
CPU vs. GPU Based 3D Visualization of Algebraic Surfaces

Manufacturing companies, engineers, and architects rely on modeling software. This 
software uses algebraic surfaces to visualize the various shapes or structures. Having 
software that depicts these surfaces as accurately and efficiently as possible is essential for 
the success of these aforementioned fields.

Our objective is to analyze the pros and cons, in terms of runtime and usability, of the 
CPU and the GPU approach to visualizing 3D surfaces.  The CPU approach calculates on 
the CPU a set of triangles that approximate the portion of the surface currently in view and 
sends those triangles to the GPU for display.  The GPU allows rapid changes in the position, 
orientation, and scale of the triangles, but a large change requires a new set of triangles for 
accuracy and completeness.  The GPU approach calculates on the GPU a set of points on 
the surface corresponding to each pixel.  Each change in view requires recomputing the set 
of points.

Computing triangles on the CPU is time-consuming and cannot be done in parallel.  
More than a five second delay would make the visualization hard to use.  Computing points 
on the GPU is even more time-consuming but fortunately can be done in parallel.  In this 
case, a delay of more than 0.2 seconds would be objectionable because a frame rate of less 
than five frames per second makes rotation, etc., too choppy.

Our goal was to create a software that, in an efficient manner, guarantees the 
visualization is mathematically correct unless uncertainty is explicitly indicated. The 
software is to function as a debugging tool to test the accuracy of other algorithms that 
seek intersections of algebraic surfaces. We will compare the pros and cons of the CPU 
approach versus the GPU approach of this software. 
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Regridding

This figure shows how the CPU 
approach works. First, we find the 
intersection points between a grid in the 
viewing volume and a surface, as shown 
by the blue dots. Then the intersection 
points are connected together to form 
various polygons, and the polygons are 
triangulated. This is shown by the four 
points connecting to make a 
quadrilateral, which is then split into two 
triangles. All the triangles get sent to the 
GPU, at which point the user can have full 
control to rotate, scale, or translate this 
representation of the surface.

This figure shows how the GPU 
approach works. We calculate 
intersections between a surface and 
lines that come from every pixel of the 
viewing screen that span from z=-1 to   
z =1. The figure shows such lines for 4 
random pixels and the corresponding 
intersection points, represented by blue 
dots. The first three intersections 
coming from every pixel are displayed. 
Here, you can rotate, scale, or translate 
the actual surface. 

The CPU and GPU approaches are different in the ways they allow the user to view 
and explore surfaces of interest. The GPU approach allows users to transform the 
surface and see the part of the surface in the viewing volume in its entirety at all times. 
However, that is not the case with CPU version. The CPU version displays a subsection 
of the surface that was in the viewing volume at the time that it was triangulated. So 
when transforming the surface, the user will not see the edges expand to fill the screen, 
as one does with the GPU method, until regridding is requested. As the user zooms out 
and regrids, the finer details of the complex surface may not be accurately represented, 
as shown in the first image. This happens when the software is unable to properly 
connect the polygons because there is more than one intersection on an edge of the 
grid. Zooming in and regridding generates the more accurate versions of the surface, 
shown in the second and third images. 

These figures show various polynomials, of increasing degree, displayed in the CPU 
software (top images) and displayed in the GPU software (bottom images). The red dot 
represents the origin in the CPU images.  

Degree 2 Degree 3 Degree 4

These graphs display how the two approaches’ runtime is affected by displaying 
increasingly complex surfaces. We tested how each software performs when displaying 
polynomials of degree 2 to degree 9. For the CPU approach, we determined that the 
threshold at which the runtime becomes an inconvenience to the user, represented by 
the line of annoyance, is 5 seconds. For the GPU approach, we determined the line of 
annoyance is at 0.2 seconds per frame. Based on these graphs, it seems that the GPU 
and CPU approaches both  handle displaying polynomials up to degree 7 well. Any 
higher degree results in a poor user experience.

Both approaches allow the user to view multiple surfaces at once and very closely 
see their intersection. The first image shows a sphere, paraboloid, and polynomial of 
degree four intersecting in the CPU version. The second and third images show how the 
user can progressively zoom in and regrid to get very close to the intersection point. 
The origin, represented by the red dot, helps the user navigate the surfaces to be able 
to zoom and regrid in the desired intersection..

Both methods apply to surfaces defined as the zero set of a trivariate polynomial.  Two 
of the coordinates are substituted, yielding a univariate polynomial.  Descartes rule of signs 
and subdivision yield a set of intervals that contain a single zero.  Newton’s method shrinks 
the interval.  All calculations use interval arithmetic to ensure correctness.  When a sign test 
is ambiguous in interval arithmetic, the CPU method increases the amount of precision 
used.  Since there is no multiple precision library on the GPU, the GPU just marks the 
interval as ambiguous.  We used an Intel(R) Xeon(R) CPU  E5520  @ 2.27GHz and an 8GB 
256-Bit GDDR6 1515 MHz NVIDIA(R) card with 2944 CUDA Cores.

Numerical Methods

Given a good graphics card, the GPU method is as fast as the CPU method and has 
complete pixel-level accuracy at all times.  It also can provide translucency since the 
order of pixels in z is known.  The CPU method is useful when a good graphics card is 
not available.  Future work includes improving the CPU approach to be able to handle 
surfaces that have more than one intersection per edge of the grid.  For both softwares, 
we want to enhance the user interface by improving the rendering and lighting. This will 
improve usability by more clearly displaying the surface intersections.


