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Algorithmic Mechanism Designcontact:Amir RonenInstitute of Computer Science, Hebrew University of Jerusalem, Givat Ram 91904, IsraelEmail:amiry@cs.huji.ac.ilAbstractWe consider algorithmic problems in a distributed setting where the participants cannotbe assumed to follow the algorithm but rather their own self-interest. As such participants,termed agents, are capable of manipulating the algorithm, the algorithm designer should ensurein advance that the agents' interests are best served by behaving correctly.Following notions from the �eld of mechanism design, we suggest a framework for studyingsuch algorithms. In this model the algorithmic solution is adorned with payments to the partic-ipants and is termed a mechanism. The payments should be carefully chosen as to motivate allparticipants to act as the algorithm designer wishes. We apply the standard tools of mechanismdesign to algorithmic problems and in particular to the shortest path problem.Our main technical contribution concerns the study of a representative problem, task schedul-ing, for which the standard tools do not su�ce. We present several theorems regarding thisproblem including an approximation mechanism, lower bounds and a randomized mechanism.We also suggest and motivate extensions to the basic model and prove improved upper boundsin the extended model. Many open problems are suggested as well.Journal of Economic Literature classi�cation numbers: C60, C72, D61, D70, D80.
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1 Introduction1.1 MotivationA large part of research in computer science is concerned with protocols and algorithms for inter-connected collections of computers. The designer of such an algorithm or protocol always makesan implicit assumption that the participating computers will act as instructed { except, perhaps,for the faulty or malicious ones.With the emergence of the Internet as the platform of computation, this assumption can nolonger be taken for granted. Computers on the Internet belong to di�erent persons or organizationsand will likely do what is most bene�cial to their owners. We cannot simply expect each computeron the Internet to faithfully follow the designed protocols or algorithms. It is more reasonable toexpect that each computer will try to manipulate it for its owners' bene�t. Such an algorithm orprotocol must therefore be designed in advance for this kind of behavior! Let us sketch two exampleapplications we have in mind:Load balancingThe aggregate power of all computers on the Internet is huge. In a \dream world" this aggregatepower will be optimally allocated online among all connected processors. One could imagine CPU-intensive jobs automatically migrating to CPU-servers, caching automatically done by computerswith free disk space, etc. Access to data, communication lines and even physical attachments(such as printers) could all be allocated across the Internet. This is clearly a di�cult optimizationproblem even within tightly linked systems, and is addressed, in various forms and with varyingdegrees of success, by all distributed operating systems. The same type of allocation over theInternet requires handling an additional problem: the resources belong to di�erent parties who maynot allow others to freely use them. The algorithms and protocols may, thus, need to provide somemotivation for these owners to \play along".RoutingWhen one computer wishes to send information to another, the data usually gets routed throughvarious intermediate routers. So far this has been done voluntarily, probably due to the lowmarginal cost of forwarding a packet. However, when communication of larger amounts of databecomes common (e.g. video), and bandwidth needs to be reserved under various quality of service(QoS) protocols, this altruistic behavior of the routers may no longer hold. If so, we will have todesign protocols speci�cally taking the routers' self-interest into account.2



1.2 This WorkIn this paper we propose a formal model for studying algorithms that assume that the participantsall act according to their own self-interest. We adopt a rationality-based approach, using notionsfrom game theory and micro-economics, and in particular from the �eld of mechanism design. Weassume that each participant has a well de�ned utility function1 that represents its preferenceover the possible outputs of the algorithm, and we assume that participants act as to rationallyoptimize their utility. We term such rational and sel�sh participants agents2. The solutions weconsider contain both an algorithmic ingredient (obtaining the intended results), and a paymentingredient that motivates the agents. We term such a solution a mechanism3.Our contributions in this work are as follows:1. We present a formal model for studying optimization problems. The model is based onthe �eld of mechanism design4. A problem in this model has, in addition to the outputspeci�cation, a description of the agents' utilities. The mechanism has, in addition to thealgorithm producing the desired output, payments to the participating agents. An expositionof applying several classic notions from mechanism design in our model appears in Nisan(1999).2. We observe that the known techniques from mechanism design provide solutions for severalbasic optimization problems, and in particular for the shortest path problem, where each edgemay belong to a di�erent agent.3. We study a basic problem, task scheduling, which requires new techniques and prove thefollowing:� We design an n-approximation mechanism, where n is the number of agents.� We prove a lower bound of 2 to the approximation ratio that can be achieved by anymechanism. This bound is tight for the case of two agents, but leaves a gap for moreagents. We conjecture that the upper bound is tight in general and prove it for tworestricted classes of mechanisms.1This notion from micro-economics is often used in mechanism design.2The term is taken from the distributed AI community which have introduced the usage of mechanism design ina computational setting. We use it, however, in a much more restricted and well-de�ned sense.3This is the standard term used in mechanism design.4We are not the �rst to use notions from mechanism design in a computational setting. See section 1.3.3



� We design a randomized mechanism that beats the deterministic lower bound.4. We extend the basic model, formalizing a model where the mechanism has more information.We call this model a mechanism with veri�cation and argue that it is justi�ed in certainapplications.5. We study the task scheduling problem in the extended model and obtain two main results:� An optimal mechanism with veri�cation for task scheduling (that requires exponentialcomputation time).� A polynomial time (1 + �)-approximation mechanism with veri�cation for a sub-case ofthe problem.A preliminary version of this paper appeared at the thirty-�rst annual symposium on theory ofcomputing (Nisan and Ronen (1999)).1.3 Extant WorkThere have been many works that tried to introduce economic or game-theoretic aspects intocomputational questions. (See e.g. Lamport, Shostak and Pease (1982), Ferguson, Nikolaou andYemini (1995), Huberman and Hogg (1995), Papadimitriou and Yannakakis (1993), Papadimitriouand Yannakakis (1991) and a survey by Lineal (1994)). Most of these were not aimed at theproblem of the cooperation of sel�sh entities, and those that were (Monderer and Tennenholtz(1998), Papadimitriou (1996), Korilis, Lazar and Orda (1991) and Sandholm (1996)) did not pursueour direction. Many sub�elds of game theory and economics are also related to our work, see, e.g.Mas-Collel, Whinston and Green (1995) chapters 14, 21 and 22. We list below the research workthat is most relevant to our direction.Mechanism DesignThe �eld of mechanism design (also known as implementation theory) aims to study how pri-vately known preferences of many people can be aggregated towards a \social choice". The mainmotivation of this �eld is micro-economic, and the tools are game-theoretic. Emphasis is put onthe implementation of various types of auctions. In the last few years this �eld has received muchinterest, especially due to its inuence on large privatizations and spectrum allocations (McMillan(1994)). An introduction to this �eld can be found in Mas-Collel, Whinston and Green (1995) chap-4



