Ideas on complexity and randomness originally
suggested by Gottfried W. Leibniz in 1686,
combined with modern information theory,
imply that there can never be a “theory of

everything” for all of mathematics

By Gregory Chaitin
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- The Limits of Reason

n 1956 Scientific American published an article by Ernest Nagel and James R. Newman entitled

“Godel’s Proof.” Two years later the writers published a book with the same title—a wonderful

work that is still in print. I was a child, not even a teenager, and I was obsessed by this little book.

I remember the thrill of discovering it in the New York Public Library. I used to carry it around
with me and try to explain it to other children.

It fascinated me because Kurt Godel used mathematics to show that mathematics itself

has limitations. Go6del refuted the position of David Hilbert, who about a century ago

declared that there was a theory of everything for math, a finite set of principles from

which one could mindlessly deduce all mathematical truths by tediously following

the rules of symbolic logic. But Gédel demonstrated that mathematics contains

true statements that cannot be proved that way. His result is based on two self-

referential paradoxes: “This statement is false” and “This statement is un-

provable.” (For more on Godel’s incompleteness theorem, see www.sciam.

com/ontheweb)

My attempt to understand Godel’s proof took over my life, and

now half a century later I have published a little book of my own.

In some respects, it is my own version of Nagel and Newman’s

book, but it does not focus on Godel’s proof. The only things

the two books have in common are their small size and

their goal of critiquing mathematical methods.

Unlike Godel’s approach, mine is based on mea-

suring information and showing that some math-

ematical facts cannot be compressed into a the-

ory because they are too complicated. This

new approach suggests that what Godel
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discovered was just the tip of the iceberg:
an infinite number of true mathematical
theorems exist that cannot be proved
from any finite system of axioms.

Complexity and

Scientific Laws

MY STORY BEGINS in 1686 with Gott-
fried W. Leibniz’s philosophical essay
Discours de métaphysique (Discourse
on Metaphysics), in which he discusses
how one can distinguish berween facts
that can be described by some law and
those that are lawless, irregular facts.
Leibniz’s very simple and profound idea
appears in section VI of the Discours, in
which he essentially states that a theory
has to be simpler than the dara it ex-
plains, otherwise it does not explain
anything. The concept of a law becomes
vacuous if arbitrarily high mathemati-
cal complexity is permitted, because
then one can always construct a law no
matter how random and patternless the
data really are. Conversely, if the only
law that describes some data is an ex-
tremely complicated one, then the data
are actually lawless.

Today the notions of complexity and
simplicity are put in precise quantitative
terms by a modern branch of mathemat-
ics called algorithmic information the-
ory. Ordinary information theory quan-
tifies information by asking how many
bits are needed to encode the informa-
tion. For example, it takes one bit to en-
code a single yes/no answer. Algorith-
mic information, in contrast, is defined

by asking what size computer program
is necessary to generate the data. The
minimum number of bits—what size
string of zeros and ones—needed to
store the program is called the algorith-
mic information content of the data.
Thus, the infinite sequence of numbers
1,2, 3, ... has very little algorithmic in-
formation; a very short computer pro-
gram can generate all those numbers. It
does not matter how long the program
must take to do the computation or how
much memory it must use—just the
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= Kurt Godel demonstrated that mathematics is necessarily incomplete,
containing true statements that cannot be formally proved. Aremarkable
number known as omega reveals even greaterincompleteness by providing
an infinite number of theorems that cannot be proved by any finite system of
axioms. A “theory of everything” for mathematics is therefore impossible.

= Omega is perfectly well defined [see box on opposite page] and has a definite
value, yetit cannot be computed by any finite computer program.

= Omega’s properties suggestthat mathematicians should be more willing to
postulate new axioms, similar to the way that physicists must evaluate
experimental results and assert basic laws thatcannotbe proved logically.

u The resultsrelated to omega are grounded in the concept of algorithmic
information, Gottfried W. Leibniz anticipated many of the features of
algorithmic information theory more than 300 years ago.

length of the program in bits counts. (I
gloss over the question of what pro-
gramming language is used to write the
program—for a rigorous definition, the
language would have to be specified
precisely. Different programming lan-
guages would result in somewhat differ-
ent values of algorithmic information
content.)

