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1 Nash Equilibrium: Strategic Games

N.B. I have taken to calling strategy what the book refers to as action profile. In either case, this
is the vector of choices each player makes, taken from the space of all possible combinations
of all possible choices.

18.2 Formulate a first price auction as a strategic game and analyze its Nash equilibria.

Player i has valuation vi and vi > vi+1 > 0. The set of actions for each player is a bid
bi ∈ [0,∞]. The price paid for the item is p = maxi{bi} and the player of minimum index
bidding this price wins. The payoff for player i is vi − p if i wins, 0 else. A Nash equilibrium
is denoted b∗ = {b∗i }.
If b∗ is a Nash equilibrium, then player 1 wins. Suppose I have a strategy, that is, a vector of
bids, subject to the constraint that player one did not win. I infer that this strategy is not a
N.E. Let j 6= 1 be the winner. Since j can get 0 by bidding 0, the strategy is not a N.E. if
vj − p < 0.

I am therefore left to consider only strategies for which v1 > vj ≥ p > b1. These are not
N.E.’s since player 1 can raise his bid to slightly above vj .

A N.E. would be b1 = v2, some other player bidding v2 and every other player bidding
bi ∈ [0, v2]. By this strategy player 1 gains v1 − v2 and would not change, other bids being
fixed. Any other player has a payoff of 0, and could only change that by increasing his bid
above v2, in which case the payoff would be negative, all other bids being fixed.

18.3 Show that in a second price auction the bid vi of any player i is a weakly dominant action.
Show that there are inefficient equilibria.

Consider player j with all other bids fixed at bi, and p the highest among these bids, p =
maxi6=j{bi}.
If p > vj , if j wins the payoff is negative. So i will bid vj , lose and have payoff 0. If p < vj , j
will win vj − p > 0 for any bid above p, and so he can bid vj and win this amount. If p = vj

then his payoff is 0 whether he wins or loses, so he can bid vj .
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We show an inefficient equilibria. Let player i bid more than v1 and every other player bid
less than vi. Player i wins with a strictly positive payoff and every other player has payoff 0.
Player i does not change his payoff unless he changes his bid and loses, with payoff 0. So he
does not change his bid. Every other player does not change their payoff unless they out bid
i, in which case they pay more than v1 and have negative payoff. So they do not change their
bids. We are at a N.E..

18.5 Formulate the War of Attrition as a strategic game and show that in all N.E. one of the
players concedes immediately.

A player’s strategy is a concession time ti ≥ 0. The player with the greater concession time
wins vi − min(t1, t2), the other player loses min(t1, t2). If t1 = t2 then both players win
vi/2− t1.

I found it hard to decide the value of the loser’s payoff. I eventually convinced myself by
looking at the player’s fortune immediately before and immediately after the game. Setting
the initial fortune arbitrarily to zero, the loser must pay t and gains nothing. There is no
cost to losing the object beyond the cost to stay in the game, since his initial fortune did not
reflect ownership of the object.

Let t∗ = (t∗1, t
∗
2) be a N.E.. We show that exactly one of the t∗i is necessarily zero.

Consider a strategy (t1, t2) with t1 6= t2 and both are non-zero. The loser would do better to
concede immediately. Hence this cannot be a N.E. If the ti are equal (including both zero)
then either player would do better to wait the smallest amount of additional time, in this way
winning rather than having a tie, and gaining an extra vi/2. Hence this cannot be a N.E.

Hence if there are N.E., it is a strategy where exactly one player concedes immediately.

If v1 6= v2 w.l.o.g. we let v1 > v2. Else the players are symmetric. There are three cases to
consider,

(a) t < t2. Neither (t, 0) nor (0, t) are N.E. The zero player can play v2 and increase is
fortune from 0 to vi − t ≥ v2 − t > 0.

(b) t2 ≤ t < t1. This case does not exist if t1 = t2. If t1 6= t2 then (t, 0) is a N.E. and (0, t) is
not. If (t, 0) is played the first player gets his maximum payoff v1 and this can only be
changed by his playing 0, in which case his fortune decreases to v1/2. The zero player
can only decrease his payoff by waiting longer and not winning, or can tie or win by
waiting t or more. In these cases his fortune is strictly negative. Hence (t, 0) is a N.E.
However (v1, t) is preferred to (0, t) by the first player, who would increase is fortune
from 0 to v1 − t > 0. So (0, t) is not a N.E.

(c) t ≥ t1. Both (t, 0) and (0, t) are N.E. In each case, the non-zero player can only decrease
is payoff from vi to vi/2 by conceding immediately along with the zero player. The zero
player can only decrease his payoff from 0 by waiting longer and not winning, or getting
ti/2− t ≤ t1/2− t < t1 − t ≤ 0 in a tie, or getting ti − t ≤ t1 − t < 0 in order to win.

19.1 Formulate the Location Game as a strategic game and find all N.E. for n = 2 and show that
there is no N.E. for n = 3.

We consider the case that the distribution of voters f(x) is the uniform distribution. But
changing the scale I believe we can reduce to this case, when f(x) > 0 for all x. I would have
to justify this carefully. Some day.
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Each player picks a location xi ∈ [0, 1], i = 1, . . . , n, or the special value ⊥, which means he
does not play. If k > 0 players choose location x 6= ⊥ each scores (b− a)/k where (a, b) is the
interval in [0, 1] of points closer to x than to any other distinct xi. All players choosing ⊥
receive outcome don’t–play. Among the remaining players, if there is a unique highest score
that player receives outcome win. If the highest score is not unique, all players sharing this
score receive outcome tie. All other players receive outcome lose. The preference relation for
each player is,

lose < don’t–play < tie < win

For n = 2 the only N.E. is x1 = x2 = 1/2 and the players tie. Given a strategy (x1, x2)
any player can change his action to match that of the opponent and tie. Therefore the N.E.
cannot include players that lose or don’t–play. Since this is symmetric, the players must tie.
Hence the only possible N.E. are of the form (x′, x′) with x′ ∈ [0, 1] or (1/2− δ, 1/2 + δ) for
δ ∈ [0, 1/2].

Furthermore, if x′ 6= 1/2 or δ 6= 0 then one player can move his action to 1/2 and win,
assuming the other play remains fixed. Hence the only possible N.E. is (1/2, 1/2). Since
either player will lose against the opponent choosing 1/2 unless he chooses 1/2 but will tie
otherwise, this is a N.E.

