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Motivation and Contributions

Over the past 5 years, major advances in Machine Learn-
ing sparked progress in using convolutional neural net-
works (CNNs) for image recognition tasks [6]. Although
CNNs only loosely mimic the brain hierarchy, recent work
showed that CNNs trained on image recognition can pre-
dict some properties of visual cortex [5]. For example, in
some deep networks, layers in CNNs learn similar repre-
sentations to areas V1 and the inferior temporal cortex
in the brain. Recent work at the University of Miami

found that in a limited number of networks, middle lay-
ers of deep networks learned texture selectivity that was
on par with the brain’s texture selectivity in area V2.

CNNs are also used to generate pastiches, artistic works
that imitate the style of another [2]. For example, one can
take a photograph and make it look like a Monét painting.
This author will explore the ability of CNNs to recognize
images with textures other than their natural ones.

Fig.: Left : AlexNet CNN layers and visualization of learned representation (image from MIT CSAIL). Center : Example of pastiche

generation. Top left image is the original and the other three are Monét-styled pastiches. [1]. Right : Texture patches used in [4].

Left column: Natural textures. Right column: Noise textures.

Texture Selectivity in AlexNet-Based Networks

Six networks based on AlexNet were used to analyze the ro-
bustness of results from Schwartz, et. al. Natural and noise
textures were generated and results were compared by tak-
ing the modulation index. Modulation Index is computed
by taking the difference of the response in naturalistic tex-
tures to the response in noise and dividing by their sum.
High modulation index indicates a better representation of

naturalistic textures. The modified networks were created
by removing 1 to 4 layers from AlexNet (8 layers in total).
All networks but the one without 4 layers performed well
at object recognition tasks (>50%) and at texture selectiv-
ity in comparison to biological data. However, the network
with 4 layers removed performed relatively well (<30%) but
performed poorly at texture selectivity.

AlexNet Original AlexNet Minus 4 Layers

Fig.: The modulation index of Layer 2 (but not Layer 1) units of a CNN are well matched to the V2 neural population
data in Macaque brain [3] for a set of 15 natural-noise texture pairs. We find that this breaks down in the reduced AlexNet.

Visualization [7] of the neurons in the original AlexNet compared to the AlexNet without 4 layers varies greatly. Out of 256 neurons,
2 in 10 neurons appears to learns a useful representation in the reduced AlexNet, while most (if not all) neurons in the original
Alexnet seem to be useful filters.

AlexNet Original AlexNet Minus 4 Layers

Fig.: Visualization of L2 layers in the original and modified AlexNet.

Object Recognition in Texturized Images

Pastiche images often have the same structure, but have
different textures and color schemes. Humans can eas-
ily depict the objects in a painting, as long as the paint-
ing style isn’t too abstract. However, we find that mul-
tiple state-of-the-art object recognition systems have dif-
ficulties in recognizing pastiche images. Object detec-
tors that attempt to replicate human vision will need
to classify images correctly no matter their representa-
tion, from line drawing to painting to natural image.

The best image from each class of ImageNet [8] were tex-
turized using a style transfer algorithm [9]. The texturized
images were then tested on AlexNet [6], ResNet [10], and
VGG-19 [11]. Each deep network classified 150-200 textur-
ized images perfectly based on the distance metric; however
the Top-5 accuracies for each network on the texturized im-
ages are much lower than their normal recognition accuracy.
The distance metric refers to the square of the Euclidean
Distance between the natural and texturized probability
functions.

Fig.: Left The accuracy of each network when tested on a large dataset (over 20,000 natural images), on a set of 1,000 natural
image, and on the same set of 1,000 images after texturization. Right The distance metric between the natural and texturized
images. Blue: AlexNet, Green: ResNet-50, Orange: VGG-19.

Conclusions and Future Works
• L2 units in AlexNet-based CNNs responded similarly to biological V2 data. However, although the AlexNet-based network

with 4 layers removed dropped only partially in object recognition, it did not mimic the biological data in terms of texture
selectivity, suggesting the importance of training in a deep network. We are exploring importance of other parameters and
specific computations.

• We will explore AlexNet architectures that do not respond to texture and probe their units to see what they do respond to.

• Object Recognition of texturized images is relatively poor when compared to natural images. Future work will focus on
understanding why these networks fail to classify texturized images correctly.

• We will focus on building networks that are texture invariant, meaning they will respond similarly no matter the medium of
an image. This will begin by training AlexNet on both texturized and natural images.

• We will explore the importance of the ratio between L1’s and L2’s receptive fields in texture selectivity with Ariel Lavi. We
hypothesize that the receptive field must roughly double from the 1st layer before texture selectivity occurs, which is similar
to the receptive field ratios between V2 and V1.
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