To take another example, the num-
ber pi, 3.14159..., also has only a little
algorithmic information content, be-
cause a relatively shortalgorithm can be
programmed into a computer to com-
pute digit after digit. In contrast, a ran-
dom number with a mere million digits,
say 1.341285...64, has a much larger
amount of algorithmic information. Be-
cause the number lacks a defining pat-
tern, the shortest program for output-
ting it will be about as long as the num-
ber itself:

Begin
Print “1.341285...64"
End

(All the digits represented by the el-

lipsis are included in the program.) No
smaller program can calculate that se-
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quence of digits. In other words, such
digit streams are incompressible, they
have no redundancy; the best that one
can do is transmit them directly. They
are called irreducible or algorithmically
random.

How do such ideas relate to scien-
tific laws and facts? The basic insight
is a software view of science: a scien-
tific theory is like a computer program
that predicts our observations, the ex-
perimental data. Two fundamental
principles inform this viewpoint. First,
as William of Occam noted, given two
theories that explain the data, the sim-
pler theory is to be preferred (Occam’s
razor). That is, the smallest program
that calculates the observations is the
best theory. Second is Leibniz’s insight,
castin modern terms—if a theory is the
same size in bits as the data it explains,
then it is worthless, because even the
most random of data has a theory of
that size. A useful theory is a compres-
sion of the data; comprehension is
compression. You compress things into
computer programs, into concise algo-
rithmic descriptions. The simpler the
theory, the better you understand
something.

www.sciam.com

ALGORITHMIC INFORMATION
quantifies the size of a computer
programneeded to produce a
specific output. The number pihas
little algorithmicinformation
content because ashort program
canproduce pi.Arandom number
has a lot of algorithmic information;
thebestthatcanbedoneis toinput
the number itself. The same is true
of the number omega.

Sufficient Reason

DESPITE LIVING 250 years before the
invention of the computer program,
Leibniz came very close to the modern
idea of algorithmic information. He had
all the key elements. He just never con-
nected them. He knew that everything
can be represented with binary infor-
mation, he built one of the first calculat-

ing machines, he appreciated the power
of computation, and he discussed com-
plexity and randomness.

If Leibniz had put all this together,
he might have questioned one of the key
pillars of his philosophy, namely, the
principle of sufficient reason—that ev-
erything happens for a reason. Further-
more, if something is true, it must be
true for a reason. That may be hard to
believe sometimes, in the confusion and
chaos of daily life, in the contingenr ebb
and flow of human history. But even if
we cannot always see a reason (perhaps
because the chain of reasoning is long
and subtle), Leibniz asserted, God can
see the reason. It is there! In that, he
agreed with the ancient Greeks, who
originated the idea.

Mathematicians certainly believe in
reason and in Leibniz’s principle of suf-
ficient reason, because they always try
to prove everything. No matter how
much evidence there is for a theorem,
such as millions of demonstrated exam-
ples, mathematicians demand a proof of
the general case. Nothing less will sat-
isfy them.

And here is where the concept of al-
gorithmic information can make its sur-
prising contribution to the philosophi-
cal discussion of the origins and limits
of knowledge. It reveals that certain
mathematical facts are true for no rea-

How Omega Is Defined

To see how the value of the number omega is defined, look at a simplified example.
Suppose that the computerwe are dealing with has only three programs that halt, and
theyare the bit strings 110,11100and 11110. These pragrams are, respectively, 3,5
and 5 bits in size. [f we are choosing programs at random by flipping a coin for each
bit, the probability of getting each of them by chance is precisely ¥2%, 125 and 125,
because each particular bit has probability 2. So the value of omega [the halting
probability] for this particularcomputer is given by the equation:

omega= %22 + 12° + 2% = 001 + .00001 + .00001 = .00110

This binary number is the probability of getting one of the three halting programs by
chance. Thus, it is the probability that our computer will halt. Note that because
program 110 halts we do not consider any programs that start with 110 and are
largerthan three bits—for example, we do not consider 1100 or 1101, That is, we do
notadd terms of .0001 to the sum foreach of those programs. We regard all the
longer programs, 1100 and so on, as being included in the halting of 110. Another
way of saying this is that the programs are self-delimiting; when they halt, they
stop asking for more bits. —6.C.