For n = 3 no N.E. exists. We consider each possible strategy (x1, x2, x3) and show it is not a
N.E.

If all xi are ⊥ then any player can play any x 6= ⊥ and improve their payoff by winning. If
exactly two xi are ⊥ then one of them can match the third player’s x and improve to a tie.

We consider strategies in which exactly one xi is ⊥. Considerations of the 2 player game
eliminate all strategies where one player is out unless the two players who are in tie (in
fact, by both playing 1/2). This last case, however, gives the out player an improvemen by
changing from ⊥ to the common value and thus improving his payoff to a tie.

In summary, if a strategy includes any choice of ⊥ is is not a N.E. We now eliminate strategies
in which all players play. Since a player can elect not to play if his in fact loses, we eliminate
all strategies except where all players play and they tie.

If all or two players choose the same x̄ then there is an x′ which wins. If x̄ 6= 1/2 then x = 1/2
is a winning choice. If x̄ = 1/2 then x = 1/2− δ for some small δ is a winning choice. If all
values are distinct the moving the leftmost value slightly rightwards, or the rightmost value
slightly leftwards, would give a win for that player. Therefore in all case where the three
players tie, some player has an improvement, so these are not N.E.’s.

20.2 Kakutani’s fixed point theorem states: If X is a compact convex subset of Rn, f : R → P(X)
a closed function such that f(x) is non-empty and convex for all x, then f has a fixed point.

Show the necessity of the conditions: X is compact; X is convex; f(x) is convex for all X; f
is closed.

If we take the non-compact X = R and f(x) = [x+2, x+3] then there can be no fixed point.
However R is a convex subset of R, f(x) is non-empty and convex for all x, and f is closed.
We prove that f is closed. Let xi → x, yi → y and yi ∈ f(xi). Suppose y 6∈ f(x), w.l.o.g.
y < x + 2. Then for all large enough i, yi < x + 2− ε, for some ε > 0. For all large enough i,
xi > x− ε. Hence for all large enough i, yi 6∈ f(xi), contradicting our assumption.

If we take the non-convex X = [0, 1] ∪ [2, 3] and f(x) = [2, 3] for x ∈ [0, 1] and f(x) = [0, 1]
for x ∈ [2, 3] then there can be no fixed point. However X is compact, f(x) is non-empty and
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convex for all x a,d f is closed. We prove that f is closed. W.l.o.g. assume xi → x ∈ [0, 1].
The sequence xi must eventually remain in [0, 1] hence f(xi) will eventually be constantly
[2, 3]. So the sequence yi will eventually remain in [2, 3] hence converge to an element in [2, 3]
since it is closed.

Let X = [0, 1], compact and convex, and,

f(x) =


[4, 5] x ∈ [0, 2)
[0, 1] ∪ [4, 5] x ∈ [2, 3]
[0, 1] x ∈ (3, 5]

The map f(x) is not always convex, and there is no fixed point. We show f is closed. Let
xi → x. If x is well inside the constant regions of f then eventually f(xi) stabilizes. Hence
yi is eventually a sequence in a fixed closed set and its limit is in that set. This leaves the
cases xi → 2 and xi → 3. The yi are a convergent sequence in the closed set [0, 1]∪ [4, 5] and
hence has a limit in this set. Since f(2) = f(3) = [0, 1] ∪ [4, 5] the limit of yi will be in the
limit of xi.

If we take X = [0, 5] and f(x) = (1/2, 1] if x ∈ [0, 1/2] and f(x) = [0, 1/2] if x ∈ (1/2, 1],
there is no fixed point. However X is compact, convex, f(x) is non-empty and convex for all
x. We show that f is not closed. Let xi = 1/2 and yi = 1/2 + 1/i. Both converge to 1/2 and
yi ∈ f(xi). However 1/2 6∈ f(1/2).

20.4 Show that in a symmetric game there is a N.E. of the form (a∗1, a
∗
1). Give an example of a

finite symmetric game that has only asymmetric equilibria.

Not done. My guess is to apply Kakutani’s theorem to the space {(a, a) | (a, a) ∈ A × A }.
The necessary qualities of convexity and so forth should carry forward into this subspace,
where symmetry might be required to make sure the set B(a) always touches this subspace
(and so is not empty).

2 Nash Equilibrium: Competitive Games

24.1 Let G be a strictly competitive (zero-sum) game with N.E.

(a) Show that if some of 1’s payoffs are increased in such a way that the resulting game G′

is strictly competitive than G′ has no N.E. in which player 1 is worse off than she was
in a N.E. of G.

(b) Show that the game that results if 1 is prohibited from using one of her actions does not
have a N.E. of higher payoff than a N.E. in G.

(c) Construct (necessarily) non-strictly competitive games where the above properties do
not hold.

(a) In a competitive game 1’s N.E. x∗ is a maxminimizer. If u′(x, y) ≥ u(x, y), then
miny∈A2 u′(x, y) ≥ miny∈A2 u(x, y) for each x, hence if a maximum on the L.H.S. exists it
is at least as big as the maximum over the R.H.S.

(b) If 1 has his set of actions modified A′
1 ⊂ A1, maximizing over A1 includes more points,

so can only be larger.

(c) In some strategic games, increasing 1’s payoff in certain situations might decrease his
payoff in equilibrium. Consider the two games,
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CA CB
RA 4,2 2,1
RB 1,1 1,2

CA CB
RA 4,2 2,1
RB 5,1 3,2

The first game has unique N.E. (4, 2). The second has N.E. (3, 2). Even though we have
increased the payoff for 1 in certain places to arrive at the second game, the equilibrium
payoff for 1 is larger in the first game.

(c bis) In some strategic games, restricting 1’s play, might increase his payoff. Consider the
game:

CA CB
RA 3,3 1,1
RB 4,1 2,2

The full game N.E. is (2, 2). If the row player cannot play RB, then the column player would
play CA, and the equilibrium (3, 3) results.

3 Nash Equilibrium: Bayesian Games

N.B. I would like to explain how I understand the notation on page 26 concerning Baysian games,
in particular, statements such as “a lottery Li(a∗, ti) over A×Ω: the probability assigned by
Li(a∗, ti) to ((a∗(j, τj(ω)))j∈N , ω) is the player i’s posterior belief that the state is ω when he
receives the signal ti.”

