UNIVERSITY OF MIAMI **DEPARTMENT** of COMPUTER SCIENCE

CENTER for

SCIENCE

COMPUTATIONAL

Introduction

Ionic liquids (ILs) are salts that are typically liquid at room ter and normally consist of a large, asymmetric cation and a stat relatively inert anion. In this case, the cations being investigation alkylpyridinium ions (Figure 1), while there are three anions of BF₄, DCA, and TFSI (Figure 2). ILs have recently become of commercial interest with applications in carbon capture, batte cellulose processing. As a result, experiments to determine the physical properties of these substances have become more ostensibly to determine the optimal ionic liquid for various site this same vein, force fields and force field parameters, such OPLS-2009IL parameters developed by other members of th constantly being refined in an attempt to accurately predict th properties of these ionic liquids. Though the lab previously te OPLS-2009IL parameters on a few N-alkylpyridinium based seek to expand the testing by using a wider array of systems temperatures.

Figure 1. IL-forming N-alkylpyridinium

octyl [OPyr]

Here, R can be ethyl [EPyr], propyl [PrPyr],

butyl [BPyr], pentyl [PPyr], hexyl [HPyr], or

Clockwise, from left, tetrafluroborate (BF_4) , bis(trifluoromethanesulfon)imide (TFSI), and dicyanamide (DCA).

Methodology

- Systems simulated using molecular dynamics in GROMACS 5.0.7
- Cubic boxes containing 500 ion pairs were generated using Packmol to run the simulations before minimizing them using a steepest descent algorithm
- Simulations performed at a range of temperatures from 278 K to 363 K.
- Systems were equilibrated at NPT for 5 ns. After that, production simulations would run for 40 ns.
- Charges were scaled by 0.8 in order to mimic polarization that would otherwise be very computationally expensive to simulate.
- Surface tension was calculated at 425 K with the Z dimension of the box tripled and extrapolating from multiple experimental values found in literature for comparison. The equation $[I_z^*(P_x-P_y-2P_z)]/4$ was used to calculate the surface tension where I_{z} is the length in the z direction and P_x , P_y , and P_z are pressure values along the x, y and z axes, respectively.
- Viscosity required up to 10 additional runs for a length of 10 ns each. Regression-based analysis using the non-equilibrium periodic perturbation method was then used to determine viscosity values.
- The radial distribution function (RDF) was calculated using the program TRAVIS using trajectory input from GROMACS, and plotted in Excel.

Determining Physical Properties of N-alkylpyridinium Ionic Liquids Using OPLS Force Fields Forrest Wang, Brian Doherty, & Orlando Acevedo* Departments of Computer Science and Chemistry, University of Miami

mperature
ble,
ated are N-
of interest.
f aroat
great
eries and
:he
common,
uations. In
as the
ne lab, are
he
ested the
ILS, nere I
sand