SCIENTIFIC AMERICAN 77
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PHYSICS AND MATHEMATICS are in many ways similar to the execution of a prograrn on a computer.

somn, a discovery that flies in the face of
the principle of sufficient reason.

Indeed, as I will show later, it turns
out that an infinite number of mathemat-
ical facts are irreducible, which means
no theory explains why they are true.
These facts are not just computationally
irreducible, they are logically irreducible.
The only way to “prove” such facts is to
assume them directly as new axioms,
without using reasoning at all.

The conceptof an “axiom” is closely
related to the idea of logical irreducibil-
ity. Axioms are mathematical facts that
we take as self-evident and do not try to
prove from simpler principles. All for-
mal mathematical theories start with
axioms and then deduce the consequenc-
es of these axioms, which are called the-
orems. That is how Euclid did things in
Alexandria two millennia ago, and his
treatise on geometry is the classical
model for mathematical exposition.

In ancient Greece, if you wanted to
convince your fellow citizens to vote
with you on some issue, you had to rea-
son with them—which I guess is how
the Greeks came up with the idea that
in mathematics you have to prove things
rather than just discover them experi-
mentally. In contrast, previous cultures
in Mesopotamia and Egypt apparently
relied on experiment. Using reason has
certainly been an extremely fruitful ap-
proach, leading to modern mathematics
and mathematical physics and all that

goes with them, including the technol-
ogy for building that highly logical and
mathematical machine, the computer.

So am I saying that this approach
that science and mathematics has been
following for more than two millennia
crashes and burns? Yes, in a sense I am.
My counterexample illustrating the lim-
ited power of logic and reason, my
source of an infinite stream of unprov-
able mathematical facts, is the number
that I call omega.

The Number Omega

THE FIRST STEP on the road to ome-
ga came in a famous paper published
precisely 250 years after Leibniz’s essay.
Ina 1936 issue of the Proceedings of the
London Mathematical Society, Alan M.
Turing began the computer age by pre-
senting a mathematical model of a sim-
ple, general-purpose, programmable
digital computer. He then asked, Can
we determine whether or not a comput-
er program will ever halt? This is Tur-
ing’s famous halting problem.

Of course, by running a program
you can eventually discover that it halts,
if it halts. The problem, and itis an ex-
tremely fundamental one, is to decide
when to give up on a program that does
not halt. A great many special cases can
be solved, but Turing showed that a gen-
eral solution is impossible. No algo-
rithm, no mathematical theory, can ever
tell us which programs will halt and
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which will not. (For a modern proof of
Turing’s thesis, see www.sciam.com/
ontheweb) By the way, when I say “pro-
gram,” in modern terms I mean the con-
catenation of the computer programand
the data to be read in by the program.

The next step on the path to the
number omega is to consider the ensem-
ble of all possible programs. Does a pro-
gram chosen at random ever halt? The
probability of having that happen is my
omega number. First, I must specify
how to pick a program at random. A
program is simply a series of bits, so flip
a coin to determine the value of each bit.
How many bits long should the pro-
gram be? Keep flipping the coin so long
as the computer is asking for another bit
of input. Omega is just the probability
that the machine will eventually come
toa halt when supplied with a stream of
random bits in this fashion. (The precise
numerical value of omega depends on
the choice of computer programming
language, but omega’s surprising prop-
erties are not affected by this choice.
And once you have chosen a language,
omega has a definite value, just like pi or
the number 3.)