A strategy (action profile) a∗ in a Baysian game is a choice of action for every player for every
possible signal the player can receive. It is a big thing in that this will be reduced to just one
action per player once we determine what signal each player gets. This reduction is denoted
(a∗(j, τj(ω)))j∈N . Read: each player (j ∈ N) picks the action according to its received signal
(τj(ω)) We can denote this by a∗(ω) as well, but this does hide the very important role of the
signal functions τi.

The outcome of the game is still not determined by a∗(ω) since the true state of the world
ω might be involved. So a complete description of the outcome is (a∗(ω), ω). From this the
consequences can be determined and a preference order on (a∗(ω), ω) determined, different
for each player.

For each ω this gives an lottery Li(a∗, ti). In fact there is not one lottery but a lottery for each
player for each of his signals ti. Hence the notation Li(a∗, ti) refers to the lottery played by i
after he has received signal ti. Given player i received signal ti he now knows that the world’s
state is in the set Ω(ti) = {ω | τi(ω) = ti }. For ω ∈ Ω(ti) the lottery assigns probability
µi(ω |ω ∈ Ω(ti)), where µi is player i’s subjective probability measure (think likelihood) on
Ω. The lottery is then a strategy valued random variable on the set Ω(ti).

For a given lottery the outcome varies with choice of ω ∈ Ω(ti) for two reasons: although i’s
action is fixed, because his signal is fixed, other player’s might change their action; also the
payoffs might depend directly on ω. The functions τi are public knowledge. Therefore when
evaluating a lottery, looking at outcomes over all states of the world ω ∈ Ω(ti), I can correctly
deduce from a∗ and ω what play my adversaries will make.
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27.2 Formulate Bach or Stravinsky as a Bayesian game and find the N.E.

The states of the world are Ω = {BB, BS, SB, SS }. The signal functions are τ1(XY ) = X
and τ2(XY ) = Y , where X, Y ∈ {B,S}. The players actions are from the set A = {B,S}4

indexed by (1, B), (1, S), (2, B), (2, S). The probability distribution µi on Ω is modeled as a
biased coin flipped twice. Note that in this model if one player is known to favor B, then so
does the other player, since both use the same bias on their coins.

(a) BBBB,SSSS are N.E. The game is independent of Ω, each player plays the same no
matter what signal is received, and each lottery has a unique outcome. Since strategies
BB and SS cannot be modified unilaterally by either player without decreasing the
player’s payoff, we have a N.E.

(b) BBSS, SSBB are not N.E. Regardless of ω player 1 plays B, player 2 plays S. Given
player 2 playing S, player 1 can improve is fortune by playing S instead of B. The other
strategy is argued similarly.

(c) BBBS, BBSB, SSBS, SSSB, BSBB,SBBB, BSSS, SBSS are not N.E. Consider the
player who plays either B or S depending on his signal. For one of the two signals he
certainly faces that the players will go to separate concerts, and for that signal he would
be better to play differently. For instance, BBBS is not a N.E. because player 2 when
given signal S will play S against player 1 playing B regardless of signal, resulting in a
outcome inferior to player 2 playing B.

None of these above depend upon the probability distribution. The remaining cases depend
upon whether the coin bias is large enough to overcome a player’s signal.

Lemma 1 Suppose a player’s signal is X and the probability of the opponent playing X is
pX . If pX > 1/3, the player has larger payoff playing X; if p < 1/3, the payoff is greater
playing Y ; else the player is indifferent.

The proof is the calculation: the payoff is 2 pX to play the signal, (1 − p) otherwise. For
pX > 1/3 the first is greater, for pX < 1/3 the second is greater.

We call a probability distribution where the bias is in (1/3, 2/3) as unbiased, if the bias is
in (0, 1/3) ∪ (2/3, 1) it is biased, if it is either 1/3 or 2/3 we call it critical. Note that these
values 1/3 and 2/3 depend on the exact values 2 and 1 stated in the players preferences. To
the extent these numbers are arbitrary, so is the value 1/3.

Lemma 2 If the play of the opponent is biased, then the player’s payoff is greatest playing
the opponent’s bias, regardless of his signal.

Let X be the signal for which pX < 1/3. On signal X the player’s best payoff is Y . If the
signal is Y then necessarily pY ≥ 2/3 and the the best payoff is Y .

(d) BSBS, that is, each player plays is signal. In the unbiased or critical cases, since
pX ≥ 1/3 no matter what X, a player can play his signal. So we have a N.E. In the
biased case some player should be playing constant. So this is not a N.E.

(e) SBSB, SBBS,BSSB. These are never N.E.’s. In the case of an unbiased coin we can
find a player (i, ti) not playing ti and pti > 1/3. In the case of a biased coin, one of the
players must be playing a constant.
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Note that N.E. given by BSBS has a positive probability of players going to different movies.

28.1 Formulate the exchange game as a Bayesian game and find all N.E.

Let S be a finite subset of [0, 1]. There are two players. The space Ω is S×S with each s ∈ S
drawn independently from a common distribution. The signal for player i is τi(s1, s2) = si.
The set of strategies is A = A′ × A′ where A′ = {0, 1}|S| where A′(s) = 1 indicates that the
player will exchange s ∈ S, otherwise he will not. Given an (s1, s2) ∈ Ω, if both player are
willing to exchange they do so. The payoff for i is si.

If both players are willing to exchange something, suppose vi is the largest value player i is
willing to exchange. If v1 6= v2 this is not a N.E. W.l.o.g. suppose v1 > v2. The player (1, v1)
would do better not to exchange. If v1 = v2 and at least one player has multiple values at
which they would exchange than this is not a N.E. W.l.o.g. let player 2 have multiple values.
Then player (1, v1) would be exchanging v1 for a random value of expectation less than v1. If
both players are willing to exchange v1 = v2 only, and these are not the smallest values in S,
then the player (1, s′), where s′ is the smallest value in S would do better to exchange.

Given that both players are willing to exchange something we have eliminated all but a mutual
agreement to exchange minimum values from being N.E.’s. This is seen to be a N.E.

If only one player is willing to exchange something and this is not the minimum value than
the other player on receiving signal the minimum value would be willing to exchange. Also
neither player willing to exchange anything is a N.E.

Hence the four N.E. are: both, one or neither player willing to exchange the minimum value.

*28.2 Construct a two person Bayesian game in which increasing one player’s information reduces
his payoff (comparing the payoff in equilibrium for the respective games).