ter 23, Osborne and Rubistein (1994) chapter 10 and an inuential web site in http://www.market-design.com.Distributed AIIn the last decade or so, researchers in AI have studied cooperation and competition among \soft-ware agents". The meaning of agents here is very broad, incorporating attributes of code-mobility,arti�cial-intelligence, user-customization and self-interest. A sub�eld of this general direction ofresearch takes a game theoretic analysis of agents' goals, and in particular uses notions from mech-anism design (Rosenschein and Zlotkin (1994), Sandholm (1996), Ephrati and Rosenschein (1991)and Shoham and Tanaka (1997)). A related sub�eld of Distributed AI, sometimes termed market-based computation (Walsh, Wellman, Wurman and MacKie-Mason (1998), Ferguson, Nikolaou andYemini (1995) and Walsh and Wellman (1998)), aims to leverage the notions of free markets inorder to solve distributed problems. These sub�elds of DAI are related to our work.Communication NetworksIn recent years researchers in the �eld of network design adopted a game theoretic approach(See e.g. Korilis, Lazar and Orda (1995)). In particular mechanism design was applied to var-ious problems including resource allocation (Lazar and Semret (1998)), cost sharing and pricing(Shenkar, Clark and Hertzog (1996)).SchedulingThe speci�c problem we address is the minimization of the make-span of independent tasks onunrelated parallel machines, which was extensively studied from an algorithmic point of view. Itis known that solving the problem or even approximating it within a factor of 3=2� � is NP -hard,but a polynomial-time 2-approximation exists (Lenstra, Shmoys and Tardos (1987)). For a �xednumber of processors, a fully polynomial approximation scheme was presented by Horowitz andSahni (1976). A survey of scheduling algorithms can be found in Hochbaum (1997).2 The ModelIn this section we formally present our model. We attempt, as much as possible, to use thestandard notions from both mechanism design and algorithmics. We limit ourself to the discussionof a dominant strategy implementation in quasi-linear environments.Subsection 2.1 describes what a mechanism design problem is. In subsection 2.2 we de�ne whata good solution is: an implementation with dominant strategies. Subsection 2.3 de�nes a special5



class of good solutions: truthful implementations, and states the well-known fact that restrictingourselves to such solutions loses no generality. For familiarization with our basic model andnotations we suggest viewing the shortest paths example given in section 3.2.2.1 Mechanism Design Problem DescriptionIntuitively, a mechanism design problem has two components: the usual algorithmic output speci-�cation, and descriptions of what the participating agents want, formally given as utility functionsover the set of possible outputs.De�nition 1 (Mechanism Design Problem) A mechanism design problem is given by an out-put speci�cation and by a set of agents' utilities. Speci�cally:1. There are n agents, each agent i has available to it some private input ti 2 T i (termed itstype). Everything else in this scenario is public knowledge.2. The output speci�cation maps to each type vector t = t1:::tn a set of allowed outputs o 2 O.3. Each agent i's preferences are given by a real valued function: vi(ti; o), called its valuation.This is a quanti�cation of its value from the output o, when its type is ti, in terms of somecommon currency. I.e. if the mechanism's output is o and in addition the mechanism handsthis agent pi units of this currency, then its utility will be ui = pi + vi(o; ti)5. This utility iswhat the agent aims to optimize.In this paper we only consider the important special case of optimization problems. In theseproblems the output speci�cation is to optimize a given objective function. We present the de�nitionfor minimization problems.De�nition 2 (Mechanism Design Optimization Problem) This is a mechanism design prob-lem where the output speci�cation is given by a positive real valued objective function g(o; t) and aset of feasible outputs F . In the exact case we require an output o 2 F that minimizes g, and inthe approximate case we require any o 2 F that comes within a factor of c, i.e. such that for anyother output o0 2 F , g(o; t) � c � g(o0; t).5This is termed \quasi-linear utility". In this paper we limit ourselves to this type of utilities.6



2.2 The MechanismIntuitively, a mechanism solves a given problem by assuring that the required output occurs, whenagents choose their strategies as to maximize their own sel�sh utilities. A mechanism needs thus toensure that the agents' utilities (which it can inuence by handing out payments) are compatiblewith the algorithm.Notation: We will denote (a1; :::ai�1; ai+1; :::an) by a�i. (ai; a�i) will denote the tuple (a1; : : :an).De�nition 3 (A Mechanism) A mechanism m = (o; p) is composed of two elements: An outputfunction o(), and an n-tuple of payments p1():::pn(). Speci�cally:1. The mechanism de�nes for each agent i a family of strategies Ai. The agent can chose toperform any ai 2 Ai.2. The �rst thing a mechanism must provide is an output function o = o(a1:::an).3. The second thing a mechanism provides is a payment pi = pi(a1:::an) to each of the agents.4. We say that a mechanism is an implementation with dominant strategies 6 (or in short justan implementation) if� For each agent i and each ti there exists a strategy ai 2 Ai, termed dominant, suchthat for all possible strategies of the other agents a�i, ai maximizes agent i's utility.I.e. for every a0i 2 Ai, if we de�ne o = o(ai; a�i), o0 = o(a0i; a�i), pi = pi(ai; a�i),p0i = pi(a0i; a�i) , then vi(ti; o) + pi � vi(ti; o0) + p0i� For each tuple of dominant strategies a = (a1:::an) the output o(a) satis�es the speci�-cation.We say that a mechanism is poly-time computable if the output and payment functions arecomputable in polynomial time. In this paper we purposefully do not consider the details of howthe mechanism is computed in a distributed system. We view this topic as an important directionfor further research.6Several \solution concepts" are discussed in the mechanism design literature. In this paper we discuss onlydominant strategy implementation. 7



2.3 The Revelation PrincipleThe simplest types of mechanisms are those in which the agents' strategies are to simply reporttheir types.De�nition 4 (Truthful Implementation) We say that a mechanism is truthful if1. For all i, and all ti, Ai = T i, i.e. the agents' strategies are to report their type. (This iscalled a direct revelation mechanism.)2. Truth-telling is a dominant strategy, i.e. ai = ti satis�es the de�nition of a dominant strategyabove.De�nition 5 We say that a mechanism is strongly truthful if truth-telling is the only dominantstrategy.A simple observation, known as the revelation principle, states that without loss of generalityone can concentrate on truthful implementations.Proposition 2.1 (Mas-Collel, Whinston and Green (1995) page 871) If there exists a mechanismthat implements a given problem with dominant strategies then there exists a truthful implementationas well.Proof: (sketch) We let the truthful implementation simulate the agents' strategies. I.e. given amechanism (o; p1; :::pn), with dominant strategies ai(ti), we can de�ne a new one by o�(t1:::tn) =o(a1(t1):::an(tn)) and (p�)i(t1:::tn) = pi(a1(t1):::an(tn)). 23 Vickrey-Groves-Clarke MechanismsArguably the most important positive result in mechanism design is what is usually called the gen-eralized Vickrey-Groves-Clarke (VGC) mechanism (Vickrey (1961); Groves (1973); Clarke (1971)).We �rst describe these mechanisms in our notation and then demonstrate their usage in an algo-rithmic setting, that of shortest paths.3.1 Utilitarian FunctionsThe VGC mechanism applies to mechanism design maximization problems where the objectivefunction is simply the sum of all agents' valuations. The set of possible outputs is assumed to be�nite. 8



