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An essential ability of a robot is to act in its environment by generating motions for

locomotion or manipulation. This can be a challenging problem on a robot with high

degrees of freedom. Although biped robots have shown drastic improvements with re-

gard to motion skills over the past few years, many approaches for generating motions

still need manual calibration due to variances in the hardware or inaccurate sensors

and actuators. This manual fine-tuning can be very tedious and time-consuming.

This thesis focuses on generating motions for humanoid robots automatically with-

out manual calibration. The first approach discussed uses parameter optimization

(e.g. CMA-ES, PSO) to directly optimize the joint angle trajectories for various mo-

tions and discusses the results and limits of this approach, the second part of this

research describes an approach for a dynamically generated walk that optimizes the

underlying physical model to improve the overall stability of the motion.

The first approach was used to create various motions used for a simulated NAO

robot in the RoboCup 3D Soccer Simulation League. Directly optimizing the joint

angles used during motions for specific tasks such as standing up or kicking a ball,

already produces results that are far superior to hand tuned motions. This approach

can yield good results in a short time by running multiple simulations in parallel. A

similar approach is described to stabilize motions generated from noisy motion capture



data. The motion of a human is captured using a Microsoft Kinect and mapped to the

robot’s joint angles. Parameter optimization is used to find parameters for functions

describing the angle trajectories of the captured motion without falling. Experiments

show that this approach works also on physical NAO robots. However, even when

using results from the simulation as a seed, it is still time-consuming on physical

robots and stresses the hardware.

Furthermore, some tasks require more flexible motions. Especially a walking mo-

tion needs to be generated dynamically including a component for reactive balancing

to react quickly to disturbances. These requirements and the deficiencies of the offline

motion optimization led to the model-based approach for generating a walk motion

dynamically described in the second part of this thesis. The developed walking en-

gine generates a walking motion by planning steps and moving the supporting leg

according to a linear inverted pendulum model (LIPM), which keeps the zero mo-

ment point (ZMP) within given constraints. The robot’s state is observed and used

to compensate for errors caused by disturbances and inaccuracies in the model. This

is a common approach, but due to variances in the hardware and the environment it

often still requires several parameters to be tuned manually. The objective of the de-

scribed approach is to improve an LIPM/ZMP-based walk by optimizing parameters

of the model using observations of the robots behavior while walking. Improving the

model produces better predictions of the robots behavior which yields a more stable

walk. The step planning is adjusted according to the modified parameters without

requiring manual calibration. This approach will be integrated in the RoboCanes

agent and tested using the RoboCup environment.
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Chapter 1

Introduction

Humanoid robots have, theoretically, the capabilities to perform tasks usually done

by a human in environments meant for humans. A wheeled robot for example can

not climb stairs or a robot without a human-like arm might have difficulties to open

a door. However, controlling a humanoid robot is difficult, for example due to the

high degree of freedom and complex physics.

A lot of research has been done in the area of controlling humanoid robots in

the past years. There is significant progress, but it is still a long way to go until an

humanoid robots can act autonomously and reliably in difficult environments. Over-

all, controlling an autonomous robot involves a wide range of areas, e.g. computer

vision, sensor fusion, decision making, planning or motion control. The goal of an au-

tonomous robot is mostly to interact appropriately with its environment and perform

certain tasks.

There can be different ways for a robot to interact with an environment. A robot

can interact with different types of actuators. For example, a robot can interact with
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people using speakers and text-to-speech software. However, most interaction requires

using the robot’s joints for locomotion and/or manipulation. Therefore, motions are

a crucial component to performing many tasks. Whether a task is possible to be

performed by a robot often depends primarily on (or is limited by) the robot’s motion

capabilities.

This also applies to the RoboCup soccer environment. The robots need to be able

to walk and dribble or kick the ball in order to play. The deciding factor in many

games at RoboCup is still the speed and stability of the motions.

1.1 Motivation

Generating motions on a humanoid robot that operates under the contraints of physics

can be a difficult and time-consuming process. Attempts to create even simple mo-

tions by manually adjusting angles or parameters are very tedious and often end

in failure [e.g., 88]. It is possible to create simple motions manually, such as arm

gestures. However, motions that have to use the correct angles to keep the robot

balanced are more difficult to create, since small changes in a few values can have a

big effect on the dynamics of the complete robot.