Figure 2. The three anions of interest

Table	1 . Density (g/cm ³) as	a Function of Temp	erature	Table 2 . Experi	Results Table 2. Experimental vs Calculated Density (g/cm ³) ^[1]				Table 4. Experimental vs Calculated Viscosity (cP) ^[1]				
Ionic Liq	uid T(K)	OPLS	Experimental	% Error	Ionic Liquid	OPLS	Experimental	% Error	Ionic	Liquid	OPLS	Experimental	% Error	
[BPyr][D0	CA] 298	1.043	1.09006	4.3	[PrPyr][BF ₄]	1.182	1.25308	5.6	[PrPy	r][BF ₄]	88.319	119.5	26.1	
	303	1.039	1.08692	4.4	[BPyr][BF ₄]	1.154	1.21981	5.4	[BPyr	·][BF ₄]	155.36	160.3	3.1	
	308	1.035	1.08379	4.5	[OPyr][BF ₄]	1.083	1.1127	3.0	[OPy	r][BF ₄]	230.21	233.5	1.4	
	313	1.031	1.08069	4.6	[EPyr][DCA]	1.073	1.11849	4.1	[EPyr][TFSI]	42.55	40.44	5.2	
	318	1.028	1.07760	4.6	[PrPyr][DCA] ^[2]	1.058	1.09006	2.9	[PrPy	r][TFSI]	27.68	27.6	0.3	
	323	1.024	1.07452	4.7	[BPyr][DCA]	1.043	1.06883	2.4	[BPyr][TFSI]	60.70	60.2	0.8	
	328	1.021	1.07146	4.7	[PePyr][DCA]	1.028	1.05307	2.4	[PPyr][TFSI]	71.61	71.9	0.4	
	333	1.017	1.06842	4.8	[HPyr][DCA]	1.016	1.03641	2.1	[HPyr	ſ][TFSI]	85.46	94.06	9.1	
	338	1.013	1.06540	4.9	[EPyr][TFSI]	1.597	1.53560	4.0	[OPyi	r][TFSI]	110.53	114.9	3.8	
MAE	-	-	-	4.6	[PrPyr][TFSI]	1.538	1.4800	3.9	MAE		-	-	5.6	
[BPyr][TF	-SI] 278	1.533	1.4125	7.9	[BPyr][TFSI]	1.512	1.45313	4.1	[1] Cal	culated at 29	8 K unless c	otherwise noted		
	283	1.527	1.4078	7.8	[PPyr][TFSI]	1.475	1.4214	3.8	[2] Cal	culated at 31	3 K			
	288	1.523	1.4032	7.9	[HPyr][TFSI]	1.443	1.38854	3.9	[3] Cal [4] Cal	[3] Calculated at 425 K unless otherwise noted [4] Calculated at 298 K due to a lack of other data points to extrapole				
	293	1.517	1.3987	7.8	[OPyr][TFSI]	1.394	1.32815	5.0	to 425	K from.		·	•	
	298	1.512	1.3942	7.8	MAE	-	-	3.8						
	303	1.506	1.3897	7.7	Table 3. Experime	ntal vs Calo	culated Surface Tens	sion (mN/m) ^[3]		Discussion				
	308	1.502	1.3852	7.8	Ionic LIquid	OPLS	Experimental	% Error	As	As can be seen from the comparison to				
	313	1.496	1.3807	7.7	[PrPyr][BF ₄]	39.57	41.17	3.9	ex	perimenta	al values.	the OPLS force	field	
	318	1.492	1.3763	7.8	[BPyr][BF ₄]	37.43	38.72	3.3	im	implemented in GROMACS, in conjunction with the OPLS-2009IL parameters developed by the lab, is quite accurate in its predictions of the bulk properties of various ionic liquid systems. In addition, the modeling of the radial distribution function using our parameters appears to accurately model the local structural interactions of these systems. For example, in work by Sun et. al*, a graph with RDFs for center-center interactions for the same ion pairs found in Figure 3 corresponded				
	323	1.487	1.3718	7.7	[EPyr][DCA]	51.85	50.56	2.6	O					
	328	1.482	1.3672	7.7	[PrPyr][DCA]	47.23	49.70	4.0	qu					
	333	1.476	1.3629	7.7	[BPyr][DCA]	43.11	48.08	10.3	pr					
	338	1.472	1.3585	7.7	[PPyr][DCA]	39.35	45.29	13.1						
	343	1.467	1.3540	7.7	[HPyr][DCA] ^[4]	53.34	49.2	8.4	m					
	348	1.462	1.3496	7.7	[EPyr][TFSI]	41.69	31.70	31.5	SV					
	353	1.457	1.3453	7.7	[BPyr][TFSI]	36.37	27.39	32.8	gra					
	358	1.452	1.3409	7.7	[PPyr][TFSI]	33.75	26.58	27.0	the					
	363	1.447	1.3366	7.6	[HPyr][TFSI]	34.82	26.51	31.4	closely with ours, showing a peak for anion-cation interactions at a distance of about 500 pm with a g(r					
MAE				7.7	MAE	-	-	15.3						
									va	lue of aro	und 3.5 a	s well.		
4	Center-Center [BPyr][BF ₄] RDF			2.5				*St 399	un, H., Qiao, 90-3996	B., Zhang, D). and Liu, C.; <i>J. Phys</i>	. Chem., 2009 , 114,		
3.5	\square				—293 K —323 K —353 K									
3 2.5					2			Future Work Test the ability of OPLS-2009IL to accurately 						
(L) ຊ					1.5									
1.5				1					determine	e heat cap	bacity and heat o	of vaporization		
0.5								 Reexamine the narameters for the various TESI 						
0					0.5	0.5				systems and improve the predicted values				
0	500 1000 1500 2000 Distance (pm)								 Use OPLS-2009IL to calculate the properties of 					
—A	nion-Cation	-Cation	-Cation —Anion-An	ion	0 200	0 200 400 600 800 1000 1200 1400				systems containing other anions like PF_6 or NO_3				
Eiguro 3	RDE of (RD)	r][BE/] \v/	ith respect to ion ce	ontors	Distance (pm)									

References for the ions in this RDF are the center of the pyridinium ring and the central boron atom of BPyr and BF4, respecitively.

Figure 4. RDF of [BPyr][BF4] over a range of temperatures References for the ions in this RDF are the terminal carbon in the alkyl chain in two different BPyr cations.

Acknowledgements: This project was supported with funding from NSF grants CNS-1659144 and CHE-1562205. Special thanks to Dr. Burton Rosenberg and the CFS REU.