A two person game with a coin, Ω = {H,T}. The coin is unbiased. Information functions:
τ1(ω) = ω. For the limited information game, τ2(ω) = ⊥; for the full information game,
τ2(ω) = ω. We construct a game where player 1 should play the coin, and so should player 2.
Since player 2 does not know the coin, she can simply differ to player 1. This gets both players
the best outcome. If player 2 knows the coin, however, she is tempted to play something bad
for player 1 and that player must now take a defensive stance.

H D H T
H 4, 4 0, 5 0, 0
T 0, 0 0, 0 0, 0
O 1, 1 3/4 2, 2 2,1

T D H T
H 0, 0 0, 0 0, 0
T 4, 4 0, 5 0, 0
O 1, 1 3/4 2, 1 2, 2

For the limited information game the strategy vector is indexed by ((1,H), (1, T ), (2,⊥)), and
the unique N.E. is (H,T, D), that is, player 1 plays the coin and player 2, uninformed of the
coin, plays D. For the complete information game the vector is indexed by ((1,H), (1, T ), (2,H), (2, T ))
and the unique N.E. is (O,O,H, T ). Player 2 overreaches, and player 1 reacts to limit the
damage.

4 Mixed Strategy Nash Equilibirum

35.1 Formulate the game Guess the Average as a mixed strategy and find the Nash Equilibrium.
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There are N players, and each has a distribution over the set A = {1, . . . ,K}. The payoff is
calculated by taking 2/3 the average of the selected ai ∈ A for i = 1, . . . , N , and the k players
with ai closest to this number gain 1/k.

The only N.E. is ai = 1 for all i.

Consider vi, the largest value that player i will play, that is, having non-zero probability in
player i’s distribution. The average is not more than vi. If vi > 1 then the target value t is,

t = 2/3 avg (vj) ≤ vi − (1/3)vi ≤ vi − 2/3.

Therefore decreasing the bid will either let i share the winnings, if he is not winning in this
game, or be the sole winner, if he is sharing winnings with all players playing vi.

35.2 Formulate the Investment Race as a strategic game and find its mixed strategy N.E.

There are two players who assign a probability measure αi to [0, 1]. In a trial, the player with
highest choice from [0, 1] wins 1, or 1/2 in a tie.

We argue that if αi assigns zero weight above vi, then the best response of the other player
is any aj > vi. The payoff to j is the weight of αi below aj and 1/2 the probability of αi(aj).
This increases as aj increases, and remains unchanged as aj > vi. If vi = 1 then the best
response is ai = 1. The lemma states that in a N.E. any pure strategy in the support of the
player’s distribution is a best response. Therefore αj has all weight at or about vi. Likewise
αi has all weight about vj . This implies they both assign probability 1 to playing value 1.

36.1 Formulate Guessing Right as a strategic game and find the mixed strategy N.E.

There are two players. The strategy set is S × S where S = {1, . . . . , K}. Players choose
distributions αi over S. In a play, if a1 = a2 player 2 pays 1 to player 1, else nothing happens.

This enlightens us as to the nature of mixed strategies. Both players give a uniform distribu-
tion. This is a N.E. as each pure strategy is a best response against the other player’s uniform
distribution. Each pure strategy gives the same payoff, 1/K. However a pure strategy cannot
be a N.E. since the other player would react and modify his play to take advantage of this.
Mixing dulls the response, it does not sharpen the gain.

Any other distribution cannot be a N.E. since given a non-uniform distribution, the other
player will react, which will cause the original player to react again, and so forth. Let a and
b be two plays of player 1 with unequal likelihoods, α1(a) > α1(b). Then players 2’s best
response pure strategy would never play a, hence α2(a) < α2(b) unless they are both zero.
In any case the best response of player 1 must have α1(a) < α1(b), or both zero. Which is a
contradiction. So all choices of player 1 must be equally likely in any N.E.

Notes: At this point it might be good to set down the definitions, now that these appear clearer to
me. Each player has a set Ai of actions. A strategy in a pure game is the choice for each
player of an action, (ai) ∈

∏
i Ai. A strategy in a mixed game is a distribution αi over Ai.

Denoting the set of distributions on Ai by ∆(Ai), a strategy is also the choice by all players of
a distribution, (αi) ∈

∏
i ∆(Ai). A strategy α specifies αi(aj), for each player i the probability

(or likelihood if we take a Bayesian viewpoint) that the player plays action aj .

In each space
∏

i Ai and
∏

i ∆(Ai) there is a possibly empty subset E called the Nash Equil-
brium. The definition of a N.E. is different for mixed than for pure strategies, but we have a
helpful lemma: each pure strategy in the support of a player’s mixed strategy, i.e., an action
of non-zero likelihood, it must be a best-response in fact of the other player’s strategies. All
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pure strategies in the support of a player’s mixed strategy have equal payoffs. The purpose
of mixing is the force the opponents away from fixed responses, as the attempt to cover all
contingencies.

The intuitive aspect of a N.E. is that it is stable. A player can hypothesize the opponents
counter strategy to his strategy and modify his strategy, and so forth, in a “I know that
you know that I know” infinite regress. In a N.E. this sort of thing does not get off the
ground. However, I have had trouble writing proofs that reflect this aspect of the N.E., and
will describe carefully in the next problem the technique I discovered to utilize this back-and-
forth what-if game in the context of a proof.

36.3 Formulate Air Strike as a strategic game and find its mixed strategy N.E.

The common set of actions is A = {v1, v2, v3} where for player 1 action vi is to strike target vi,
for player 2 action vi is to defend vi. The strategy is a distribution on A. Payoff is determined
by 2 paying 1 vi is 1 strikes vi and 2 does not defend it; zero otherwise. The preference for
destruction or defending the target is v1 > v2 > v3 > 0. At times we will also considef the vi

to be real numbers. Which interpretation must be understood from context. For brevity we
will denote 1’s distribution by (pi), 2’s distribution by (qi).