Being a probability, omega has to be
greater than 0 and less than 1, because
some programs halt and some do not.
Imagine writing omega out in binary.
You would get something like
0.1110100.... These bits after the deci-
mal point form an irreducible stream of
bits. They are our irreducible mathe-
matical facts (each fact being whether
the bitisa O ora 1).

Omega can be defined as an infinite
sum, and each N-bit program that halts
contributes precisely 2N to the sum [see
box on preceding page]. In other words,
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each N-bit program that halts adds a 1
to the Nth bit in the binary expansion
of omega. Add up all the bits for all pro-
grams that halt, and you would get the
precise value of omega. This description
may make it sound like you can calcu-
late omega accurately, just as if it were
the square root of 2 or the number pi.
Not so—omega is perfectly well defined
and it is a specific number, but it is im-
possible to compute in its entirety.

We can be sure that omega cannot
be computed because knowing omega
would let us solve Turing’s halting prob-
lem, but we know that this problem is
unsolvable. More specifically, knowing
the first N bits of omega would enable
you to decide whether or not each pro-
gram up to N bits in size ever halts [see
box on page 80]. From this it follows
that you need at least an N-bit program
to calculate N bits of omega.

Note that I am not saying that it is
impossible to compute some digits of
omega. For example, if we knew that
computer programs 0, 10 and 110 all
halt, then we would know that the first
digits of omega were 0.111. The point is
that the first N digits of omega cannot
be computed using a program signifi-
cantly shorter than N bits long.

Most important, omega supplies us
with an infinite number of these irre-
ducible bits. Given any finite program,

no matter how many billions of bits
long, we have an infinite number of bits
that the program cannot compute. Giv-
en any finite set of axioms, we have an
infinite number of truths that are un-
provable in that system.

Because omega is irreducible, we
can immediately conclude that a theory
of everything for all of mathematics
cannot exist. An infinite number of bits
of omega constitute mathematical facts
(whether each bitis a 0 or a 1) that can-
not be derived from any principles sim-
pler than the string of bits itself. Math-
ematics therefore has infinite complex-
ity, whereas any individual theory of
everything would have only finite com-
plexity and could not capture all the
richness of the full world of mathemati-
cal truth.

This conclusion does not mean that
proofs are no good, and T am certainly
not against reason. Just because some
things are irreducible does not mean we
should give up using reasoning. Irreduc-
ible principles—axioms—have always
been a part of mathematics. Omega just
shows that a lot more of them are out
there than people suspected.

So perhaps mathematicians should
not try to prove everything. Sometimes
they should just add new axioms. That
is what you have got to do if you are
faced with irreducible facts. The prob-

g
u‘ll.nlllllmﬂ

al
=

ARLER

GOTTFRIED W. LEIBNIZ, commemorated by
astatuein Leipzig, Germany, anticipated many
of the features of modern aigorithmic
information theory more than 300 years ago.

lem is realizing that they are irreducible!
In a way, saying something is irreduc-
ible is giving up, saying that it cannot
ever be proved. Mathematicians would
rather die than do that, in sharp con-
trast with their physicist colleagues,
who are happy to be pragmatic and to
use plausible reasoning instead of rigor-
ous proof. Physicists are willing to add
new principles, new scientific laws, to
understand new domains of experience.
This raises what I think is an extremely
interesting question: Is mathematics
like physics?

ASCIENTIFIC THEORY is like a computer program
thatpredicts our observations of the universe.
Auseful theoryis a compression of the data; from
asmall number of laws and equations, whole
universes of data can be computed.

Mathematics and Physics
THE TRADITIONAL VIEW is that
mathematics and physics are quite dif-
ferent. Physics describes the universe
and depends on experiment and obser-
vation. The particular laws that govern
our universe—whether Newton’s laws
of motion or the Standard Model of
particle physics—must be determined
empirically and then asserted like axi-
oms that cannot be logically proved,
merely verified.

Mathematics, in contrast, is some-
how independent of the universe. Re-
sults and theorems, such as the proper-
ties of the integers and real numbers, do
not depend in any way on the particular
nature of reality in which we find our-
selves. Mathematical truths would be
true in any universe.

