
Robust GPU Based 3D Visualization of Algebraic Surfaces

Algebraic surfaces are used to model shapes in design and manufacturing. We are
interested in investigating miniscule surface components and complicated intersections of
multiple surfaces. To accurately and efficiently facilitate such investigations, we need to
have software that can give us high quality true depictions of each surface. It is important
to have the capability to move between surfaces and zoom in on areas of interest.

The current state of the art algebraic surface visualization softwares use triangulation to
approximate surface shape. Computation revolves around creating a mesh of the surface
using CPU tools. All of the triangle data is transferred to a graphics card. The main issue
with this method is the time needed to generate a mesh and ship that data to the graphics
card. In addition to being costly, triangulation is only an approximation and therefore
overlooks smaller features and incorrectly depicts complex intersections. The resultant
image is not guaranteed to be accurate. To be of use for investigating minute and
complicated attributes, a software needs to have a high attention to detail while remaining
efficient.

The software we pose to achieve such goals takes advantage of new GPU power for a
bulk of our computation. The CPU is used to apply a perspective transformation to input
trivariate polynomials so the region of interest is contained within a cube. The GPU enables
similar processes to run in parallel using CUDA threads. Each pixel for our display has its
own thread. Each thread generates a pixel value from the segment with the x and y of the
pixel and z ranging from -1 to 1. The pixel’s x and y coordinates are substituted into the
trivariates to make them univariate in z. Along the segment, we find intervals where the
univariate polynomials have possible roots using Descartes’ rule of sign. Each interval is
shrunk to floating-point accuracy by Newton’s method and subdivision. At the end of the
GPU kernel process, each thread has a set of roots in order of closest to farthest. Each
CUDA thread calculates a color value, a blend of each surface’s assigned color weighted by
the order of its roots along the segment. The thread writes the 24 bit RGB color value to a
texture in GPU memory that is displayed to the user.

Two ambiguous situations may arise. One is that two roots of the same univariate
cannot be separated, and the other is when roots of different univariates cannot be
properly ordered. In both cases, a special ambiguity warning color is used instead of the
surface color.

Descartes’ rule ensures that we account for every possible root. By using intervals as our
primary numerical representation, we are able to guarantee correctness of the roots, and
hence image, unless we explicitly show ambiguity. Areas of interest and uncertainty can be
explored with extensive zoom.

Our goal was to create a software that, in an efficient manor, guarantees the
visualization is mathematically correct unless uncertainty is explicitly indicated. The
software is to function as a debugging tool to test the accuracy of other algorithms that
seek intersections of algebraic surfaces.

Starting on the CPU, input trivariate polynomials are transformed so that the region of interest
becomes a cube with bounds with [-1,1] in each direction. Data for each polynomial is sent to the
GPU. Every CUDA thread corresponds to an x and y pixel coordinate. For each trivariate, x and y are
substituted to make a univariate in z ranging from -1 to 1. Therefore, every thread has a unique set
of univariate polynomials, and roots of these polynomials correspond to intersections of the
surfaces with a line segment with the pixel x,y and that range of z [insert citation to picture]. Each
thread moves along that segment in increments of dz = 2 / n where n is the number of steps. It
generates intervals [z, z+dz] for z = -1 + i *dz where i ranges from 0 to n - 1. We apply Descartes rule
of signs to determine how many roots each interval contains. If there is only one possible root, that
interval is reduced through Newton’s method and subdivision until the roots is located with
floating-point precision. If there is more than one root, the interval is subdivided until there is only
one root per interval. Reduced intervals are compared to the intervals from other surfaces at the
same pixel. They values are ordered from largest to smallest. If the number of roots in an interval
cannot be reduced to one, or if two different root intervals overlap, it is an ambiguous case. Now,
we assign a color to this pixel using the order of the roots. Ambiguous roots are assigned a special
color. Each CUDA thread calculates a color value, a blend of each surface’s assigned color weighted
by αi where i is the index of the root sorted along the segment, and α being the opacity value of the
contributing color, usually 0.5 uniformly. The thread writes the 24 bit RGB color value to a texture in
GPU memory that is attached to an OpenGL frame buffer object (FBO).