As an exercise in the remark of the preceding note, we show that in any N.E. p1 6= 0. Let
A′ be the set of (mixed) strategies for which p1 = 0. We show E = A′ ∩ E = ∅. Given A′,
each pure play by 2 should assign q1 = 0, since a pure strategy of v1 will strictly maximize
his loss, and therefore should not be in the support of α2. Therefore A′ ⊃ A′′ ⊇ E where A′′

is the set of mixed strategies for which p1 = q1 = 0. In A′′, let vj be a pure strategy of 1.
By comparing its payoff to action v1, vj is not a best response. Therefore nothing in A′′ is a
N.E. and E = ∅.
Looking at the pure strategies of 1, his profit is vi(1 − pi) for action vi. Setting them equal
we have,

qi =
δ − 2/vi

δ
where δ = 1/v1 + 1/v2 + 1/v3

and these are in [0, 1] if 1/v1 + 1/v2 ≥ 1/v3.

Looking at the pure strategies of 2, his loss is
∑

j vjpj − vipi for action vi. This reduces to
v1p1 = v2p2 = v3p3. Solving, we have pi = 1/(δvi), with δ as above.

By the lemma for pure strategies, these are N.E.’s.

If 1/v1 + 1/v2 < 1/v3, the p3 = 0, it is not worth protecting v3. Solving as above the N.E. is,

p = (v2/(v1 + v2), v1/(v1 + v2), 0), q = (v1/(v1 + v2), v2/(v1 + v2), 0)

We have eliminated p1 = 0 and q1 = 0 as candidates for N.E. It remains to show that p2 = 0
and q2 = 0 are also unacceptable in a N.E. This is easy enough, as one player would shift
attack or coverage from v3 to v2.

36.3 Show that for all convex compact X, Y ⊂ Rk there exists x∗ ∈ X and y∗ ∈ Y such that
x∗ · y ≤ x∗ · y∗ ≤ x · y∗ for all x ∈ X and y ∈ Y .

Intuitively, propose a game with strategies in X × Y , and payoff x · y for the y player and
−x · y for the y player. A N.E. (x∗, y∗) would satisfy the inequality. The game satisfies the
hypotheses of 20.3 so a N.E. does exist.
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5 Extensive Games with Perfect Information

94.2 Suppose G = 〈{1, 2}, (Ai), (≥i)〉 is a strategic game and Ai = {a′i, a′′i }. G is the strategic form
of an extensive game with perfect information if and only if some row or column of the payoff
table has both payoff’s equivalent for both player 1 and 2.

The set of strategies for player i in an extensive game is defined as the map from non-
terminal histories h to actions A(h) defined on the subset of histories such that P (h) = i.
The cardinality of the set of all strategies for player i is

∏
h′ |A(h′)| with the product taken

over h′ ∈ {h ∈ H −Z |P (h′) = i}. Under the supposition, this cardinality is 2, so each player
has a single node at which to make a choice, and this choice is one of two actions. So for one
of the player there is a choice that makes the game outcome indifferent to the other player’s
choice.

Conversely, we have the strategic game as given. Using the considerations of the preceding
paragraph identify which player makes the first choice and which of his choices leads to the
node where the second player makes his choice. Label edges and payoffs as required. (If
the game begins with the player who does not make the first choice, this can be handled by
letting that player have a node with only 1 action — essentially to pass to the second player
without a choice.)

98.1 Give an example of a subgame perfect equilibrium of a Stackelberg game that does not
correspond to a solution of the maximization problem.

Consider the game with terminal histories AB,AC,BD,BE and respective payoffs (1, 1),
(1, 2), (0, 1), (2, 1). The perfect eq. strategies are ACD and BCE. One of these has a
payoff for player one of 2, the other 1. The maximization problem solves only to the payoff
2 solution.

99.1 Show that the one deviation property does not hold for games with infinite horizon.

The one person game with terminal histories {CkS, k ≥ 0} ∪ {C∗} with payoff 1/2k for finite
termination, 2 for infinite termination. The strategy s(h) = S is subgame perfect for one
deviation, but what is really optimal is s(h) = C.

100.1 Show that Kuhn’s theorem does not hold for games that are not finite, even if they have finite
horizon or finitely many possible actions at each play.

A one person game with histories CkS for all k ≥ 0, and payoff k has no equilibrium.

100.2 A finite game satisfies the no indifference condition if for all terminal histories z and z′, if
some player is indifferent between z and z′ then all players are indifferent between them.
Show that for such a game all players are indifferent between different subgame equilibria.
Show also interchangablity.

Let s and s′ be two subgame perfect equilibria. We must show that for every subgame h
every player is indifferent between the outcomes at h following strategies s|h and s′|h. We do
this by induction.

For games of maximum depth zero there is only one outcome and the result holds trivially.
Assume the theorem for games of depth less than l. A game of depth l has subgames following
from its initial move of depth less than l. The strategies s and s′ induce subgame perfect
equilibria on each of the subgames, and by induction all players are indifferent between the
outcomes of s and s′ on any strict subgame of the game.
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Since s and s′ both induce subgame perfect equilibria on the subgame entered by s on the
first move, the outcome of s is equal to the outcome of s′ on that particular subgame. Since s′

maximizes the outcome for the initial player over all the outcomes in the immediate subgames,
s cannot more more preferable than s′, to the initial player. Reversing the roles of s and s′

we conclude that the outcomes of playing each are equal for the first player. By the no
indifference condition, they are equal for all players. This completes the induction.

Proof of the interchangability property. We reduce to the case where s and s′ differ only in
the strategy of player i, that is, s−i = s′−i but si 6= s′i. Consider any history h where P (h) = i.
The next action in s is s(h) and the next action in s′ is s′(h). The subgame at h has perfect
equilibria induced by s and s′, hence all players are indifferent between outcomes given by
s|(h · s(h)) and s′|(h · s(h)) as well as between s|(h · s′(h)) and s′|(h · s′(h)). But more is true,
since s and s′ differ only in player i’s choices, the game at h is maximized for player i against
the same adversarial choices, so player i is indifferent between s|(h · s(h)) and s|(h · s′(h)).
By the no indifference property, all players are indifferent between these two subgames. So
we can replace s(h) by s′(h) in strategy s. Doing this for all histories at which i plays, we
succeed in interchanging the play of i in strategies s and s′.

101.1 Show that a SPE of a game Γ is also the SPE of Γ modified by making h terminal and assigning
outcome the SPE outcome in Γ of playing forward from h, for h not a played history in the
SPE.

This follows from the fact that no outcomes are changed by the modification. The construction
of a SPE depends only on the outcome by following a strategy after a history h, not on any
details of how the outcome is reached.

101.2 Let s be a strategy for an extensive game Γ. Create a new game Γ′ by deleting all histories
h · a′ · h′ where a′ 6= s(h) but a′ ∈ A(h). Show that if s is a SPE in Γ, it remains so in Γ′,
suitably restricted.

