
IMPLEMENTING MACHINE LEARNING TECHNIQUES TO 
QUANTIFY MOUSE BEHAVIORAL ASSAYS

Conclusions

Random Forest Classifies Retrieval Attempt Outcomes

Introduction
When using mouse models of 

human disorders, assessing 
behavioral outcome measures are 
important for validating the 
functional effectiveness of 
treatments that promote axon 
regeneration and other anatomical 
measures of recovery. However, 
analyzing videos of mouse behavior 
is tedious because mice movements 
are subtle and fleeting.

Objective: Use DeepLabCut and 
a Random Forest Classifier (RFC) to 
automate the classification of 
reaches, successes, and fails in mice 
pellet retrieval tasks. 

● We implemented tools to 
count reaches, successes, 
and fails in a mouse pellet 
retrieval task to track 
recovery under potential 
treatments.

● The pipeline from DLC and 
through the RFC successfully 
quantifies mouse behavior in 
pellet retrieval, with room for 
improvement.

● ML techniques, especially 
DLC, have the potential to 
quantify behavior in a wide 
range of animal experiments.
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Figure 1) The movement of a food pellet, mouse nose, 
and middle finger, plotted with DLC estimated X and Y 
positions. Time goes from light to dark. Positions differ 
between reaches, fails, and successes, making it well 
suited for Machine Learning (ML) classifiers such as 
Random Forest Classifiers (RFC).

     Denotes incorrect pellet predictions

Figure 2) The RFC identified around 90% of all 
attempts. Of those, the RFC is better at differentiating 
between reach/fail and reach/success than between 
fail/success. With 447 examples of attempts, the RFC 
correctly predicted 95% of the reaches, 98% of the 
fails, and 85% of successes.
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DeepLabCut (DLC) utilizes a 
convolutional neural network to 
estimate X and Y coordinates of an 
object throughout a recorded 
movement. We use DLC to track 
pellet and mice body parts (labeled 
by colored dots below), and quantify 
mice reaches.
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