected subgraphs H of G with k + 1 vertices. Note that 0 <
ag <k —1. Also, let

(k—i—l)(k—ag) ag
e = R
k+1—ag k+1—ag

Lemma 1 For any access graph G, Cro.c > Ba-

Proof: Let H be a connected subgraph of G with vertices {sq, $1, ..., St } which minimizes a(H). Let
{SigsSirs -y 8i,_, } be the l = k+1—«(H) non-articulation points of H, where 19 = 0 < i3 < ... < ij_1.
Assume that FIFO’s initial cache is (s1, s9, ..., ;). Define algorithm A to keep all articulation points
of H in its cache at all times, and to serve a fault on s;; by swapping s;; with s;,,, (the addition j+1
is modulo 7).

We now define a sequence of requests. If 7 is the most recent request, s € H is not in A’s cache,
and s’ € H is not in FIFO’s cache, then request the vertices along a path from r to s’ which does not
include s. Such a path must exist because s is not an articulation point of H. When the two caches
match, request the vertices along a path from the most recent request to the vertex in H which is in
neither cache.

Recall that FIFO’s cache can be thought of as an ordered list. Given the way this list is updated
on a request and that all requests will be one of the k41 items in H, after any request in this sequence
FIFO’s cache will have the form (s;41,5;42, ..., 5j4+%) Where these subscripts will be computed modulo
k+1.

We now split the request sequence into stages. A stage begins when both FIFO and A have
(s1,82,...,8;) in the cache. We will show that the ratio costg.,/cost 4 is at least B¢ in every stage.
For ease of analysis, we further break these stages into [phases, numbered 0, ...,/ — 1. Phase 5 begins
when both FIFO and A have s;; outside the cache. An easy induction argument shows that at the
beginning of phase j FIFO’s cache will be (si; 11, 8i;+2, -+ Si;+k)-

Algorithm A serves phase j at a cost of 1 by swapping s;; with s;; ,. Therefore, the cost of A in
one stage is [.

In serving phase j FIFO will fault on all pages except {s;; 1,542+, 8i;,, }- S0, for any given page
in H, FIFO will fault on this page in [— 1 of the [phases in a stage, and thus the cost of FIFO in one
stage is (k+ 1)(I — 1) = (k+ 1)(k — «(H)).

Since cost 4 > opt, by considering the costs in one stage, we have

(k+1)(k — a(H))
kE+1—a(H)

= BG’

CFIFO,G =

completing the proof. O

Lemma 2 For any access graph G, Cpu.qc < k — ag/2.

Proof: Let p be the request sequence that is a walk in G. Without loss of generality, initially
the caches of LRU and BEL match, and the first request in p is a fault of BEL. Let rg,...,r, be
the faults of BEL in g, and divide p into phases, 0 = 0p01 ... 0m, where each p; starts with r;. For
1 =0,...,m+1, let B; and L; denote, respectively, the contents of BEL’s cache and LRU’s cache
after phases gy ... 0;—1. Define H; to be the induced subgraph of G with vertices B; U {r;}. Note that
H; has k 4 1 vertices and contains all requests in ;.

We now define a potential function. Recall that we represent the current content of LRU’s cache
by the ordered list of the k& most recent requests. If L; = (I1,la,...,l;) and d > 0 is the smallest
integer for which {l,ls,...,lx_q} C By, then let ®; = min {d, ag/2}.

Fix 4 and let f; denote the cost of LRU in phase p;. We will show that

(6%
fit Pip1—® < k—TG- (2)

We consider three cases.

Case 1: ®; = a/2. Let h be the number of distinct vertices in p;. Since BEL faults on only the first
request of p;, after serving r; all vertices in g; must be contained in BEL’s cache. Therefore h < k.
LRU faults at most once on each vertex in g;, so we have f; < h. After phase g;, the vertices in g; are
the h most recent requests, and they all belong to B;yi. So, we also have ®;,; < k — h. Therefore,
inequality (2) holds.

Case 2: ®; > f;. Since f; + ®;11 — ®; < &1 < ag/2 < k — ag/2, inequality (2) holds.

Case 3: ®; < min{f;,ag/2}. Since ®; < ag/2, ®; =d < f;. Let 9; = oo’, where o ends with the dth
fault of LRU, and let L' be the contents of LRU’s cache after o. If | € L' then either [has already
been requested in o or | = [; for some j < k — d. Therefore, L' C H;.