At h, s(h) was no less preferable than a′. Removing a′ does not change this. At all histories
prefixes of h, they need only consider the outcomes by following s(h). Thus s would remain
an SPE in the modified game.

101.3 Armies 1 and 2 attempt to occupy and island. Army 1 has K battalions, army 2 has L
battalions. The army which does not possess the island can attack, after which both armies
lose 1 battalion, and if the attacker has a battalion left, he now occupies the island; or the
army can concede. Analyze this situation as an extensive game using the notation of perfect
subgame equilibrium.

The histories are H = {A,C}+ where A is Attack and C is Concede; the player function P
maps histories of even length to 1, of odd length to 2. The outcome is defined on (k.l.m),
where 0 ≤ k ≤ K, the number of battalions remaining to army 1, 0 ≤ l ≤ L, the number of
battalions remaining to army 2, and m ∈ {0, 1, 2} the label of the army occupying the army,
where 0 signifies neither player occupies. The outcome is calculated by attaching (K, L, 2) to
the initial history and having the update (a1, a2, j) → (a1 − 1, a2 − 1, i) when i attacks and
ai > 1 and aj > 0. If ai = 1 and aj > 0 then the outcome is (a1−1, a2−1, 0). The preference
is,

(k + 2.l, 2) >1 (k, l, 1) >1 (k + 1, l, 2)

for player 1, and a likewise for player 2.
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Suppose K > L. If L = 1 and it is 1’s play, it attacks and 2 cannot counter attack, which is a
better outcome than 1 immediately conceding, so 1 attacks. If is 2’s play it will be wiped out
if it attacks, so it concedes immediately. For L > 1, by induction in each sub-game 1 attacks
and 2 concedes (or is wiped out). If it is 1’s play, and it attacks 2 concedes, by induction,
which is a better outcome for 1, so it attacks. If it is 2’s play and he does not concede 1 will
attack, by induction, and 2 is worse off, so he concedes. This completes the induction.

Suppose K < L. If K = 1 and it is 1’s play, army 1 has a worse outcome to attack, so
it concedes. If it is 2’s play, it can attack and 1 cannot counter-attack, so it has a better
outcome, so it atttacks. For K > 1, by induction, in each sub-game 1 concedes and 2 attacks.
If it is 1’s play, and it attacks, 2 will counter attack, by induction, and 1’s outcome must be
worse, so 1 concedes. If it is 2’s play, and it attacks, 1 will concede, by induction, and it’s
outcome is better, so 2 attacks. This

For K = L consider K = L = 1, the player to player to play must concede. If K = L = 2
then the player to play will attack, because for K = L = 1 the opponent must concede. For
K = L > 2 assume that in each sub-game if the players battalions are odd he concedes, if
even he attacks. If K = L is even and it is player 1’s turn, if he attacks then by induction 2
concedes, for a better outcome, so he attacks. Same for player 2. If K = L is odd and it is
player 1’s turn, if he attacks then player 2 will counter attack and the result is worse for 1,
so he concedes. Same for player 2. This completes the induction.

6 Extensions of Extensive Games with Perfect Information

*102.1 A problem on extensive games with perfect information and chance moves.

103.1 A Pie Sharing game. Player one shares a pie among the three players. Players 2 and 3
simultaneous either accept or reject the sharing. If they both accept, all players get the
share dictated by player 1’s choice. Else all get zero. Formulate and find sub-game perfect
equilibria.

The set of all terminal histories is {((p1, p2, p3), (X2, X3))} where Xj ∈ {Y, N} and pi ∈ [0, 1]
subject to p1 + p2 + p3 = 1. The player function is 1 on the initial history, else {2, 3}. The
payoff is (p1, p2, p3) if X1 = X2 = Y , else (0, 0, 0). Player i prefers the outcome of greatest
numerical value in position i. For terminal history h this will be denoted pi(h).

The sub-game perfect equilibria for players 2 and 3 are {N,N}, {Y, Y } and {N,Y } if p2 = 0
and {Y, N} if p3 = 0. The sub-game perfect equilibria for player 1 depends on the set
E = {h |h = (p, (Y, Y ))} where p is any action. If the set is empty, then any action is a sub-
game perfect equilibria. Else, any h such that p1(h) = suph′∈E p1(h′) is a sub-game perfect
equilibria.

Note well the strategy in which player 2 and 3 agree to accept when p2 = p3 and p1 < 1
does not give any equilibria, since the set E does not contain a history which attains the
supremum.

103.2 Stop and Continue. Formulate and find all sub-game perfect equilibrium.

The set of terminal histories is H = {(X, (m,n))} where X ∈ {S, C} and m,n ∈ Z+. The
player function is P (∅) = 1, else {1, 2}. The payoff is (1, 1) for all histories of the form
(S, (m.n)), and (mn, mn) else.
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There is no sub-game equilibrium for Γ(C) unless m = n = 0. Therefore the sub-game perfect
equilibrium is (S, (0, 0)).

*103.3 Show that the one deviation property holds for extensive games with simultaneous moves,
but the Kuhn’s theorem does not.

As for Kuhn’s theorem, take any two person strategic game with two players and have it be
an extensive game where the players state their action simultaneously. Since there are such
strategic games (matching pennies) without equilibria, the extensive game which simulates it
will have no equilibria.

To do: one deviation proof.

7 Coalitional Games: The Core

259.3 A production economy. Let W be a set of workers, and c a capitalist. The production function
f : N → R is concave and f(0) = 0. A coalitional game has player N = W ∪ {c} and a value
function on the subsets of N ,

v(S) =
{

0 if c 6∈ S
f(|S ∩W |) if c ∈ S

Show that the core is,

{x ∈ RN | 0 ≤ xi ≤ f(w)− f(w − 1),
∑

xi = f(w), i ∈ W }

where w = |W | and give an interpretation.

It is necessary for x in the core that xi ≤ f(w)−f(w−1). If not, consider S = W ∪c−wi for a
worker wi with wi > f(w)−f(w−1). Then x(S) = f(w)−xi < f(w)−f(w)+f(w−1) = v(S)
and the set S should “defect” — their worth is greater than the sum of their pay.

