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Background and Motivation

In the past five years, there has been significant progress
in using convolutional neural networks (CNNs) for image
recognition tasks. This progress was initiated by a 2012
publication which featured an eight-layer CNN architec-
ture known as AlexNet [4]. CNNs are loosely inspired
by the structure and hierarchy of the visual pathway in
the brain. Interestingly, recent research has shown that
deep CNNs trained for image recognition can predict cer-
tain response properties of visual cortical neurons [8] [3].

Biological studies on macaques suggest secondary visual
cortical (V2) selectivity to textures that was not found in
the primary visual cortex (V1) [2] [1]. Recent work at Uni-
versity of Miami by Schwartz et al. demonstrated that
layer 2 (L2) units in AlexNet develop texture selectivity
that provides an excellent fit to the macaque V2 data. To
demonstrate the robustness of these results, the author
used similar analysis techniques on variations of AlexNet.

Fig.: Left : AlexNet CNN layers (image from MIT CSAIL). Right : Sample patches from six of the fifteen texture categories used in

[2]. Left column: Natural textures. Right column: Noise textures.

Texture Selectivity in Variations of AlexNet

Four variations of AlexNet were created and trained, and the
L2 texture selectivity was analyzed using the same methods
from Schwartz et al. The variations were created by chang-
ing hyperparameters of the first convolutional and pooling
layers. Specifically, the hyperparameters were tuned in order
to give a di↵erent ratio of L2 to L1 receptive field size (here-
after referred to as R). In biology, this ratio is approximately
equal to 2. For Variation 4, the first normalization layer was
removed in order to observe the e↵ects of normalization on
texture selectivity. The normalization layer in CNNs was
designed to mimic biological local response normalization in
the primary visual cortex (V1). Though normalization is

thought to be important in V1, its e↵ect on higher visual
areas is not well understood.

Fifteen naturalistic texture images and fifteen spectrally
matched noise images were generated. To quantify results,
the modulation index was calculated for each variation of
AlexNet. The Modulation Index is computed by taking
the di↵erence of the responses to naturalistic textures and
noise textures, and dividing by the sum of the responses.
A higher modulation index indicates a larger di↵erential re-
sponse from textures to noise, and implies increased selec-
tivity to texture.
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Fig.: The modulation index of Layer 2 units of AlexNet are well matched to the V2 neural population data in Macaque brain [1]

for a set of 15 natural-noise texture pairs. This appears to break down upon removal of the first normalization layer (variation 4).

Left : Original AlexNet, R ⇡ 3.53. Middle: AlexNet Variation 1, R ⇡ 2.04. Right : AlexNet Variation 4, R ⇡ 2.57.

For image recognition accuracy, the four AlexNet variations performed similarly to the original AlexNet. All four variations
had a top-1 accuracy higher than 50%, whereas the original AlexNet had a top-1 accuracy of 57.1% [4]. Interestingly,
Variation 4 (normalization removed) indeed shows a reduced fit to biological V2 data. The original AlexNet was trained
on 360,000 iterations of the ImageNet dataset[6], whereas the four variations were trained on 220,000 to 270,000 iterations.

Visualization with Deconvolution

With the rise in use of deep CNNs for image recognition,
there grew a need to better understand how they achieved
such improved accuracy. Zeiler and Fergus [5] developed
a visualization technique that gives insight into the work-
ings of the middle layers of CNNs by revealing the input
stimuli that excite feature maps for a given layer. The
technique makes use of Deconvolutional Neural Networks,
which use either the inverse or transpose of the same op-
erations found in CNNs. Whereas CNNs map pixelated

inputs (images) into feature maps, Deconvolutional Neural
Networks map layer feature maps back into pixel space.

Here, the author uses visualization with deconvolution to
give qualitative insight into the texture selectivity of L2 for
the di↵erent trained variations of AlexNet. The texture and
noise images used in the previous section were forwarded
through each CNN. The visualizations below show the re-
sponses of L2 units.

Sample AlexNet Original AlexNet Variation 1 AlexNet Variation 4

Fig.: Top: Naturalistic texture image sample, and visualizations of associated L2 activation. Bottom: Spectral noise image sample,
and visualizations of associated L2 activation.

Conclusions and Future Works

• Variations of AlexNet displayed image recognition accuracy similar to the original AlexNet (>50%). The responses of L2 units
of AlexNet variations to texture and noise images provided a close fit to the biological V2 data, with the exception of variation
4 (normalization removed). This suggests that normalization may have an impact on texture selectivity in L2 and higher.

• There was no evidence of a correlation between the ratio R and image recognition accuracy in the variations of AlexNet.

• Future assignments should continue to explore variations of AlexNet with di↵erent R values in order to generate a more robust
dataset. On the other hand, multiple variations of AlexNet can be generated for the same R by tuning hyperparameters of
the L2, in order to decouple the e↵ects of changing R from e↵ects of changing other hyperparameters.

• Future experiments can involve the use of di↵erent normalization methods in AlexNet which can be tested alongside a variation
of AlexNet with normalization removed.
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