
Method

1. Using Gaussian09, both reactants of the Henry reaction, 
formaldehyde and nitromethane, are constructed and 
optimized using MP2/6-31+G(d) in order to find a transition 
state (TS).

2. Once the optimization is complete, frequency calculations are 
run, as well as forward and reverse intrinsic reaction 
coordinates (IRC) are also run.

3. Once the IRC calculations are done, both the forward and 
reverse structures created using the IRC’s are run through 
the AENET generate program, which helps fit the ANN’s
appropriately.

4. Using the structures from the forward and reverse IRC, 
cutoff’s are optimized by adjusting the angular and radial 
values using a range from 3-9 Å with increments of 0.2 and 
was then further refined from 4.4-4.8 Å with increments of 
0.1. The most accurate results were found using an angular 
cutoff of 4.8 Å and a radial cutoff of 4.6 Å.

5. Once that is done, a training is run for 1000 iterations, using 
80% of the structures for training and 20% for testing. Once 
that is done the quality of the ANN’s is then verified by having 
the machine predict on structures with energies known 
already so that the root-mean-squared-error(RMSE) can be 
found.  

6. QM/MM/MC/FEP calculations are then run using a custom 
version of BOSS. The reaction is run within 740 water 
molecules (TIP4P) for any C-C distance between 1.50-3.50 Å
with small increments of 0.25 Å. This is done using the 
AENET machine learning. From this, 50,000 structures are 
generated.

7. Using the newly generated structures, many different training 
sets are run with by using 50,000 structures each time, letting 
the ANN compute energies, and if they are within an error of 
2 kcal/mol, the structures are then removed from the training.
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Mixed quantum mechanical and molecular mechanical (QM/MM) simulations 
coupled to free energy perturbation theory and Monte Carlo sampling (FEP/MC) is 
a highly accurate method for computing free energy profiles of chemical reactions 
in solution. However, these methods often rely on lower level or semiempirical QM
methods due to their associated high computational costs, which may introduce 
error. Machine learning (ML) and the use of Artificial Neural Networks (ANN) for 
computing the energies of molecular structures provide the ability to retain high-
level QM accuracy at or below the cost of semiempirical methods.  ANNs require 
training of large data sets of chemical reaction structures representing the path 
along the free energy profile, e.g., reactants, transition states, and products. This 
research effort developed a systematic method for deriving the structures, 
computing the energies at the desired QM theory level, and updating the BOSS-
Gaussian software package to incorporate AENET machine learning. As a test of 
the methodology, the Henry reaction between nitromethane and formaldehyde was 
computed in water using the enhanced ML-QM/MM methodology. The reaction was 
computed at the MP2/6-31+G(d) theory level for the solute and utilized the TIP4P
water model for bulk solvent. Hundreds of thousands of structures were generated 
and trained in the ANN using our automated method. To compute the total free 
energy profile for the making/breaking C-C bond of the Henry reaction spanning a 
distance of 1.50–3.50 Å required 6-7 million QM calculations.

Overall Problem and Objective

Molecular behavior is best modeled using quantum mechanics(QM). However, QM
calculations are computationally costly, and thus cannot be applied to thousands of 
molecules at once.  Therefore alternative methods such as the quantum 
mechanical and molecular mechanical (QM/MM) method, as well as the free energy 
perturbation theory and Monte Carlo sampling (FEP/MC) can be utilized. The 
purpose of this project is to train the ANNs well enough that they are able to 
produce an activation energy, 𝛥G⧧, with little error.  Once this is completed, this 
reaction can be run in other solvents than water. 
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Figure 1: An illustration of a 
Deep Neural Network (ANN)

Discovered in 1895, the Henry reaction is an extremely useful reaction in the 
formation of carbon-carbon bonds.  More specifically, the reaction is a combination 
of a nitroalkane and either an aldehyde or ketone in the presence of a base to form 
𝛽-nitro alcohols.  The main drawback of using this reaction is the low selectivity and 
unwanted side products that come with it.  In recent years, it has been of great 
interest in finding selective methods for synthesis, as well as finding ways to 
reduce the environmental impact.  One way to reduce the impact on the 
environment is to perform the reaction in water, however a small set of data 
supports the Henry reaction occurring in water.

What is the Henry Reaction?

Discussion

The next step is to further refine the generation of ANN training data. In the method 
portrayed above, rather than using the bulk of the data generated to train the 
network, only a small percentage of that data goes into training the ANN’s, and the 
rest are used to test them. A certain percentage of structures with error above a 
predetermined threshold are added to the training set, as these are structures that 
greatly differ from anything the network has been already exposed to. The ANN is 
then retrained and retested, and the process repeats until all test data fall below an 
acceptable error range. The structures derive from QM/MM/MC/FEP calculations, 
which can be dramatically different from structures already in the existing training 
set, and therefore high RMSE errors can be initially detected, signifying the need to 
add more unique structures.  Another possible source of error is the overfitting of 
the network to similar structures.  If the ANN receives too many structures of similar 
orientation, it will develop a bias towards that output and will become less accurate 
for structures that differ drastically.  The main goal is to be able to calculate a 𝛥G⧧

of the Henry reaction to within 1 kcal/mol error as compared to full QM calculations.  

Results

Figures 5 & 6 show the most up to date results on the training of the ANN’s for the Henry reaction.  Figure 5 shows 
the results from the most recent training mixture, showing that with only 7 iterations, the ANN was able to reduce the 
RMSE from almost 40.0 kcal/mol to slightly more than 2.0 kcal/mol. Figure 6 shows the results from 3 different training 
mixtures, detailing the differences in the cutoff criteria and training size.  Figure 6 represents the results from three 
different runs, each with added structures made using QM/MM/MC/FEP calculations.  If the ANN is able to produce a 
computed energy within a certain cutoff criteria, as outline in the figure, the structure is accepted and subsequently 
removed from the training set.  This figure shows that in very few runs, the cutoff value was already lowered due to 
the minimized RMSE values.  The goal is to eventually decrease the cutoff value to 0.1 kcal/mol.  

Future Direction
Once this is completed, the next step would be to take the Henry reaction and apply it to 
different solvents, such as acetonitrile.  This step would widen the possibilities for the 
Henry reaction ANN, maybe to even create ANN’s in the same way for different reactions, 
such as a Diels-Alder reaction, and even with different theory levels, showing exactly how 
limitless machine learning is in chemistry.
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Development of an Enhanced Machine Learning Based QM/MM Method

Conclusion
• Artificial Neural Networks are highly adaptable to large data sets, and show 

great potential in predicting chemical properties.
• Currently, the ANN can predict energy of the Henry reaction to a RMSE value of 

less than 2.3 kcal/mol.
• QM/MM/MC/FEP calculations using this enhanced ML significantly increases the 

speed of molecular simulations by an order of magnitude.  

Figure 4: Step by Step of 
the Methodology.
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Figure 8: Detailed ANN 
process for this system
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Figure 6: The last iteration of each training mixture run with 

their respective cutoffs, training size and highest RMSE.

Figure 7: Activation Energy(𝛥G⧧) Graph 

Cutoff Values (kcal/mol) Training Size Highest RMSE
2.00 49814 6.2
2.00 72545 4.5
1.00 84053 2.3