This algorithm starts with an interval that needs to be shrunk down. Descartes has already
verified that this interval has only one root. The result is an interval with ε width encompassing the
root. Here, ε has a value of 1.0-6. Newton requires an initial guess of the root value, which in our case
is the midpoint of the interval, xm. The derivative, f’(x) and function value f(x), are calculated at xm.
We initialize a temporary interval, tn, to hold the value resulting from this calculation: tn =xm -
(f(xm)f'(xm)). We compare tn and the original interval to see if there was any progress made in
shrinking. The interval value tn had now becomes the beginning interval. Its midpoint is stored in xm,
and this process continues for every resulting interval until the width of tn is less than ε. This interval
is the root. When the new interval cannot be shrunk and has not yet reached the desired width, the
algorithm returns an empty interval. This signals to the program to use subdivision.

An interval is subdivided for the purpose of isolating a single root. The algorithm deals with three
values evaluated on the function: midpoint f(xm), lower endpoint f(xl), and higher endpoint f(xh). The
sign of f(xl), and f(xh) are compared to f(xh). If there is a sign change between either endpoint and
the midpoint, the algorithm returns a new interval of that endpoint to the midpoint.

Descartes’ rule of signs finds how many roots to expect, but not where they lie. By looking at the
coefficients of each term, we note where the signs change. The number of sign changes is the
maximum number of possible positive roots. If there are less, it the total can only decrement in pairs
of two roots. For univariate f(z) on interval [a,b], we determine the coefficients of the numerator of
f(1/(w+(1/b-a)) + a) and count the number of sign changes. To calculate the coefficients, we use
repeated synthetic division. This process is done for every interval along the z direction to see if
there is a root contained. It is useful in detecting double roots which will have two or more sign
changes.

To showcase multiple surfaces intersecting at a small region, we modeled 4 spheres with the
following equations, the intersection of which takes the shape of a tetrahedron with altitude 0.001:

Yellow x2 - 2x + y2 + 2y + z2 = 1
Red x2 + 2x + y2 + 2y + z2 = 1
Green x2 + y2

 + 2y + z2
 = 1

Blue x2 + y2 + z2 - 2z = 3.999
`

This material is based upon work supported by the National Science Foundation under
Grant No. CNS-1659144. Masterjohn and Milenkovic are supported by NSF grant
CCF-1526335. University of Miami Computer Science department equipment was used.

Nancy Newlin1 , Joseph Masterjohn2, Victor Milenkovic2

1: Undergraduate, University of Florida, 2: Department of Computer Science, University of Miami

After this project, we conclude that modern graphics cards can display multiple algebraic
surfaces in real time using this technique.

In the future, we want to enhance the user interface. The software would have an option for
automatic guided tour of the ambiguous places. It would iterate through each marked location and
zoom in on the issue area. Though regions of uncertainty are labeled, it’s possible for a user to
accidently overlook them.

The ultimate goal is to have this software be used to find the intersections of algebraic surfaces
itself, instead of as a debugging tool for those that do.

Introduction

Problem Statement

Acknowledgments
Conclusions and Future Work

ResultsAlgorithms

Newton’s Method

Subdivision

Descartes’ Rule of Signs Image 2. A different angle showing the green, red, and yellow spheres. The
intersections are shown in the middle where the colors are blended together.

Image 4. Translated inside of the
tetrahedron, at the same zoom as
image 3.

Image 3. The region of intersection
of all four spheres. In the center, a
tetrahedron is contained within all
surfaces. The visible region has
depth 0.01 for zoom.

Image 1. The visible region is 5 units in depth, giving a full view of all four
surfaces. Through the red surface, the blue and yellow are visible due to
blending.