The above proof shows v(S) ≤ x(S) for S containing the capitalist c and |S ∩W | = w − 1.
We proceed by induction to show v(S) ≤ x(S) for all S 3 c. (Sets S which do not contain c
satisfy the core requirement, trivially.) Let S have k workers and the theorem is true for all
sets with k or larger workers,

x(S − wi) = x(S)− xi ≥ x(S)− f(w) + f(w − 1)
≥ x(S)− f(k) + f(k − 1) (because f concave)
≥ f(k)− f(k) + f(k − 1) (induction hypoth.)
= f(k − 1) = v(S)

where we have used the concavity of f and the induction hypothesis.

A worker’s pay is upper bound by the marginal increase in productivity of the last worker
employed. All excess due to economies of scale accrues to the capital holder.

260.2 A market for an indivisible good. In a market for an indivisible good a set of buyers is B
and sellers is L. Each seller holds one unit of the good and has reservation price of 0; each
buyers wishes to purchase one unit of the good and has a reservation price of 1. In the model
N = B ∪ L and v(S) = min{|S ∩B|, |S ∩ L|}.
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Calculate and interpret the core when |B| = |L|.
Considering pairs of one seller and one buyer, we have xb + xl ≥ 1 for any buyer b and seller
l. Summing over all pairs thus created, it cannot ever be that the inequality is strict, else
the sum would be larger than |B|. It also cannot be that xb 6= xb′ for two buyers, since then
pairing the lesser valued buyer with the lesser valued seller the sum would be less than one.

We verify that assigning xb to every buyer and xl to every seller, and xb + xl = 1 is in the
core.

The interpretation is that there is an single market clearing price, and when buyers and sellers
are in balance, that is, supply equals demand, the price is anywhere between the value at
which the sellers are prepared to sell and the value at which the buyers are prepared to buy.

260.4 Convex games. For a convex payoff v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). Assign values
xi = v(Si ∪ i)− v(Si) where Si = {1, . . . , i− 1}. Show x is in the core.

We need to define v(∅) = 0 (the given definition of v is over non-empty subsets). The theorem
is trivial for a set system with just a single element 1: x1 = v(1) and that’s the end of it.

Continue by induction. Suppose the theorem true for sets of n − 1 members. We use the
notation [i] for the set {1, . . . , i}. Let |N | = n. Considering the construction, the assignment of
xi and v for the restricted system [n−1] is unchanged, and applying the induction hypothesis,
v(R) ≤ x(R) for all R ⊆ [n − 1]. We consider R′ 3 n and show for these sets v(R′) ≤ x(R′)
as well.

For R′ 3 n write R′ = R ∪ {n} where n 6∈ R. Using convexity,

v(R ∪ n) + v([n− 1]) ≤ v([n]) + v(R)

Rearranging,
v(R ∪ n)− v(R) ≤ v([n])− v([n− 1]) = xn

So the increment to v upon adding element n is less than xn. Rearranging and using the
induction hypothesis,

v(R′) = v(R ∪ n) ≤ xn + v(R) ≤ xn + x(R) = x(R′).

Q.E.D.

261.1 Simple games. A coalitional game with trans. payoff is simple if v(S) ∈ {0, 1} for all S, and
v(N) = 1. If v(S) = 1 then S is said to be winning, and a veto player is a player in all winning
coalitions. Show that if there is no veto player then the core is empty; show also that if the
set of veto players is non-empty then the core is the set of all feasible payoff profiles that give
zero to all other participants.

Note that since v(S) ≥ 0 for all S then xi ≥ 0 for all i. If there is no veto player there must
be disjoint S and T which are both winning. Then x(S), x(T ) ≥ 1, so x(N) ≥ x(S ∪ T ) ≥ 2,
which is a contradiction.

Let x be in the a feasible payoff assigning zero to any non-veto player. Let V be the set of
veto players. Since v(N) = x(N) = 1 and x(N) = x(V ) + x(N \ V ) = x(V ) + 0, we have
x(V ) = 1. If v(S) = 1 then V ⊆ S by definition of V , then x(S) = x(V ) = 1. So x(S) ≥ v(S)
for all S.
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*261.2 Zerosum games. A coailitional game with transferable payoff is zerosum if v(S) + v(N \S) =
v(N) for every coalition S; it is additive if v(S) + v(T ) = v(S ∪ T ) for all disjoint S and T .
Show that a zerosum game that is not additive has an empty core.

261.3 Pollute the lake. A set of N factories are to decide between treating waste before release
into their common water source (a lake) or on intake. Treatment before release cost b, and
treatment before use costs kc where k is the number of factories that release their waste
without treatment. Analyze this as a coalition game with transferable payoff. Assume c ≤
b ≤ nc.

We have to define a payoff function v. The overall cost of pollution grows quadratically in
the number of polluters, since each factory must clear each other factory’s waste. However
if c < b a single factory might find it marginally less expensive to pollute. It seems that the
tension in this game is to redistribute the value of all N factories agreeing to treat waste
before release so that small coalitions do not find it advantageous to break from the entirety
and pollute, as well as medium coalitions don’t break with the entirety since they are not
receiving the full return of benefit by not polluting.

These considerations suggest,

v(S) = s |nc− ((n− s)c + b)| = s |sc− b|

where nc is the cost to a single factory in S if all factories pollute and (n− s)c + b is the cost
to a single factory in S if all s factories in S agree to treat but all factories in N \ S pollute.

For the maximum coalition N , if b < nc then there is value in agreeing not to pollute. If
b = nc the coalition is indifferent. In the ignored case, b > nc, it is never worth anyone’s
money to treat. In the other ignored case b < c, it is never worth anyone’s money not to
treat, even if other factories do not treat.

The payoff v(N) is distributed to each factory so that if sc < b for some coalition, that is,
they would do better locally to pollute, their payoff transferred from the value of the entirety
prevents them from doing so. They are bribed into staying in the entirety decision not to
pollute. If sc > b for some coalition, their payoff transferred from the entirety keeps them
from breaking with the entirety to reap the benefits amongst themselves of their treating
waste. They are fairly compensated for the value of their decision to treat. These two sides
of a decision to break from the entirety motivate the absolute value in the value function.