De�nition 6 A maximization mechanism design problem is called utilitarian if its objective func-tion satis�es g(o; t) =Pi vi(ti; o).De�nition 7 We say that a direct revelation mechanism m = (o(t); p(t)) belongs to the VGCfamily if1. o(t) 2 argmaxo(Pni=1 vi(ti; o)).2. pi(t) =Pj 6=i vj(tj ; o(t)) + hi(t�i) where hi() is an arbitrary function of t�i.Theorem 3.1 (Groves (1973)) A VGC mechanism is truthful. 2Thus, a VGC mechanism essentially provides a solution for any utilitarian problem (except for thepossible problem that there might be dominant strategies other than truth-telling). It is known that(under mild assumptions) VGC mechanisms are the only truthful implementations for utilitarianproblems (Green and La�ont (1977)).Similarly, a weighted version can be implemented as well.De�nition 8 A maximization mechanism design problem is called weighted utilitarian if thereexist real numbers �1; : : : ; �n > 0 such that the problem's objective function satis�es g(o; t) =Pi �i � vi(ti; o).De�nition 9 We say that a direct revelation mechanism m = (o(t); p(t)) belongs to the weightedVGC family if1. o(t) 2 argmaxo(g(o; t)).2. pi(t) = 1�i �Pj 6=i �j � vj(tj ; o(t)) + hi(t�i) where hi() is an arbitrary function of t�i.Theorem 3.2 (Roberts (1977)) A weighted VGC mechanism is truthful.Proof: Let d1; : : : ; dn denote the declarations of the agents and t1; : : : ; tn denote their real types.Suppose that truth telling is not a dominant strategy, then there exists d; i; t; d0i such thatvi(ti; o(d�i; ti)) + pi(ti; o(d�i; ti)) + hi(d�i) < vi(ti; o(d�i; d0i)) + pi(ti; o(d�i; d0i)) + hi(d�i)thus 9



vi(ti; o(d�i; ti)) + 1�i �Xj 6=i �j � vj(tj ; o(d�i; ti)) < vi(ti; o(d�i; d0i)) + 1�i �Xj 6=i �j � vj(tj ; o(d�i; d0i))Multiplying both sides by �i we obtainnXj=1 �j � vj(tj ; o(d�i; ti)) < nXj=1 �j � vj(tj ; o(d�i; d0i))In contradiction with the de�nition of o(). 2Comment: An output function of a VGC mechanism is required to maximize the objective func-tion. In many cases (e.g. combinatorial auctions (Harstad, Rothkopf and Pekec (1995))), this makesthe mechanism computationally intractable. Replacing the optimal algorithm with a non-optimalapproximation usually leads to untruthful mechanisms { see for example section 5.6.3.2 Example: Shortest PathsMany algorithmic mechanism design problems can be solved using the VGC mechanism. Let usgive a natural example.Problem de�nition: We have a communication network modeled by a directed graph G, andtwo special nodes in it x and y. Each edge e of the graph is an agent. Each agent e has privateinformation (its type) te � 0 which is the agent's cost for sending a single message along this edge.The goal is to �nd the cheapest path from x to y (as to send a single message from x to y). I.e theset of feasible outputs are all paths from x to y, and the objective function is the path's total cost.Agent e's valuation is 0 if its edge is not part of the chosen path, and �te if it is. We will assumefor simplicity that the graph is bi-connected.A Truthful Implementation:The following mechanism ensures that the dominant strategy for each agent is to report its truetype te to the mechanism. When all agents honestly report their costs, the cheapest path is chosen:The output is obtained by a simple shortest path calculation. The payment pe given to agent e is0 if e is not in the shortest path and pe = dGje=1 � dGje=0 if it is. Here dGje=1 is the length of theshortest path which does not contain e (according to the inputs reported), and dGje=0 is the lengthof the shortest path when the cost of e is assumed to be zero (again according to the reportedtypes). 10



Notice that the shortest path is indeed a minimization of the total cost. Also notice that the givenmechanism is a VGC mechanism: dGje=1 corresponds to hi(t�i) and dGje=0 to Pj 6=i vj(tj ; o(t)).Many other graph problems, where agents are edges, and their valuations proportional to theedges' weights, can be implemented by a VGC mechanism. In particular minimum spanning treeand max-weight matching seem natural problems in this setting. A similar solution applies to themore general case where each agent holds some subset of the edges.Open Problem: How fast can the payment functions be computed? Can it be done faster thancomputing n versions of the original problem? For the shortest paths problem we get the followingequivalent problem: given a directed graph G with non-negative weights, and two vertices in itx; y. Find, for each edge e in the graph, the shortest path from x to y that does not use e. UsingDisjktra's algorithm for each edge on the shortest path gives an O(nm logn) algorithm. Is anythingbetter possible? Maybe O(m logn)? For the similar problem with minimum spanning tree, it hasbeen pointed out to us by Valerie King that the known fully dynamic algorithms (or alternativelythe known sensitivity-analysis algorithms) for MST provide a nearly linear time solution.4 Task SchedulingIn this section we analyze the task allocation problem. Subsection 4.1 formally presents the problem,subsection 4.2 gives a (weak) upper bound, subsection 4.3 provides our lower bounds, and �nallyin subsection 4.4 we exhibit a randomized solution that beats the lower bound.4.1 The ProblemDe�nition 10 (Task Allocation Problem) There are k tasks that need to be allocated to nagents. Each agent i's type is, for each task j, the minimum amount of time tij it is capable ofperforming this task in. The goal is to minimize the completion time of the last assignment (themake-span). The valuation of an agent i is the negation of the total time it has spent on the tasksallocated to it.More formally:� The feasible outputs of the mechanism are all partitions x = x1 : : : xn of the tasks to theagents, where xi is the set of tasks allocated to agent i.� The objective function is g(x; t) = maxiPj2xi tij .11



� Agent i's valuation is vi(x; ti) = �Pj2xi tij .We will consider both the exact and approximate versions.Notation:We denote a direct revelation mechanism for the task scheduling problem bym = (x; p),where x = x(t) is the allocation algorithm and p = p(t) the payment. (These are functions of thedeclared types.)4.2 An Upper BoundA simple, but not very good, approximation for the task scheduling problem is to minimize thetotal work done. It turns out that this approximation can be used as a basis for an approximationmechanism7.De�nition 11 (MinWork Mechanism)� allocation: each task is allocated to the agent who is capable of doing it in a minimal amountof time (tasks with equal time declarations are allocated arbitrarily).� payment: the payment for each agent i is de�ned as pi(t) = Pj2xi(t)mini0 6=i(ti0j ) (i.e. foreach task allocated to it, the agent is given payment equal to the time of the second best agentfor this task).Theorem 4.1 MinWork is a strongly truthful n-approximation mechanism for the task schedulingproblem.Proof: We prove that the MinWork mechanism is strongly truthful and that it is an n-approximation.Claim 4.2 MinWork is strongly truthful .Proof: We will �rst show that MinWork belongs to the VGC family, and therefore, by theorem 3.1it is truthful. The output is an allocation that maximizes the utilitarian functionPni=1 vi(ti; x); Leth�i be Pkj=1mini0 6=i ti0j , then Pi0 6=i vi0(ti0 ; x) + h�i is exactly the mechanism's payment function.We now show that truth-telling is the only dominant strategy. We will show it for the case ofa single task. The argument for k > 1 is similar. We note that a similar proof can be found in7The mechanism can be viewed as auctioning each task separately in a Vickrey auction (Vickrey (1961)).12