————
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Yet both fields are similar. In physics,
and indeed in science generally, scien-
tists compress their experimental obser-
vations into scientific laws. They then
show how their observations can be de-
duced from these laws. In mathematics,
too, something like this happens—
mathematicians compress their compu-
tational experiments into mathematical
axioms, and they then show how to de-
duce theorems from these axioms.

If Hilbert had been right, mathemat-
ics would be a closed system, without
room for new ideas. There would be a
static, closed theory of everything for
all of mathematics, and this would be
like a dictatorship. In fact, for mathe-
matics to progress you actually need
new ideas and plenty of room for cre-
ativity. It does not suffice to grind away,
mechanically deducing all the possible
consequences of a fixed number of basic
principles. I much prefer an open sys-
tem. I do not like rigid, authoritarian
ways of thinking.

Another person who thought math-

ematics is like physics was Imre Laka-
tos, who left Hungary in 1956 and later
worked on philosophy of science in Eng-
land. There Lakatos came up with a
great word, “quasi-empirical,” which
means that even though there are no
true experiments that can be carried out
in mathematics, something similar does
take place. For example, the Goldbach
conjecture states that any even number
greater than 2 can be expressed as the
sum of two prime numbers. This con-
jecture was arrived at experimentally,
by noting empirically that it was true for
every even number that anyone cared to
examine. The conjecture has not yet
been proved, but it has been verified up
to 1014,

I think that mathematics is quasi-
empirical. In other words, I feel that
mathematics is different from physics
{(which is truly empirical) but perhaps
not as different as most people think.

I have lived in the worlds of both
mathematics and physics, and I never
thought there was such a big difference

- Why Is Omega Incompressible?

between these two fields. It is a matter
of degree, of emnphasis, not an absolute
difference. After all, mathematics and
physics coevolved. Mathematicians
should not isolate themselves. They
should not cut themselves off from rich
sources of new ideas.

New Mathematical Axioms
THE IDEA OF CHOOSING to add
more axioms is not an alien one to
mathematics. A well-known example is
the parallel postulate in Euclidean ge-
ometry: given a line and a point not on
the line, there is exactly one line that
can be drawn through the point that
never intersects the original line. For
centuries geometers wondered whether
that result could be proved using the
rest of Euclid’s axioms. It could not. Fi-
nally, mathematicians realized that they
could substitute different axioms in
place of the Euclidean version, thereby
producing the non-Euclidean geome-
tries of curved spaces, such as the sur-
face of a sphere or of a saddle.

Iwishtodemonstrate thatomega isincompressible—thatone
cannotuse aprogram substantially shorter than N bits longto
compute the first N bits of omega. The demonstration will
involve a careful combination of facts about omega and the
Turing halting problem that itis so intimately related to,
Specifically, | willuse the fact that the halting problem for
programs up tolength N bits cannot be solved by a program that
isitselfshorterthan N bits [see www.sciam.com/ontheweb}.

My strategy for demonstrating that omega is
incompressible is to show that having the first N bits of omega
would teltme how to solve the Turing halting problem for
programs up to length N bits. It follows from that conclusion
that no program shorter than N bits can compute the first N bits
of omega. {Ifsucha program existed, | could use it to compute
the first N bits of omega and then use those bits to solve
Turing’s problem up to N bits—a task thatis impossible for such
ashortprogram.}

Now letus see howknowing N bits of omega would enable
me to solve the halting problem—to determine which programs
halt—for all programs up to N bits in size. Do this by performing
acomputationinstages. Use the integer K to label which stage
weareat:K=1,2,3,...

At stage K, run every program up to K bits in size for K
seconds. Then compute a halting probability, which we will call
omegag, based on all the programs that halt by stage K.
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Dmegag will be less than omega because itis based on only
asubsetof all the programs that halt eventually, whereas
omegais based onalf such programs.

