
CPU vs. GPU Based 3D Visualization of Algebraic Surfaces

Manufacturing companies, engineers, and architects rely on modeling software. This
software uses algebraic surfaces to visualize the various shapes or structures. Having
software that depicts these surfaces as accurately and efficiently as possible is essential for
the success of these aforementioned fields.

Our objective is to analyze the pros and cons, in terms of runtime and usability, of the
CPU and the GPU approach to visualizing 3D surfaces. The CPU approach calculates on
the CPU a set of triangles that approximate the portion of the surface currently in view and
sends those triangles to the GPU for display. The GPU allows rapid changes in the position,
orientation, and scale of the triangles, but a large change requires a new set of triangles for
accuracy and completeness. The GPU approach calculates on the GPU a set of points on
the surface corresponding to each pixel. Each change in view requires recomputing the set
of points.

Computing triangles on the CPU is time-consuming and cannot be done in parallel.
More than a five second delay would make the visualization hard to use. Computing points
on the GPU is even more time-consuming but fortunately can be done in parallel. In this
case, a delay of more than 0.2 seconds would be objectionable because a frame rate of less
than five frames per second makes rotation, etc., too choppy.

Our goal was to create a software that, in an efficient manner, guarantees the
visualization is mathematically correct unless uncertainty is explicitly indicated. The
software is to function as a debugging tool to test the accuracy of other algorithms that
seek intersections of algebraic surfaces. We will compare the pros and cons of the CPU
approach versus the GPU approach of this software.

Masterjohn and Milenkovic are supported by NSF grant CCF-1526335, and the Gelman’s
were supported by an REU under that grant. Newlin was supported by an REU under NSF
grant CNS-1659144. University of Miami Computer Science department equipment was
used.

Allan Gelman1 , Danny Gelman1 , Joseph Masterjohn2, Victor Milenkovic2, Nancy Newlin3

1:Undergraduate, MIT, 2: Department of Computer Science, University of Miami, 3: Undergraduate, University of Florida

Introduction

Problem Statement

Acknowledgments

Conclusions and Future Work

ResultsAlgorithms

Regridding

This figure shows how the CPU
approach works. First, we find the
intersection points between a grid in the
viewing volume and a surface, as shown
by the blue dots. Then the intersection
points are connected together to form
various polygons, and the polygons are
triangulated. This is shown by the four
points connecting to make a
quadrilateral, which is then split into two
triangles. All the triangles get sent to the
GPU, at which point the user can have full
control to rotate, scale, or translate this
representation of the surface.

This figure shows how the GPU
approach works. We calculate
intersections between a surface and
lines that come from every pixel of the
viewing screen that span from z=-1 to
z =1. The figure shows such lines for 4
random pixels and the corresponding
intersection points, represented by blue
dots. The first three intersections
coming from every pixel are displayed.
Here, you can rotate, scale, or translate
the actual surface.

The CPU and GPU approaches are different in the ways they allow the user to view
and explore surfaces of interest. The GPU approach allows users to transform the
surface and see the part of the surface in the viewing volume in its entirety at all times.
However, that is not the case with CPU version. The CPU version displays a subsection
of the surface that was in the viewing volume at the time that it was triangulated. So
when transforming the surface, the user will not see the edges expand to fill the screen,
as one does with the GPU method, until regridding is requested. As the user zooms out
and regrids, the finer details of the complex surface may not be accurately represented,
as shown in the first image. This happens when the software is unable to properly
connect the polygons because there is more than one intersection on an edge of the
grid. Zooming in and regridding generates the more accurate versions of the surface,
shown in the second and third images.

These figures show various polynomials, of increasing degree, displayed in the CPU
software (top images) and displayed in the GPU software (bottom images). The red dot
represents the origin in the CPU images.

Degree 2 Degree 3 Degree 4

These graphs display how the two approaches’ runtime is affected by displaying
increasingly complex surfaces. We tested how each software performs when displaying
polynomials of degree 2 to degree 9. For the CPU approach, we determined that the
threshold at which the runtime becomes an inconvenience to the user, represented by
the line of annoyance, is 5 seconds. For the GPU approach, we determined the line of
annoyance is at 0.2 seconds per frame. Based on these graphs, it seems that the GPU
and CPU approaches both handle displaying polynomials up to degree 7 well. Any
higher degree results in a poor user experience.

Both approaches allow the user to view multiple surfaces at once and very closely
see their intersection. The first image shows a sphere, paraboloid, and polynomial of
degree four intersecting in the CPU version. The second and third images show how the
user can progressively zoom in and regrid to get very close to the intersection point.
The origin, represented by the red dot, helps the user navigate the surfaces to be able
to zoom and regrid in the desired intersection..

Both methods apply to surfaces defined as the zero set of a trivariate polynomial. Two
of the coordinates are substituted, yielding a univariate polynomial. Descartes rule of signs
and subdivision yield a set of intervals that contain a single zero. Newton’s method shrinks
the interval. All calculations use interval arithmetic to ensure correctness. When a sign test
is ambiguous in interval arithmetic, the CPU method increases the amount of precision
used. Since there is no multiple precision library on the GPU, the GPU just marks the
interval as ambiguous. We used an Intel(R) Xeon(R) CPU E5520 @ 2.27GHz and an 8GB
256-Bit GDDR6 1515 MHz NVIDIA(R) card with 2944 CUDA Cores.

Numerical Methods

Given a good graphics card, the GPU method is as fast as the CPU method and has
complete pixel-level accuracy at all times. It also can provide translucency since the
order of pixels in z is known. The CPU method is useful when a good graphics card is
not available. Future work includes improving the CPU approach to be able to handle
surfaces that have more than one intersection per edge of the grid. For both softwares,
we want to enhance the user interface by improving the rendering and lighting. This will
improve usability by more clearly displaying the surface intersections.