Vickrey (1961) for the analysis of the famous Vickrey auction. Let d denote the agents' declarationsand t their real types. Consider the case where di 6= ti (i = 1; 2). If di > ti, then for d3�i suchthat di > d3�i > ti,the utility for agent i is ti � di < 0, instead of 0 in the case of truth-telling. Asimilar argument holds for the case of di < ti. 2Claim 4.3 MinWork is an n-approximation for the task scheduling problem.Proof: Let opt(t) denote an optimal allocation. The proof follows immediately from the fact thatg(x(t); t) �Pkj=1mini tij and g(opt(t); t) � 1n �Pkj=1mini tij . 2The theorem is an immediate outcome of claims 4.2 and 4.3. 24.3 Lower BoundsDue to the revelation principle (proposition 2.1) it su�ces to prove the lower bound for truthfulimplementations. Thus for the rest of this section, m = (x; p) is always assumed to be a truthfulmechanism for the task scheduling problem.4.3.1 Basic Properties of Truthful ImplementationsWe now formulate, in our settings, two basic observations from mechanism design. (Similar argu-ments can be found in Mas-Collel, Whinston and Green (1995) pp. 876-880.)Proposition 4.4 (Independence) Let t1 and t2 be type vectors, and i be an agent. If t�i1 = t�i2and xi(t1) = xi(t2), then pi(t1) = pi(t2).Proof: Without loss of generality assume that pi(t1) < pi(t2). Then, if i's type is ti1, it is bettero� cheating, declaring ti2. A contradiction to the truthfulness. 2This proposition states that the payment o�ered to an agent does not depend on its type declaration(as long as the other agents' types and the allocation are �xed). The payment can thus berepresented using the following well de�ned function.De�nition 12 Let t be a type vector, i an agent. For a set X of tasks, we de�ne the price o�eredfor X to agent i as:pi(X; t�i) = ( pi(t0i; t�i) if there exists t0i s.t. xi(t0i; t�i) = X0 otherwise13



Usually it will be more convenient to describe a mechanism by its price rather than by itspayment function. Note that any function of the form hi(t�i) can be added to the payment of eachagent i without changing its considerations. We therefore assume w.l.o.g. that the payment givento an agent is zero if no tasks are assigned to it.Notation: Let i be an agent of type ti, and let X be a set of tasks. We denote the time neededfor i to perform all tasks of X , as ti(X) =Pj2X tij .Proposition 4.5 (Maximization) For each type vector t and agent i,xi(t) 2 argmaxX�f1;:::;kg(pi(X; t�i)� ti(X))Proof:(sketch) Since pi(xi; t�i)� ti(xi)) is agent i's utility, the above statement simply states thatthe mechanism has to maximize the agent's bene�t. Otherwise the agent will do so itself, i.e. cheatas to get the maximum bene�t! 2We can now prove the main theorem of this subsection.4.3.2 Basic Lower BoundTheorem 4.6 There does not exist a mechanism that implements a c-approximation for the taskscheduling problem for any c < 2.Proof: We start with a lemma.Notation: Let i be an agent, t a type vector, and A and B two disjoint sets of tasks. We de�nethe price di�erence �i(A;B) to be pi(ASB; t�i)� pi(A; t�i) (suppressing the type t).Lemma 4.7 Let t be a type vector and let X = xi(t). For each set D 6= X of tasks the followinginequalities hold:1. If D � X then �i(D;X �D) � ti(X �D).2. If D � X then �i(X;D�X) � ti(D �X).3. otherwise, let L = DTX, then �i(L;X � L)� ti(X � L) � �i(L;D� L)� ti(D � L)Moreover, if a set Y of tasks satis�es these inequalities sharply for all D's, then Y = X = xi(t).14



Proof: The fact that the above inequalities hold for xi(t) is an immediate consequence of proposi-tion 4.5 (maximization) and the de�nition of the utility as ui = pi(xi(t); t�i)� ti(xi(t)). When theinequalities are strict, X is clearly the unique set of tasks that maximizes i's utility. 2We prove the theorem for the case of two agents. For n > 2 we can reduce to this case by havingthe other agents be much slower than agents 1 and 2.Notation: Let t be a type vector, i an agent and X a set of tasks. Let � > 0 be a real number.We denote by t̂ = t(X i! �) the type obtained byt̂i0j = ( � if i0 = i and j 2 Xti0j otherwiseIn the same manner we de�ne t̂ = t(X1 i1! �1; X2 i2! �2; : : :) to be the result of a sequence of theabove transformations.Let k � 3, and t be the type vector de�ned by tij = 1 for each agent i and task j. Without loss ofgenerality we assume that jx1(t)j � jx2(t)j. Let x = x1(t) and let �x denote its complement (x2(t)).Claim 4.8 Let 0 < � < 1, t̂ = t(x 1! �; �x 1! 1 + �). Then x(t̂) = x(t).Proof: Since n = 2, it is enough to show that x1(t̂) = x1(t). As the type of agent 2 has notchanged, the prices o�ered to agent 1 remain the same. For type t, x1(t) ful�lls the inequalitiesof lemma 4.7. Thus, by inspection, they are strict when the type becomes t̂, and therefore theallocation remains the same. 2Assuming jx2(t)j is even, the lower bound follows since g(x(t̂); t̂) = jx2(t̂)j = jx2(t)j, butg(opt(t̂); t̂) � 12 � jx2j + k � � (for the allocation that gives agent 1, in addition to the originalx1(t), half of agent 2's original allocation).For the case of odd jx2(t)j it must be that jx2(t)j � 3. We choose an arbitrary task j 2 x2(t)and consider the type t̂(fjg 2! �), which still yields the same allocation. 2This lower bound is tight for the case of two agents. We conjecture that, in general, the upperbound is tight:Conjecture 4.9 There does not exist a mechanism that implements a c-approximation for the taskscheduling problem with n agents for any c < n.Although we have not been able to prove this conjecture, we can show that it is correct for twonatural special cases presented in the next subsection.15



4.3.3 Tight Bounds for Special CasesDe�nition 13 A mechanism is called additive if for each agent i, type vector t and set X of tasks,pi(X; t�i) =Pj2X pi(fjg; t�i).Theorem 4.10 There does not exist any additive mechanism that solves the c-approximation prob-lem for any c < n.Proof: Let k � n2 and let tij = 1 for each agent i and task j. Without loss of generality we assumethat jx1(t)j � n. Let x = x1(t) and let �x denote its complement.Claim 4.11 Fix 0 < � < 1 and let t̂ = t(x1 1! 1� �; �x 1! �). Then x1(t̂) � x1(t).Proof: Since t2 has not changed, the prices o�ered to agent 1 remain the same. Clearly the priceo�ered to agent 1 for x is strictly greater than the time t̂1(x) required for it to perform x. Sincethe payment is additive, the set x1(t̂) which maximizes 1's utility must contain all the tasks in x.2 It follows that g(x(t̂); t̂) � jx1j � n. Like in theorem 4.6, we can assume w.l.o.g. that jx1j = n.The lower bound is then obtained since an optimal allocation would split these tasks among the nagents. 2De�nition 14 We say that a mechanism is local if for each agent i, type vector t and set X oftasks, the price pi(X; t�i) depends only on the agents' values on the tasks in X (i.e. ftl6=ij jj 2 Xg).Theorem 4.12 There does not exist a local mechanism that solves the c-approximation problemfor any c < n.Proof: We start with a simple lemma that will enable us to turn the inequalities of lemma 4.7 intosharp ones.Lemma 4.13 For each type vector t and � > 0, there exists a type vector t0 such that kt� t0k < �and where the sets that maximize the agents' utility are unique for all agents.Proof:(sketch) The lemma is proved using a simple measure-theoretic argument. Let i be an agent,A 6= B two sets of tasks. Because of the independence property (proposition 4.4), the following sethas a zero measure on the type-space of agent i:Ei(A;B; t�i) = ftijpi(A; t�i)� ti(A) = pi(B; t�i)� ti(B)g16