We claim that H; is connected. Since the request sequence is a path, the vertices in L', which are
simply the & most recent requests, form a connected subgraph of H;. Let H; — L' = {s}. LRU must
fault on o’ at least once, because f; > d. Since all vertices of L' are in the LRU’s cache, the first fault
in ¢/ must be on s. Furthermore, the prefix of p; ending at s is a path in H;. Thus H; is connected,
and, since |H;| = k + 1, we have a(H;) > ag.

We now estimate the number of faults of LRU in o’. If H; has an articulation point v, then
any connected component of H; — v has at most £ — 1 vertices. Since LRU’s cache is a connected
subset of H;, v will be in LRU’s cache during o’. Therefore, LRU does not fault on articulation
points of H; in ¢’. In addition, since the pages in p; form a connected subgraph of H;, at least one
non-articulation point in H; cannot be requested in o’. We conclude that the number of LRU’s faults
in o' is fl —d S |Hz| —-1- oz(HZ) =k— Oz(Hl)

By combining the bounds from the last two paragraphs we obtain f; +®;11 —®; < k—ag+ P41 <
k — ai/2, completing the proof of inequality (2).

Obviously, the cost of BEL in each phase is 1. Summing inequality (2) over all phases yields

«
08t 170 (0) + Pry1 — P9 < (k: — g) oSt (0).

Since ®,,,11 > 0 and &y = 0, we get costr . (0) < (K — ag/2)costp, (o), as desired. O

Theorem 1 For any access graph G, Ciw,g < Crpo,a-
Proof: From Lemma 1, Lemma 2, and the fact that ag <k —1

ag ag
Cowi < b= — < h=—"9 — < Crpoc-
b6 = 2 = k—ag+1 — "¢

a

3 Final Comments.

While in the process of showing Cyo,¢ > Cru, for undirected graphs, we have provided improved
bounds on the competitive ratios of both LRU and FIFO. For FIFO, Lemma 1 immediately implies
the Crro,c > (k + 1)/2 lower bound from [2], and gives a much better estimate on Cpy, ¢ for small
values of ag.
Define
|H|—a(H) -1

a6 = max ,

H |H| —k

where the maximum is taken over all connected subgraphs of G with at least k + 1 vertices. For LRU,
the only other general upper bound result we are aware of is Ci,, ¢ < 2(ag + 1) from [2]. It can be
shown that the bound in Lemma 2 improves on this as long as ag < 2(k + 2)/3.

Borodin, Irani, Raghavan and Schieber [2] proved that Ci.,g = ag when G is a tree, or when
k = 2,4. We believe this equality holds for each access graph. However, except for a few particular
cases the exact competitive ratios for both LRU and FIFO are still unknown. It would be nice to be
able to extend this analysis to close the gaps. An exact analysis would allow a better consideration of
exactly what circumstances allow LRU to greatly outperform FIFO.

Conjecture 1 For each access graph G, Cryec = ag-

In some situations it may be more natural to have a non-reflexive locality relation. This idea leads
to an analogous problem where we now have a directed access graph D. It would be interesting to
know whether Theorem 1 holds in this case as well.

Conjecture 2 For each directed access graph D, Cyyo,p > Crro,D-

Acknowledgments. We would like to thank the anonymous referees for providing useful suggestions
that helped us improve the presentation.

References

[1] L.A. Belady. A study of replacement algorithms for virtual storage computers. IBM Systems
Journal, 5:78-101, 1966.

[2] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of reference.
Journal of Computer and System Sciences, 50(2):244-258, 1995.

[3] P. J. Denning. Working sets past and present. IEEE Trans. Software Eng., 6:64-84, 1980.

[4]

A. Fiat and A. Karlin. Randomized and multipointer paging with locality of reference. In Proc.
27th ACM Symposium on Theory of Computing, pages 626634, 1995.

A. Fiat and M. Mendel. Truly online paging with locality of reference. In Proc. 38th IEEE
Symposium on Foundations of Computer Science, pages 326-335, 1997.

S. Irani, A. Karlin, and S. Phillips. Strongly competitive algorithms for paging with locality of
reference. In 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 228-236, 1992.

T. Kilburn, D. Edwards, M. Lanigan, and F. Sumner. One-level storage system. IRE Trans.
Elect. Computers, 37:223-235, 1962.

G. Shedler and C. Tung. Locality in page reference strings. SIAM Journal on Computing, 1:218—
241, 1972.

D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications
of the ACM, 28:202-208, 1985.

N. Young. On-line caching as cache size varies. In Proc. 2nd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 241-250, 1991.