Humanoid robots can have a high degree of freedom. The NAO robot has a total

of 25 joints. These joints are controlled with 100 Hz, which means it is possible to

set different target angles for all joints 100 times per second. Thus, there is a stream

of 2,500 values per second controlling all the joints of the NAO. The large control

signal space, complex physics and limited computational resources make it difficult
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0 -10 8 -21 13 15 0 -18 20 -43 23 20 -90 10 -90 4 -90 -10 90 4 200

0 -10 8 -21 13 15 0 -18 -10 -65 40 20 -120 10 -90 4 -60 -10 90 4 200
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0 -10 8 -21 13 15 0 -10 8 -21 13 15 -90 10 -90 4 -90 -10 90 4 700

0 0 8 -21 13 0 0 0 8 -21 13 0 -90 10 -90 4 -90 -10 90 4 500

0 0 31 -60 29 0 0 0 31 -60 29 0 -90 10 -90 4 -90 -10 90 4 300

Figure 1.1: Manually created keyframes for a kick motion. Each line is one keyframe
consisting of 20 joint angles and one time interval.

to create whole body motions. Furthermore, due to variance in the hardware and

external disturbances, the robot never behaves exactly as it should according to the

given robot model. Often simplified physical models are used to reduce the amount

of computation, but they might add additional errors depending on the used model

and parameters.

A common approach for generating robot motions is to create a smooth motion by

interpolating between manually created keyframes. This approach is easy to imple-

ment, but creating the motions is still tedious and involves editing a lot of numbers

which are usually not intuitive to edit.

Figure 1.1 shows the keyframes for a kick motion that was created manually for

a simulated robot. This is an example for a motion that took a lot of effort to be

created. This kick motion works, but the motion is several seconds long and the ball

is not kicked very far.

Creating a motion this way for physical robots is even more tedious. Even when

the same robot type is used, the same motion will always produce slightly different

results for different robots due to hardware variances. One robot might fall to the left,
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another robot to the right. Changing the angles slightly for each robot is a possible

way to make the motion work, but maybe only until the robot fell a few times and the

joints behave slightly different. Another approach is to compensate hardware variance

by carefully calibrating each robot and fine-tuning several parameters, which is again

time-consuming.

A better approach on physical robots is generating a motion dynamically such that

it is able to balance and react to external disturbances. A kick could be generated

by moving the foot along a trajectory, while setting the other joints in a way that

the robot does not fall. Approaches like this can produce stable results. However, in

practice these approaches still involve many parameters. Besides the basic parameters

to generate the motion (coordinates for the kicking foot), there are also parameters

to deal with errors in the model and variances in the hardware, such as offsets for

the center of mass. Even with model based approaches, there is often a lot of manual

fine-tuning required.

Some motions do work without adjusting the parameters, but are not as good as

they could be. The fastest short-term solution is chosen very often and parameters

are changed manually. However, some parameters then have to be updated and

recalibrated regularly.

In summary, motions on humanoid robots always involve some fine-tuning of pa-

rameters, which can be direct joint angles, model parameters or calibration values.

In practice, those values are often adjusted manually. This time consuming pro-

cess should be avoided by adjusting motions automatically by using optimization or

learning.
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1.2 Goal

This thesis investigates approaches for generating motions for humanoid robots au-

tomatically using optimization methods. The overall objective is to generate stable

and robust motions and a stable walk for a humanoid robot that do not require

time-consuming manual parameter tuning. The motions should work on different

robot models (simulated and physical robots). It should be possible to adjust mo-

tions automatically to deal with variances in the robots hardware, the model or the

environment.

1.3 Overview

Chapter 2 describes the used environments, robots and some general concepts. Several

approaches for generating motions using offline optimization are described in chapter

3. For better results on physical robots we describe a model-based approach for

dynamic walking in chapter 4.

The appendix 4.4.1 provides information about the infrastructure and tools of the

RoboCanes framework.



Chapter 2

Background

This chapter provides background information, describes commonly used methods

and concepts and discusses related work.

Sections 2.1 and 2.2 describes the environments and robots used in this research

and some basic methods for motion generation. Section 2.3 explains some commonly

used models for dynamic walking with biped robots. Section 2.4 focuses on meth-

ods for learning or optimization in the context of motion control and describes the

optimization methods used in the next chapters.

2.1 Robots and Environments

This section describes the used environments and robots. We used two different

simulators and physical robots.

6
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2.1.1 RoboCup

The RoboCup is an international competition and symposium to foster research in

robotics and AI. The long term goal is to develop a team of autonomous robots by

2050 that can win again the human world champion in soccer. The main goal is not to

play soccer. The main goal is to develop methods for controlling autonomous robots in

a highly dynamic, partial observable, adversarial environment. Playing soccer serves

as a standard problem that is publicly appealing and easy to understand, but at the

same times provides many challenges and open problems for research.

Figure 2.1: Various RoboCup leagues.

RoboCup consists of several leagues that focus on different problems, use different

robots and environments. There are several soccer leagues that use different robot

types (e.g. the Standard Platform League, humanoid kid-size/teen-size/adult-size,

small-size, middle-size, simulation leagues), but also leagues that focus on rescue

scenarios or for example controlling service robots in a home environment.