From this we obtain that for almost every type vector t0, the inequalities in lemma 4.7 (for allagents) are strict. 2Let k � n2 and let tij = 1 for each agent i and task j. By lemma 4.13, we assume w.l.o.g. thatxi(t) uniquely maximizes i's utility for all agents i. Without loss of generality we assume thatjx1(t)j � n.Claim 4.14 Let x = x2(t) and t̂ = t(x 2! �) for some 0 < � < 1. Then x(t̂) = x(t).Proof: Clearly x2(t̂) = x2(t). Consider another agent i 6= 2. The mechanism must allocate toagent i a set xi(t̂) that maximizes i's utility among all the sets X which are disjoint from x2(t). Butsince the mechanism is local, these prices have not changed from t to t̂. Therefore xi(t) remainsthe unique set that maximizes i's utility. 2By the same argument the allocation for the type t̂ = t(x2(t) 2! �; : : : ; xn(t) n! �) remains x(t) .Like in theorem 4.6 we can assume that jx1(t)j = n and thus the lower bound is obtained sincean optimal allocation will split these tasks among the n agents. 24.4 The Power of RandomizationIn section 4.3 we showed that no mechanism can achieve a better than 2-approximation for thetask scheduling problem. Here we show that randomized mechanisms can do better. The model ofrandomization that we use does not weaken the demands of dominant strategies at all: Althoughthe agents choose their strategies without knowing the results of the random coin tosses, we requirethe strategy to be dominant for all possible tosses.De�nition 15 (A Randomized Mechanism) A randomized mechanism is a probability distri-bution over a family fmrjr 2 Ig of mechanisms, all sharing the same sets of strategies and possibleoutputs.The outcome of such a mechanism is a probability distribution over outputs and payments; theproblem speci�cation must specify what output distributions are required. For the case of optimiza-tion problems, the objective function on such a distribution is taken to be the expectation, i.e.g(a; t) = Er2I(g(omr(a); t)).De�nition 16 (Universally Dominant Strategy) A strategy ai is called universally dominant(in short, dominant) for agent i if it is a dominant strategy for every mechanism in the support17



of the randomized mechanism. A randomized mechanism is called universally truthful (in short,truthful) if truth-telling is a dominant strategy, and strongly truthful if it is the only one.We will design a strongly truthful randomized mechanism that achieves better performancethan the deterministic lower bound. The randomized mechanism will be a distribution over biasedmin work mechanisms de�ned in �gure 1.Parameters: A real number � � 1 and a bit vector s 2 f1; 2gk.Input: The reported type vectors t = (t1; t2).Output: An allocation x = (x1; x2), and a payment p = (p1; p2).Mechanism:x1  ;; x2  ;; p1  0; p2  0.For each task j = 1:::k doLet i = sj and i0 = 3� iIf tij � � � ti0jThen xi  xiSfjg; pi  pi + � � ti0jElse xi0  xi0 Sfjg; pi0  pi0 + ��1 � tijFigure 1: the biased min work mechanism (for two agents)Lemma 4.15 For all parameter values, the biased min work mechanism is strongly truthful .Proof: Since the overall utility of each agent can be described as the sum of the utilities aggregatedin each step, it is enough to consider the case of k = 1. In this case the mechanism is equivalent toa weighted VGC (de�nition 9) with weights f1; �g or f�; 1g (depending on sj). 2De�nition 17 (The Randomly Biased Min Work Mechanism ) The randomly biased minwork mechanism is the distribution on biased min work mechanisms given by � = 4=3, and auniform distribution of s 2 f1; 2gk.Theorem 4.16 The randomly biased min work mechanism is a (polynomial time computable)strongly truthful implementation of a 7=4-approximation for task scheduling with two agents.The proof of the theorem is immediate from the following two lemmas.18



Lemma 4.17 The randomly biased min work mechanism is strongly truthful .This is immediate from lemma 4.15.Lemma 4.18 The allocation obtained by the randomly biased min work mechanism is a 7=4-approximation for the task scheduling problem.Comment: Our original analysis yielded a bound of 1:823. Daniel Lehmann (Lehmann (1999))provided us with a tighter case analysis, improving the bound to 7=4. With Daniel's permission weinclude his re�ned analysis in our proof.Proof: Let opt(t) denote an optimal allocation algorithm. Let topt denote its make-span, and lettbmw denote the (expected) make-span of the randomly biased min work mechanism.We call a task j a k-task if one of the agents is considerably more e�cient than the other onit (i.e. t1j=t2j > � or t2j=t1j > �); otherwise we call it an l-task . Note that the mechanism allocateseach k-task to the agent which is e�cient on it, and randomly allocates the l-tasks.Claim 4.19 It is enough to consider the following case:1. For each k-task, the e�ciency discrepancy between the agents is arbitrarily close to � (thereforewe shall assume that it equals �).2. If opt allocates an l-task j to agent i, then t3�ij =tij = �.3. Under opt both agents have the same �nishing time.4. One of the agents is more e�cient than the other on all k-tasks (w.l.o.g. let it be agent 1).5. There are at most four tasks, where at most one k-task and at most one l-task is allocated byopt to each agent.Proof:1. Since the mechanism always allocates each k-task j to the agent i which is more e�cient onit, reducing t3�ij down to � � tij can only help opt and leaves tbmw unchanged.2. If opt allocates an l-task j to agent i, then increasing t3�ij will not a�ect topt but will increasetbmw . 19



3. Otherwise, w.l.o.g. assume that agent 1 �nishes �-time before agent 2. Adding an l-task jsuch that t1j = � and t2j = � � � does not change topt but increases tbmw .4. Assume that there are two k-tasks a and b such that t2a=t1a = t1b=t2b = �. W.l.o.g. t1a � t2b . Ifa is replaced by two k-tasks a0 and a00 such that tia = tia0 + tia00 then tbmw remains the samewhile topt can only decrease. In particular we can choose t1a0 = t2b .The mechanism allocates both tasks a0 and b to the agent which is e�cient on them. If optis doing the same then clearly removing both a0 and b can just increase the ratio tbmw=topt.Obviously, opt cannot allocate a0 to agent 2 and b to agent 1. Therefore it is enough toconsider the case where opt allocates both tasks to one of the agents. One can verify that inthis case replacing both tasks with equivalent l-tasks (i.e. l-tasks with the same computationaltimes as the original ones) does not a�ect topt but will increase tbmw by at least ��12 � t1a0 .5. Let a and b be two k-tasks that opt allocates to the same agent i. Recall that t3�ia =tia =t3�ib =tib = �. Clearly, replacing both tasks with a single task c such that tic = tia + tib, doesnot a�ect opt nor the mechanism. We now consider the case where a and b are both l-tasks.Again, topt does not change as a consequence of such a replacement. We will show that tbmwcan only increase. Let Y be an allocation of all the tasks except a and b; let tY;a;b denotethe expected make-span when all other tasks are allocated according to Y and a and b arerandomly allocated; let tY;c denote the expected make-span when a and b are replaced by cwhich is allocated randomly. Clearly, it is enough to show that tY;a;b � tY;c.Let T 1 and T 2 denote the �nishing times of both agents respectively when the allocation isY . If one of the agents i �nishes after the other regardless of how a and b are allocated, thenclearly tY;a;b = T i+ tia+tib2 = tY;c. Otherwise, if agent i �nishes last i� both a and b are allocatedto it, then tY;a;b = T i+tia+tib4 + T 3�i+t3�ia4 + T 3�i+t3�ib4 + T 3�i+t3�ia +t3�ib4 . Since T 3�i � T i+ tia+ tib,we obtain that tY;a;b � T i+tia+tib2 + T 3�i+t3�ia +t3�ib2 = tY;c. Finally w.l.o.g. assume that tia � tib(for i = 1; 2) and consider the case where the agent to which a is allocated �nishes last. Inthis case tY;a;b = T 1+t1a+t1b4 + T 1+t1a4 + T 2+t2a+t2b4 + T 2+t2a4 � T 1+t1a+t1b2 + T 2+t2a+t2b2 = tY;c. 2Following the above claim we prove the lemma for the case of four tasks k1; k2; l1; l2, such thatki and li denote the k-task and l-task which are allocated to agent i by opt (cases in which thereare less than four tasks can be represented by zero times). The reduced case is described in �gure2. 20