For any coalition S it is the sign of sc − b which determines the common behavior of all
participants in S. We either have a coalition breaking from the entirety and deciding to
pollute, all of them, or a coalition breaking from the entirety, continuing an agreement to
treat, but redistributing amongst themselves the value of this agreement as it accrues to the
members of this coalition only.

|N | = 3 |S| = 3 |S| = 2 |S| = 1
b = c 6c 2c 0
b = 2c 3c 0 (c)
b = 3c 0 (2c) (2c)

As the above table shows, for N = 3, there is no core if b = 3c, since there is no payoff to
distribute and a required bribe to coalitions of size 2 and 1 (numbers in parenthesis were
negative before the absolute value), a unique core of (c, c, c) in the case b = 2c, where the
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total value 3c just compensates each factory for the cost of not polluting as a coalition of
1, and a wide core for b = c, where even a coalition of 1 is indifferent between treating and
polluting. For instance, (4c, 2c, 0), where on factory receives nothing, is in the core.

A necessary condition for a non-empty core is nv({1}) ≤ v(N), since we have to have enough
value to keep coalitions of one from defecting, and the core is unique with equality. This
solves as b ≤ c(n + 1)/2. One can also work out the necessity of v(S) ≤ |S|v(N)/|N |, a
“critical” core where all factories receive equal payout. It is the same bound. So there is a
unique core when b = c(n + 1)/2. For b > c(n + 1)/2 the core is empty; else the core has
positive volume.

263.2 Let N = {1, 2, 3, 4}. Show the game N, v in which,

v(S) =


1 if S = N
3/4 if S is {1, 2}, {1, 3}, {1, 4} or {2, 3, 4}
0 otherwise

has an empty core, by using that fact that there exists a balanced collection of weights which
is 0 for all coalitions other than S = {1, 2}, {1, 3}, {1, 4} or {2, 3, 4}.
For a game to have nonempty core, all balanced collections must make the game balanced.
Letting λS = 1/3 for S = {1, 2}, {1, 3}, {1, 4} and λS = 2/3 for S = {2, 3, 4}, we have a
balanced collection, but

∑
λSv(S) = 3 · 1/3 · 3/4 + 2/3 · 3/4 = 5/4 > v(N).

265.2 Consider the market with transferable payoff like that of the previous example in which there
are five agents ω1 = ω2 = (2, 0), and ω3 = ω4 = ω5 = (0, 1). Find the coalition form of this
market and calculate the core. Suppose agents 3, 4 and 5 form a syndicate. Does the core
predict that the formation of the syndicate benefits its members? Interpret the answer.

We are to define the value function v as the allocation (zi) consistent with endowments ωi

maximizing total production
∑

fi(zi). As in the example to which this problem refers, each
unit of ketchup and mayonnaise makes one unit of russian dressing, which is really valuable.
Hence, v(S) = min(2|S ∩K|, |S ∩M |). Then v(N) = 3 and the allocation (0, 0, 1, 1, 1) is in
the core (by checking).

We know that v({1, 3, 4}) = 2 and v({2, 5}) = 1. So that means that z2 + z5 ≥ 1 and
z1 + z3 + z4 ≥ 2. Since the sum is 3, both inequalities are equalities. Swapping ketchup or
mayonnaise players, given that we have equalities, then z1 = z2 and z3 = z4 = z5. Solving
z1 + 2z3 = 2, z1 + z3 = 1 we have z1 = z2 = 0 and z3 = z4 = z5 = 1. So the core is unique.

By forming a syndicate, the three person game will get 3 units for the syndicate, and 0 each
for the ketchup players. We no longer have to check how each mayonnaise player in the
mayonnaise syndicate is doing. The syndicate can allocate the 3 units as it pleases.

I find the interpretation part difficult. Returning to the non-syndicate case, what does the
payoff vector (0, 0, 1, 1, 1) mean? By combining our worthless ketchup and mayonnaise to
make really valuable russian dressing, we can earn 3 units (and be stuck with 1 unit of
worthless ketchup). Too bad for the ketchup wealthy, but the core enforces that he cannot
receive value beyond what can be matched with mayonnaise.

The game doesn’t seem to describe how this match-up proceeds. Perhaps the ketchup players
transfer 3 units of ketchup to the mayonnaise players and so the mayonnaise people end up
with 3 units of really valuable russian dressing. Perhaps 3 dollars are injected into the system
and the mayonnaise people buy the ketchup and end up with 3 units of russian dressing,
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which they surrender in return for the 3 dollars injected. Perhaps the mayonnaise players sell
the russian dressing, keep half a dollar and give half a dollar to their ketchup supplier.

As long as the mayonnaise players remain in control of their one unit of mayonnaise, I don’t
see how that makes any difference. If they surrender control of their mayonnaise to the
syndicate, then the payoff to individuals is a matter of policy within the syndicate. Individual
mayonnaise players may do better or worse.

267.2 Let N, l, (ωi), (fi) be a market with transferable payoff for which
∑

ωi ≤ 0. Let Xi =
{(zi, yi), yi ≤ fi(zi)} and {z∗i } be a solution to,

max
{zi}i∈N

{∑
i∈N

fi(zi) :
∑
i∈Z

zi ≤
∑
i∈N

ωi

}

Show that the hyperplane that separates
∑

i∈N Xi from {(z, y), z ≤
∑

z∗i , y ≥
∑

fi(z∗i )}
defines competitive prices.

Consider the case where the fi are strictly increasing. (Else, since they are convex they
are constant after some point.) Then the two surfaces intersect in the point (z∗, y∗) where
z∗ =

∑
z∗i and y∗ =

∑
fi(z∗i ). The separating hyperplane puts

∑
Xi strictly below the

hyperplane passing through (z∗, y∗) except for this one point. The hyperplane is,

y = p∗ · z + (y∗ − p∗ · z∗)

and every point (z, y) ∈
∑

Xi has y ≤ p∗ · z + α, where α = y∗ − p∗ · z∗.
Suppose we have not maximized all fi(zi)− p∗(zi − ωi). Fix one offending player j for which
z′j > z∗j and,

fj(z′j)− p∗(z′j − ωj) > fj(z∗j )− p∗(z∗j − ωj)

therefore,
fj(z′j)− fj(z∗j ) > p∗(z∗j − z′j)

and (z∗ − z∗j + z′j , y
∗ − fj(z∗j ) + fj(z′j)) is contained in

∑
Xi. The point on the hyperplane at

this z′ is,

p∗ · (z∗ − z∗j + z′j) + y∗ − p∗ · z∗ = y∗ + p∗(z′j − z∗j ) < y∗ + fj(z′j)− fj(z∗j ) = y′

contradicting that
∑

Xi is never above the hyperplane.
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