With the goal of further analyzing prototype

Classifiers are models used to classify inputs, which can be in the
form of audio, imagery, or text, into a specific category.
Traditionally, classifiers in machine learning are evaluated using a
test set, which is a set of data similar to the data the classifier was
trained on that the classifier had not previously seen. This is
particularly the case in classifying Neural Networks, which are
models that utilize machine learning and training data for the
purpose of accurately classifying future inputs. Classifiers can
generate class prototypes!, which may reflect the features with
which their model identifies a specific class. In the case of image
classifying neural networks, this can be done by generating one
random image corresponding to each class, and updating each
image such that the networks classifies it into its corresponding
class with 100% confidence. This is done by assigning the target
for the image's classification to its corresponding target class, and
utilizing cross-entropy loss to update the image's gradients so the
network has more confidence that the image classifies into its
target class.

Original | Final |<- How Class Prototypes Train

Pl —

Pt —
Dol —

po‘ O "Orange" Class Prototype
pi%'- — " 'Pink' Class Prototype |

Class 1 =Red
Figure 3: An example of a classification space Class 2 = Blue
with 5 classes, demonstrating how intermediary | Class 3 = Purple

prototypes may appear

We have defined outliers as those dissimilarity
values that have a z-score with magnitude greater
than 3, with respect to the interval's mean and std.
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images and their relationships over different
intervals of model training, we create intermediary
prototypes, where the intermediary initializes at
one prototype, and trains towards another. Then,
we extract the "feature vector" of the image as it is
passed through the classifier, and observe its
dissimilarity? to both its origin prototype, its target
prototype, and other intermediaries that share its
origin or target.
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Figure 1: Demonstrating the point in the network at which the
feature vector is extracted, prior to classification
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The dissimilarity of two feature vectors is measured in these observations by
first computing their cosine similarity, and subtracting it from 1. Thus, values
may range from O to 1, and a higher value denotes greater dissimilarity.

With P, two n x n x n matrices of dissimilarities are generated

Matrix C: Inter-Class Prototype Dissimilarities
Inter-Class dissimilarities are taken between intermediary prototypes which
were originally instantiated at the same class j, where the dissimilarities
between each prototype Py, and the prototypes {Py;,...,P;} will be stored in

{Ck,j,O; 0099 Ck,j,n} .

Matrix R: Intra-Class Prototype Dissimilarities
Intra-Class dissimilarities are taken between intermediary prototypes which
classify into the same class k, where the dissimilarity between each prototype
Py ; and prototypes {Pxp,...,Pxn} will be stored in {Rx;o,...,Rijn }

Where Pis 5x5 and representative of the example classifier of colors where:

prr prb pr,p pro pr.ir\
R1,2 is the
Pp.r Pp.b Pp.p Pp,o Pp,i array of
Por | Pob || Pop | Ppo | P, | dissimilarities
between py,
Po.r Pob po,p po,o Po,i and
P, Pip Pip Pio P; {Pr,r,---;Pr,i}

C, is the array of dissimilarities between p,, and {p;.,...,pi-}

Future work aims to further inspect relationships between class

prototypes for the purpose of insight into a classifier's robustness.
Particularly, identifying those images that lie on the class boundary
between every pair of class prototypes. Then, observing their
dissimilarity, and how it may vary depending on how much the model
has been trained, as well as standard deviation of the dissimilarity.
Comparing those values to the values found in this study may provide
insight into the shape of the class boundaries that could prove useful in
comparing and judging the quality of different classifiers, potentially
aiding in the case when one does not have a proper test set.

In these observations, we use the ResNet18% deep neural network
architecture with the Cifar10 and Cifar100 datasets. Class
prototypes are trained in intervals, which are separated by further
training of the model. Prototypes are saved at each interval, for the
purpose of observing how the inspected metrics may change as the
model is further trained and gains accuracy.

For a classifier that classifies into n classes, there are n class
prototype images, denoted as {pj, ...,p, }. For each class prototype,
there are n-1 intermediary prototypes that may be generated. Each
intermediary initialized as p;, which is trained towards target class k,

V k € {0,...,n} where jZk, may be represented as py; Each
intermediary prototype is passed through the model and then updated
using Cross-Entropy Loss, with a learning rate of 0.1(for Cifar100) or
0.01(for Cifar10). It is updated until the loss term is below 0.01. All
intermediary prototypes classify into their target class after the
conclusion of their updates. Afterwards, they are saved into an n x n
matrix P, whose indices can be identified as Py; where Py;= py;. The
principle diagonal of P, the set of indices Py; where k = j, is filled
with the class prototype px.
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Over both datasets, we have plotted the average dissimilarities
when taken between Inter-Class Prototypes and Intra-Class
Prototypes (C vs R), as well as the standard deviations of the
dissimilarities. Corresponding to each dataset, there are 7
values of each, derived from class and intermediary
prototypes generated at different training intervals of the
model. For each dataset, to increase sampling, there are 5
random initializations of class and boundary prototypes,
independent of each other. The plotted data are the average of
the values observed amongst them.

Cifar100
Cifar100 Inter-Class and Intra-Class Prototype Latent Vector Dissimilarity

06 /’/\ 010

05 0.09

Cifar100 STD of Prototype Latent Vector Dissimilarity

—— InterClass STD
Intra-Class STD

04
—— InterClass Dissimilarity o

Intra-Class Dissimilarity &
03

0.2

Dissimilarity (1 - Cosine Similarity)

01

03 0.4 05 06 07 0.8 09 10 03 04 05 06 07 08 09 10
Percentage of Data the Model was Trained on Percentage of Data the Model was Trained on

Graphs representing the mean values of

Graphs representing the average standard
C and R over data intervals

deviation of means values of C and R

Cifar10

Cifar10 Inter-Class and Intra-Class Prototype Latent Vector Dissimilarity

016
—— Inter-Class Dissimilarity
0.5 — Intra-Class Dissimilarity
014

o 010 —— Inter-Class STD
& Intra-Class STD

Cifar10 STD of Prototype Latent Vector Dissimilarity

m

Dissimilarity (1 - Cosine Similarity)
°

01{

03 0.4 05 0.6 0.7 0.8 0.9 10 03 04 05 06 07 08 09 10
Percentage of Data the Model was Trained on Percentage of Data the Model was Trained on

It can be seen from both datasets that as the classifier is further
trained, the Inter-Class dissimilarity tends to increase, supporting
intuition that class boundaries become more distinct as a classifier
is more accurate. Intra-Class dissimilarity tends to stay stable;
significantly lower than Inter-Class dissimilarity. Furthermore, both
standard deviations maintain a similar spread over all training
splits, where Intra-Class STD is always lower than Inter-Class STD.