t1j t2j opt-alloc bmw-allock1 a � � a 1 1k2 b � � b 2 1l1 c � � c 1 rndl2 � � d d 2 rndFigure 2: the reduced caseSince both agents have the same �nishing time in opt, topt = a + c = � � b+ d. We show thattbmwtopt � 7=4 by considering three separate sub-cases.Case 1: a+ b+ � � d � � � c.Considering all four possible allocations of the mechanism we obtain that tbmw = 1=4 �((a+b+c+� �d)+(a+b+c)+(� �c)+(� �c+d)). Substituting � = 4=3 we get tbmw = 1=2�a+1=2�b+7=6�c+7=12�dand one can verify that tbmw � 7=4 � (a+ c) = 7=4 � topt.Case 2: Otherwise, a+ b+ � � d � � � c. Consider the case where a+ b � � � c+ d.In this case tbmw = 1=4 � ((a+ b+ c+ � � d) + (a+ b+ c) + (a+ b+ � � d)+ (� � c+ d)). Substituting� we get tbmw = 3=4 � a + 3=4 � b + 5=6 � c + 11=12 � d and it is not di�cult to verify that tbmw �7=4 � (a+ c) = 7=4 � topt.Case 3: Otherwise, a+ b+ � � d � � � c and a+ b � � � c+ d. In this case tbmw = 1=4 � ((a+ b+ c+� � d) + (a+ b+ c) + (a+ b+ � � d) + (a+ b)). Substituting � we get tbmw = a + b+ c=2 + 2=3 � dand again it can be veri�ed that tbmw � 7=4 � (4=3 � b+ d) = 7=4 � topt. 2This completes the proof of the theorem. 25 Mechanisms with Veri�cationThe basic mechanism design model assumes that each agent can follow any of its strategies, in-dependently of its type. Thus the mechanism cannot use any \real-world" information about theagents. This is the norm in mechanism design and it models well the negotiation stage in whichagents do nothing but communicate. In many settings in distributed computation though, onecould take advantage of the fact that computers actually act (execute a task, route a message, etc.)to gain extra information about the agents' types and actions.A simple type of modi�cation to the model suggests itself: a problem de�nition may limit theset of strategies Ai available to each agent as a function of its type ti. Many variants are possible,21



with di�erent types of information available at di�erent stages of the mechanism. In this paperwe concentrate on what we feel is a very natural model. We distinguish between two stages ofthe mechanism: a declaration phase in which agents \talk" and which results in a decision (e.g.allocation), and then an execution phase where the agents actually execute the agreed output. Thepayments need only to be given after the execution. Intuitively we view the execution part asallowing the mechanism to verify in some sense the agents' declarations, and \punish" them forlying.For the task scheduling problem we assume that by the end of the execution the mechanismknows the exact execution time of each task. A reformulation of the problems is introduced insection 5.2. We then (in sections 5.3 and 5.4) present a family of optimal mechanisms8 for thisproblem. In section 5.5 we show that versions of our mechanism can operate under a limitedbudget and can guarantee that the pro�t for a truthful agent is always non-negative. Since thesemechanisms require optimal scheduling algorithms they are computationally intractable. In section5.6 we discuss polynomial-time mechanisms. We de�ne a sub-case of the scheduling problem forwhich we present a polynomial-time approximation schema. The existence of a (better than n)polynomial time approximation mechanism for the general problem is left open.5.1 Mechanisms with Veri�cationDe�nition 18 (Mechanism with Veri�cation)� An agent's strategy ai is composed of two separate parts: a declaration di and an executionei.� Each declaration di is chosen by the agent, based on its type ti, in an unrestricted manner.� The decision k of the mechanism must be a function of just the declarations d1; : : : ; dn.� The agent's execution ei may depend on ti as well as on k. The problem speci�cation speci�es,for each ti, the possible ei()'s an agent of type ti may choose.� The output of the mechanism is the result of the decision k and the agents' executionse1(k); : : : ; en(k). The output function o(k; e) is a part of the problem speci�cation.� The output o, determines both the objective function g(o; t) and the agents' valuations vi(ti; o).8Although these mechanisms are presented for the scheduling problem, they can be generalized for many situations.22



� The payment pi that the mechanism provides depends on both, the declarations d1; : : : ; dn andthe executions e1(k) : : :en(k).De�nition 19 A mechanism with veri�cation is called truthful if1. The agents' declarations are simply to report their types.2. For each agent i of type ti, there is a dominant strategy of the form ai = (ti; ei()).We say that the mechanism is strongly truthful if it is the only dominant strategy.Note that by applying the revelation principle 2.1 to the declaration part, we can limit thediscussion to mechanisms where the agents are simply requested to reveal their types.Notation: We denote a mechanism with veri�cation by a pair m = (k(d); p(d; e)), where k() is thedecision and p() the payment function.5.2 A Reformulation of Task SchedulingDe�nition 20 (Task Scheduling with Veri�cation) The problem is the same as the task allo-cation problem (de�nition 10), except that the mechanism is allowed to pay to the agents after thetasks have been performed. We assume that the times which the tasks were actually performed inare known to the mechanism.More formally:� A feasible output of the mechanism is denoted by a pair (x; ~t), where x = x1; : : : ; xn denotesthe allocation of the tasks to the agents, and ~t = ~t1; : : : ; ~tk denotes the actual times that theywere performed in. If j 2 xi(t), then it must be that ~tj � tij .� A strategy for an agent is composed of two parts: a declaration of its type and an executionof the tasks allocated to it. An agent may lie or choose to perform any task j allocated to it,in any time ~tj � tij .� The objective function is g(x; ~t) = maxiPj2xi ~tj (the make-span).� Agent i's valuation is vi(x; ~t) = �Pj2xi ~tj .� A mechanism is a pair (x; p) such that x(t) = x1(t); : : : ; xn(t) is the allocation function, andp(t; ~t) = p1(t; ~t); : : : ; pn(t; ~t) is the payment.23