This research uses the RoboCanes agent framework and is mainly based on work

done for the RoboCanes team in the Soccer 3D Simulation League and the Standard

Platform League (SPL). Since these leagues both concentrate on playing soccer with
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humanoid robots, the motions used for this work include e.g. walking, kicking a ball

and standing up, which are the most important motions for the used environment.

2.1.2 NAO Robot

Figure 2.2: The NAO robot.

The robot model used for the experiments is the NAO ([18], figure 2.2). The

NAO robot is manufactured by Aldebaran and is used as standard platform in the

RoboCup SPL league. The NAO is a humanoid robot with 21 (or 25) degrees of

freedom. All joints are controlled with 100 Hz. The joint angles and the current can

be measured. It has an accelerometer and gyroscope in the torso and force sensors

in the feet. Two cameras in the head provide images with 30 frames per second and

sonars in the front of the torso can be used to detect obstacles.

The experiments we conducted on physical robots were done using five NAO V4

H21 robots and a NAO V4 H25 (25 degrees of freedom, additional wrist and hand

joints). Although the H21 robots are supposed to be the same model, there are small
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differences in the joints and sensor values that often make an additional calibration

for each robot necessary.

2.1.3 Webots

Figure 2.3: The NAO in Webots.

Webots [49] is a simulator for various robots in different environments. It also

supports the Aldebaran NAO and is offered by Aldebaran as the NAO simulator. It

simulates the same interfaces as on the NAO for reading sensor values and controlling

the joints. As on the physical robot, the motion of the robot in Webots is controlled

by setting desired joint angles at a 100 Hz frequency. We use a simulated NAO V4

H21 in Webots. The dimensions and joints of the simulated robot are the same as the

physical robot, but the physical behavior is slightly different. The simulation adds

noise and is not completely deterministic, but it simulates a perfect NAO that did

not change from falling and general wear.
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Figure 2.4: Scene from a RoboCup 3D Soccer Simulation game in SimSpark, visual-
ized using RoboViz [81].

2.1.4 SimSpark

SimSpark (based on Spark [60]) is the simulator of the RoboCup 3D Soccer Simulation

League. The simulated robot is a humanoid robot that is similar to the NAO [18]. It

is equipped with 22 degrees of freedom, and receives sensor information and controls

the joints with 50 Hz. The physical behavior of the robots in SimSpark is less realistic

than the behavior of the NAO in Webots, but this simulator is very fast and allows

us to do a large number of experiments.

2.2 Motion Control on Robots

Controlling the motion of a robot with 21 degrees of freedom with 100 Hz means

setting the angles of 21 joints every 10 ms. This is a huge control space and looking

at the control signal as a stream of 2100 joint angles is not very intuitive. There are

several ways of representing motions by smaller and more intuitive representations.
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2.2.1 Keyframe Interpolation

Some motions can simply be generated by keyframe interpolation. Each keyframe

contains all joint angles at a given timestep. A smooth motion can then be generated

by interpolating between all values from one frame to the next. Especially upper

body motions can be created this way, since they do not have to be belanced and do

not make the robot fall easily.

However, defining the angles manually is tedious. One way to simplify creating the

keyframes, is to “knit” a physical robot to capture the joint angles for the different

poses. But if the legs are moved and/or the movements are fast, it is difficult to

manually create good keyframes and choose timesteps.

Nevertheless, this method is often used by RoboCup teams to create motions.

2.2.2 Trajectories in Cartesian Space

Instead of defining keyframes in joint space, the keyframes could contain positions of

the end effectors (e.g. the feet) in cartesian coordinates. These values are much more

intuitive to modify. At each timestep the foot positions only have to be transformed

into joint angles using inverse kinematics [96, 83, 3].

Instead of a linear interpolation, there can then be different ways of describing

the trajectory of the feet, different functions, splines or bezier curves. In the end the

motion is defined by the parameters of the foot trajectories.

Similar approaches can already be used to create a walk motion [11, 98]. Feet

trajectories can be used to create a parameterized walk motion. The parameters of
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the motion can then be found by optimization or learning.

2.2.3 Model-based / Dynamically Generated

Motions generated by keyframe interpolation or static trajectories that are created

offline can be tuned to work an a specific robot, but they are often not robust and

can not react to disturbances.

A better approach is to dynamically generate motions based on a simplified phys-

ical model. For example balancing can be done by keeping the robots center of mass

above the supporting polygon. Additionally, there are concepts such as the Zero

Moment Point (ZMP) that can be used for constraints on the motion to keep it

dynamically stable.

This can also be combined with predefined trajectories. A model-based balancing

for the support leg can be combined with a static trajectory for the kicking foot.

2.3 Bipedal Walking

Bipedal walking with robots is a large research field. A variety of research is done in

different areas such as balance controllers, step planning or the hardware design of

robots.