AsKincreases, the value of omegak will get closer and
closerto the actual value of omega. Asit gets closerto omega’s
actual value, more and more of omegag’s first bits will be
correct—thatis, the same as the corresponding bits of omega,

And as soon asthe first N bits are correct, you know that you
have encountered every program up to N bits in size that will
ever halt. (Ifthere were anothersuch N-bit program, at some
later-stage K that program would halt, which would increase the
value of omegak tobe greaterthan omega, whichis impassible.)

Sowe canuse the first N bits of omega to solve the halting
problem forall programs up to N bitsin size. Now suppose we
could compute the first N bits of omega with a program
substantially shorter than N bits long. We could then combine
that program with the one for carrying out the omegag
algorithm, to produce a program shorter than N bits that solves
the Turing halting problem up to programs of length N bits.

But, as stated up front, we know that no such program
exists. Consequently, the first N bits of omega mustrequire
aprogram thatis almost N bits long ta compute them. That is
good enough to call omega incompressible or irreducible.
[Acompression from N bits to almost N bits is not significant for
large N.) —G.C.
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OMEGA represents apart of mathematics
thatisin asense unknowable. Afinite
computer programcan reveal oniy a finite
number of omega’s digits; the restremain
shrouded in obscurity.

Other examples are the law of the
excluded middle in logic and the axiom
of choice in set theory. Most mathemati-
cians are happy to make use of those
axioms in their proofs, although others
do not, exploring instead so-called intu-
itionist logic or constructivist mathe-
matics. Mathematics is not a single
monolithic structure of absolute truth!

Another very interesting axiom may
be the “P not equal to NP” conjecture.
P and NP are names for classes of prob-
lems. An NP problem is one for which
a proposed solution can be verified
quickly. For example, for the problem

“find the factors of 8,633,” one can
quickly verify the proposed solution
“97 and 89” by multiplying those two
numbers. (There is a technical defini-
tion of “quickly,” but those details are
not important here.) A P problem is one
that can be solved quickly even without
being given the solution. The question
is—and no one knows the answer—can
every NP problem be solved quickly?
(Is there a quick way to find the factors
of 8,633?) That is, is the class P the
same as the class NP? This problem is
one of the Clay Millennium Prize Prob-
lems for which a reward of $1 million
is on offer.

Computer scientists widely believe
that P is not equal to NP, but no proof is
known. One could say thata lot of quasi-
empirical evidence points to P not being
equal to NP. Should P not equal to NP
be adopted as an axiom, then? In effect,
this is what the computer science com-
munity has done. Closely related to this
issue is the security of certain crypto-
graphic systems used throughout the
world. The systems are believed to be
invulnerable to being cracked, but no
one can prove it.

Experimental Mathematics

ANOTHER AREA of similarity between
mathematics and physics is experimen-
tal mathematics: the discovery of new
mathematical results by looking at

www.sciam.com

many examples using a computer.
Whereas this approach is not as persua-
sive as a short proof, it can be more con-
vincing than a long and extremely com-
plicated proof, and for some purposes it
is quite sufficient.

In the past, this approach was de-
fended with great vigor by both George
Pélya and Lakatos, believers in heuristic
reasoning and in the quasi-empirical
nature of mathematics. This methodol-
ogy is also practiced and justified in Ste-
phen Wolfram’s A New Kind of Science
(2002).

Extensive computer calculations can
be extremely persuasive, but do they
render proof unnecessary? Yes and no.

In fact, they provide a different kind of
evidence. In important situations, |
would argue that both kinds of evidence
are required, as proofs may be flawed,

and conversely computer searches may
have the bad luck to stop just before en-
countering a counterexample that dis-
proves the conjectured result.

All these issues are intrigning but far
from resolved. It is now 2006, 50 years
after this magazine published its article
on Godel’s proof, and we still do not
know how serious incompleteness is. We
do not know if incompleteness is telling
us that mathematics should be done
somewhat differently. Maybe 50 years
from now we will know the answer. =

MORE TO EXPLORE
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