5.3 The Compensation-and-Bonus MechanismThe Compensation-and-Bonus Mechanism is composed of an optimal allocation algorithm, togetherwith a well chosen payment function. The payment function is the sum of two terms, one is calledthe compensation, and the other the bonus.De�nition 21 (Compensation) The functionci(t; ~t) = Xj2xi(t) ~tjis called the compensation function for agent i.The bonus function uses the following notion:De�nition 22 (Corrected Time Vector) Let i be an agent, x an allocation. Given the agents'declarations t and the vector of actual times ~t, we de�ne the corrected time vector for agent i as:corri(x; t; ~t)j = ( ~tj if j 2 xitlj if j 2 xl and l 6= iWe de�ne corr�(x; t) of x and t to be the (unique) vector that satis�es corr�(x; t)j = tij for all iand j 2 xi.De�nition 23 (Bonus) The functionbi(t; ~t) = �g(x(t); corri(x(t); t; ~t))is called the bonus function for agent i.The bonus is calculated according to the declarations of the other agents and the actual timesthat the agent performed its assignments in.De�nition 24(Compensation-and-Bonus Mechanism) The Compensation-and-Bonus mechanism is givenby an optimal allocation algorithm with the payment functions pi(t; ~t) = ci(t; ~t) + bi(t; ~t).Theorem 5.1 The Compensation-and-Bonus mechanism is a strongly truthful implementation ofthe task scheduling problem. 24



Proof: We show that the only dominant strategy for each agent is to reveal its true type and toexecute its tasks in minimal time.Claim 5.2 The Compensation-and-Bonus mechanism is strongly truthful.Proof: Let i be an agent, ti its type and let d�i denote the declarations for the other agents (notethat the allocation and bonus given to i depend on d�i but not on the actual execution times ofthe others). Let t = (d�i; ti). Observing that the utility of an agent equals its bonus, and that forevery allocation x the bonus for an agent i is maximized when executing its assignments in minimaltime, it is enough to show that �g(x(t); corr�(x(t); t)) >= �g(x(t0i; d�i); corr�(x(t0i; d�i); t)) foreach t0i. This is immediately implied by the optimality of the allocation algorithm.Clearly, when an agent does not follow this strategy, there are circumstances where this willincrease the make-span and therefore decrease the agent's bonus. Therefore, the above strategy isthe only dominant one. 2When all agents follow their dominant strategies, the best possible make-span is obtained due tothe optimality of the allocation algorithm. 2An Example j1 j2 j3A1 10 30 45A2 100 60 100Figure 3: a type matrix for two agentsConsider the type matrix in �gure 3. Assume �rst that both agents are truthful. The optimalallocation in this case is ffj1; j3gfj2gg and the make-span is 60, therefore the bonus given to eachagent is �60. Consider the case where agent 1 tries to "loose" j3 declaring t13 as 200. The "optimal"make-span therefore reduces to 100 and consequently the bonus for each agent reduces to �100.Similarly, when agent 1 tries to "gain" j2 declaring for example t12 to be 4, its bonus is reduced to�85. If agent one is \lazy" exceuting its tasks in 100 units of time instead of 55, then its bonusreduces from �60 to �100.5.4 The Generalized Compensation-and-Bonus MechanismWe now generalize the Compensation-and-Bonus mechanism:25



De�nition 25 (Generalized Compensation) The function ci(t; ~t) is called a generalized com-pensation for agent i if� ci(t; ~t) �Pj2xi(t) ~tj for all t and ~t.� Equality exists in case that the agent is truthful.De�nition 26 (Generalized Bonus) Let mi(t�i; w) be any positive real-valued function, that isstrictly monotonically increasing in w. The function bi(t; ~t) = mi(t�i;�g(x(t); corri(t; ~t))) is calleda generalized bonus for agent i.De�nition 27 (Generalized Compensation and Bonus Mechanism) A Generalized Com-pensation and Bonus mechanism is a pair m = (o; p) where:� o() is an optimal allocation algorithm.� pi(t; ~t) = ci(t; ~t)+ bi(t; ~t), where ci() and bi are generalized compensation and bonus functionsrespectively.Arguments, similar to 5.1 lead to the following theorem:Theorem 5.3 The Generalized Compensation and Bonus mechanism is a strongly truthful imple-mentation of the task scheduling problem. 25.5 Budget ConsiderationsTheorem 5.3 allows a lot of freedom in the design of a generalized Compensation-and-Bonus mech-anism. In this section we take advantage of this freedom in order to satisfy two additional require-ments: participation constraints and budget limits (see Mas-Collel, Whinston and Green (1995)chapter 23 for a detailed discussion).De�nition 28 (Participation Constraints) We say that a mechanism satis�es participationconstraints if whenever an agent is truth-telling, its utility is non-negative. More formally: foreach t and ~t and for each agent i, if ~tj = tj for all j 2 xi(t), then pi(t; ~t) + vi(x(t); ~t) � 0.26



Note: If a truthful approximation mechanism satis�es the property that whenever an agent is notallocated any tasks then its payment is non-negative, it needs to satisfy participation constraintsas well. (Because by declaring high enough values the agent can force the mechanism to allocateno tasks to it.)Theorem 5.4 There exists a strongly truthful mechanism that satis�es participation constraintsfor the task scheduling problem.Proof: We de�ne g�i(t�i) to be the optimal make-span among the allocations which do not includeagent i. We de�ne the contribution of agent i as conti(t�i; ~t) = g�i(t�i) � g(x(t); corri(x(t); t; ~t)).A generalized Compensation-and-Bonus mechanism where the bonus of each agent equals its con-tribution clearly satis�es participation constraints. 2So far we have not limited the amount of money that a mechanism can pay to the agents. Whenconsidering mechanisms with limited budget one cannot ignore the fact that such a mechanismmay not be able to allocate the tasks at all. We therefore change the problem de�nition.De�nition 29 (Constrained Task Scheduling) The problem is the same as in de�nition 20except that there is another possible output ? (indicating that the tasks are not allocated). vi(?) istaken to be zero and g(?) is taken to be 1.De�nition 30 (Limited Budget) We say that a mechanism m = (o; p) has a limited budgetb if for any tuple of strategies s = s1; : : : ; sn, Pi pi(s) � b. We call a revelation mechanismb-constrained if it satis�es participation constraints and has a limited budget b.Note that if Y (t) is the allocation of a b-constrained mechanism then it must be thatPiPj2Y i tij �b.De�nition 31 Let m = (o; p) and m0 = (o0; p0) be two mechanisms for the same minimizationproblem. We say that m is as good as m0 if for any dominant strategies d = d1; : : : ; dn for theagents in m and s = s1; : : : ; sn for the agents in m0, g(o(d))� g(o0(s)).Theorem 5.5 Let b; h > 0. Then there exists a truthful mechanism m for the constrained taskscheduling problem such that1. m is (b+ h)-constrained. 27



