
Introduction
Complex phenotypes, such as Autism Spectrum Disorders 

and multiple sclerosis, are the result of the polygenic action of 
hundreds to thousands of genetic variants and environmental 
factors. The presence of each susceptibility variant contributes 
additively to the risk of manifesting the phenotype. Identifying 
complete sets of variants that contribute to susceptibility for a 
complex phenotype has proven difficult. Researchers point to 
different lines of evidence to justify the reasons why many of the 
effects remain unaccounted for, including inflated heritability, 
underpowered sample sizes, and a majority of small effects. 
Recently the omnigenic model was put forward, suggesting a 
continuum of contribution to susceptibility by all variants present 
in an individual. This also predicts an inner circle of relevant 
variants that are most closely associated with the phenotype. 

We propose that the models and algorithms used so far in 
genetic epidemiology (primarily mixed-effects regression models, 
and random forests) are not well suited to the fundamental 
characteristics of the genetic architectures of complex 
phenotypes. Genetic architecture is defined as the number of 
variants underlying susceptibility, the distribution of their allele 
frequencies, and the distribution of their effect sizes. We seek to 
characterize the relationship between features of a collection of 
algorithms and parameters of genetic architecture, given a 
particular phenotype. In the present study, we began to develop 
a simulation framework which will form the basis for this 
characterization as a systematic endeavor. 
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Methods
•We have built a series of scripts to select variants according to a 
user-defined genetic architecture.
•Starting with whole genome sequencing data from the 1000 
Genomes Project avoids unrealistic features of simulated 
genomes. 
•Scripts can bias variant selection towards user-defined 
distributions of allele frequency. 
•The scripts also calculate predicted phenotypes for each 
individual, based on their genetic load for the simulated 
susceptibility variants. 
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Discussion

This motivating idea behind this project is the need to use 
algorithmic tools in an informed way based on the underlying 
biology and epidemiology. To this end, we launched on the 
creation of a tool to help evaluate algorithm performance given 
genetic architectures defined by specific parameters. 
Simulations are essential because they provide a way to 
evaluate the suitability of algorithms. Our simulation 
framework is based on real data, avoiding concerns due to 
unrepresentative linkage disequilibrium, allele frequencies, and 
other features of simulated genomes. In current 
implementation, it uses simplified models of effect sizes. The 
key next step in evaluating the performance of the developed 
simulation framework in assessing the suitability of WINNOW, a 
machine learning algorithm that uses multiplicative updates as 
a first algorithm. 

Future Work

Future work includes:
•Implement additional options for effect size distributions to 
model risk contributions of selected variants (2).
•Including  a bias towards specific gene ontologies 
suspected to be more relevant for a particular phenotype. 
•Scale up number of simulations to account for variability in 
individual runs and create ways to visualize overall results.
•Evaluate consistency of the genetic architecture between 
populations.
•Apply rigorous analysis on algorithms based on whole genome 
and phenotypic data to determine optimal pairings of 
algorithms and architectures.

Results

Effect Sizes for MAF < 0.01

Figure 1: The effect sizes are generated from a standard 
normal distribution, with effects expressed as Cohen’s d to 
account for positive risk effects and negative, protective 
effects.

Methods (Cont’d)
• Example genetic architecture scenarios include:

Scenario I: N randomly sampled variants
Scenario 2: N random variants + Q common variants
Scenario 3: N random variants +  Q rare variants

MAF

As an example, we present the genetic architecture of a phenotype 
with 1000 risk variants, randomly distributed allele frequencies, and 
effect sizes that are inversely correlated with allele frequency, such 
that common variants have smaller effects, as expected based on 
population genetics models.

Simulated effect sizes as a 
function of allele frequency

Effect Sizes for 0.01 < MAF < 0.05

Effect Sizes for MAF > 0.05

Allele Frequency Distribution of 
selected risk variants

Figure 2: Allele frequencies for the 1000 variants match what is 
expected for a random sample. The majority of variation in the 
human genome is rare, recent variation that has not had time to 
be impacted by genetic drift and other population genetic forces.  
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