2. If m0 is b-constrained, then m is as good as m0.Proof: Consider the following mechanism m = (o; p):� The output algorithm o(t) �nds an optimal allocation among the allocations y such thatPiPj2yi tij � b (or outputs ? if none exists).� Let m() be a bounded strictly monotone increasing function such that 0 � m() < h=n.We de�ne the contribution conti of the agent as in 5.4 (except that the algorithm and theobjective function are di�erent). We de�ne the bonus bi() as m(conti()) and the payment tobe given by pi = ci() + bi() where c() is a compensation function. The payment is de�ned tobe 0 if the output is ?.The total compensation is bounded by b and the total bonus by h, therefore the budget isbounded by b + h. Arguments, similar to 5.1 show that the mechanism is truthful and that theonly dominant strategies for an agent i are to reveal the truth (when tij � b the agent may declareon any dij � b) and to perform its tasks as e�cient as it can.Recalling that any b-constrained mechanism m0 needs to choose an allocation z such thatPiPj2zi tij � b, the theorem is proved. 25.6 Poly-Time MechanismsWhile the Compensation-and-Bonus mechanisms are optimal, note that they are intractable froma computational point of view due to their use of the exponential-time optimal allocation algo-rithm. One would be tempted to take a known polynomial-time approximation algorithm for theproblem and base a mechanism upon it, obtaining a polynomial-time approximation mechanism.Unfortunately, this is not so simple and we do not know how to do this in general. In this sectionwe �rst show that replacing the optimal allocation algorithm with a non-optimal approximationin the Compensation-and-Bonus mechanism does not preserve truthfulness. A similar argumentcan be made for the important case of VGC mechanisms (section 3.1). We then de�ne a sub-caseof the scheduling problem, where the number of agents is �xed and there are known bounds forthe execution times tij . This problem is still NP -hard and the lower bounds presented in sections4.3.2 and 4.3.3 can be applied to it (with slightly weaker constants depending on the bounds).Nevertheless, for any � > 0 we are able to present a 1 + � polynomial approximation mechanismfor this variant. Our approximation mechanism is based on a rounding technique developed byHorowitz and Sahni (1976). 28



De�nition 32 Let x() be an allocation algorithm. The Compensation-and-Bonus mechanism basedon x is the same as 5.3 except that the optimal algorithm is replaced by x().Theorem 5.6 Let x() be a non-optimal approximation algorithm for task scheduling. Let m =(x; p) be the Compensation-and-Bonus mechanism based on x(). Then m is not truthful.Proof: Assume by contradiction that it is truthful. For an allocation y and a type t, let g(y; t)denote the make-span { maxiPj2yi tij ; let opt(t) denote an optimal allocation.Let t be a type such that g(opt(t); t) < g(x(t); t), and let t01 be a type for agent 1 such thatt01j = ( t1j if j 2 opt1(t)1 otherwisewhere 1 stands for an arbitrary high value.Claim 5.7 Let t0 = t01; t2; : : : ; tn. Then g(x(t0); t0) � g(x(t); t).Proof: Otherwise, in the case where agent 1's type is t1, it would be more bene�cial for it to\pretend" to be t01 (note that this cannot be veri�ed!). This contradicts the truthfulness of themechanism. 2Corollary 5.8 Let s be a type such thatsij = ( tij if j 2 opti(t)1 otherwiseThen g(x(s); s) � g(x(t); t). 2Since g(x(s); s) � g(x(t); t) > g(opt(t); t) = g(opt(s); s), we obtain that x(s) 6= opt(s). Thus thereexists an agent who is allocated an 1 job, in contradiction to the approximation ratio of x(). 2De�nition 33 (Bounded Scheduling Problem) The problem is the same as in de�nition 20,except that the number of agents n is �xed to a constant and there exist �xed b > a > 0 such thatfor all i; j a � tij � b.The rounding algorithm presented in Horowitz and Sahni (1976) provides a (1+�)-approximationfor bounded scheduling and runs in polynomial time. It basically works as follows: The entries tij29



are �rst rounded up to integer multiples of � (a parameter chosen as a function of a and �). Itthen exactly solves this rounded problem using dynamic programming (in polynomial time). Thesolution of the rounded problem is shown to be a 1 + � approximation to the original one.We will attach to this algorithm a carefully chosen payment function as to obtain our mechanism.The idea is to use the exact times for the compensation function, but the rounded ones for thebonus function.Notation: For a vector t, let t̂ denote the vector where all entries are rounded up to an integermultiple of �. Denote also ĝ(x; ~t) = g(x; ~̂t), where g is the make-span objective function.De�nition 34 (Rounding Mechanism) The rounding mechanism is de�ned as follows:� The allocation algorithm is the rounding algorithm of Horowitz and Sahni (1976) sketchedabove.� The payment function is given by: pi(t; ~t) = ci(t; ~t) + bi(t; ~t), whereci(t; ~t) = Xj2xi(t) ~tjbi(t; ~t) = �ĝ(x(t̂); ^corri(x(t); t; ~t))The rounding mechanism compensates the agents according to their actual work, but computesthe bonus according to the rounded declarations and execution times.Theorem 5.9 For every �xed � > 0 the rounding mechanism is a polynomial time mechanismwith veri�cation that truthfully implements a 1 + � approximation for the bounded task schedulingproblem.Proof:(sketch) When the types and the actual computation times are rounded, ĝ is exactly themake-span, and the rounding algorithm is optimal. Arguments, similar to those in 5.1, thereforeshow that the only dominant strategies for agent i are to declare on a type t0i such that t0i and ti havethe same rounded value, and to execute its tasks such that after rounding, ^corri(x(t); t; ~t) equals^corr�(x(t); t). Clearly, when all agents follow such strategies, the result is a 1 + � approximation.In particular, truth-telling is among the dominant strategies. 230



6 Conclusions and Further ResearchIn this paper we suggested a framework for studying optimization problems that involve sel�shparticipants. We studied a representative task scheduling problem under two main models: abasic mechanism design based model and a model that allows more information to be incorporatedinto the mechanism. Under the assumptions of the basic model we showed that the problemcannot be approximated within a factor of 2� �. Then, under the second model assumptions, weintroduced several novel mechanisms including optimal, constrained optimal and polynomial-timeapproximation mechanisms. We have also shown that worst case behavior can be improved usingrandomness without weakening the \game-theoretic" requirements of the mechanism.We believe that our work is only a �rst step towards understanding the notion of algorithmiccooperation among sel�sh agents. There are clearly many open problems and research directions,and we are far from a situation where we could design, analyze, and implement protocols andalgorithms that directly take into account the participants' di�ering goals.We divide the basic issues for further research into three main categories: questions directlycoming out of our work, game-theoretic extensions to our model and distributed computation issues.Several questions directly stem from our work. For example, there are large gaps betweenthe upper and lower bounds for both task scheduling without veri�cation and for poly-time taskscheduling with veri�cation.Many game-theoretic extensions to our model are possible. For example one may considerdi�erent settings (e.g. repeated games), di�erent solution concepts (e.g. Bayesian-Nash), anddi�erent assumptions (e.g. partial veri�cation).Finally, in this work we have treated the mechanism as a black box, and have not consideredhow its function is actually carried out in a distributed manner. A whole set of open problemscomes from trying to \open up" this black box, and analyze the steps taken in implementing themechanism from a distributed point of view. For example when communication costs are considered,even the revelation principle breaks up; non complete network topology may be exploited by theagents to extract information about others and to cooperate; cryptography may be introduced anddistributed handling of the payments may be considered.Acknowledgments: We thank Dov Monderer, Motty Perry and Ori Regev for helpful discussionsat various stages of this work. We thank Daniel Lehmann, Ofer Neyman, Dana Peer, Inbal Ronenand Moshe Tennenholtz for comments on earlier drafts of this paper.31
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