Some research is very specific, e.g. Sekiguchi and Tsumaki [76] explore the ef-

fects of different foot shapes or Hanazawa et al. [25] flexible actuators. Other topics

are biologically inspired designs [16] or designing robots to support heavy loads [8].

Another interesting area is passive dynamic bipedal walking to maximize the energy
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efficiency [31] or streched-knee walking [61]. These are just a few examples of work

done in the area of walking with robots.

We will focus more on generating motions for a robot such as the NAO robot.

There are several approaches for generating a walk motion. One approach mentioned

before is the optimization of a parameterized trajectories for the walk motion. An-

other approach is generating the oscillatory motion of the walk using a central pattern

generator (CPG), which need to be trained or use parameter search [99, 42]. Hong

et al. [28] also use a CPG to generate a walk with a changing height of the mass

using a simulated robot. The approaches that involve training or learning to generate

motions can be difficult to use on a physical robot. Random initial parameters can

create motions that might damage the robot and the number of iterations has to be

small. Some approaches are only evaluated using a simulated robot or at least an

initial learning is done in a simulator. However, transferring results from a simulation

to a physical robot can again cause problems, due to the different physical behavior

of the robot in simulation and reality (the reality gap [33, 46]).

Other approaches are model-based and do not necessarily need learning or opti-

mization for a stable walk. Model-based approached use simplified physical models,

such as the inverted pendulum [35]. These models can also be used to define con-

straints on CoM/ZMP trajectories for a stable walk [36] or for preview control or

model predictive control for walking [92, 82]. In Huang et al. [30] a ZMP-based

approach is use for walking on slopes or stairs.

Additionally, there are many approaches for balance controllers, for example for

lateral disturbance rejection [50], balancing through foot placement adjustment [53],
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ankle-, hip- and step-strategies [1, 100] or balancing based on contact forces [65].

These are only a few examples of research done in the area of bipedal walking with

robots. There is a lot of progress, however the results are often only evaluated in a

simulated environment. There is a gap between the methods that work in simulations

and the methods that have successfully been used on physical robots.

The simulation is a good environment for optimizing motions. However, the phys-

ical NAO can break easily and therefore a model-based approach has the benefit of

directly generating a reasonably stable motion without additional learning. Model-

based approaches use a simplified model to approximate the robots physical behavior.

Calculating the full-body physics of the robot is computationally too expensive. Also,

there are going to be errors from hardware variance and disturbances. Therefore, a

simplified model is usually sufficient.

Many approaches use the inverted pendulum model or the Zero Moment point

to calculate contraints for the motion to maintain stablility. Another approach is to

directly use the model to generate the motion. In chapter 4 the inverted pendulum

model is used for generating a walk for the NAO robot.

2.3.1 Zero Moment Point

The zero moment point occured very early in research about humanoid walking and

was defined by: “The distributed floor reaction force can be replaced by a single force

R that acts on the ZMP” (Vukobratovic and Stepanenko, 1972) [90] [91] [89].

As long as the robot is stable, the ZMP is equal to the center of pressure in the
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Figure 2.6: The cart-table model. [37]

support polygon. Figure 2.5 shows an example for forces on a supporting foot and

the ZMP, which can be calculated by p =
∫
xf(x)dx∫
f(x)dx

where x is a position inside the

supporting polygon and f(x) the force applied at that position. The robot is stable

as long as there is a ZMP inside the supporting polygon.

Figure 2.6 shows the cart-table model, which consists of a running cart on a mass-

less table. This model can be used to calculate the position of the zero moment point

for a given mass position and acceleration. The table is a rigid object. The cart



16

represents the mass, which applies a vertical force on the table from gravity. The

acceleration of the mass applies an opposite reaction force on the table.

The zero moment point is the position in the foot where the torque equals 0, which

yields equation 2.1. The torque at a position in the tables foot can be calculated as

tthe torque caused by two levers, the gravity pushing on a lever with length x − p

and the reaction force caused by the acceleration pushing a lever with the length zh

which is the height of the mass.

τZMP = Mg(x− p)−Mẍzh = 0 (2.1)

p = x− zh
g
ẍ (2.2)

This can be rewritten as the ZMP equation (2.2) for calculating the ZMP position for

a given x and ẍ. Using this equation it is possible to decide whether an acceleration

for a given mass position is safe and keeps the robot stable. If the ZMP would be

outside the supporting polygon, the robot is not stable anymore and would start

rotating around the edge closest to the ZMP.

There is a lot of related work in biped walking that uses the ZMP [101, 43, 64,

7, 79, 87]. Kajita et al. [36] generate a biped walking pattern by using a preview

control of the zero-moment point (ZMP). This ZMP controller can then be used to

compensate the ZMP error caused by the difference between a simple model and the

precise multi-body model of the robot. Munirathinam et al. [55] describe a hybrid

approach using ZMP constraints in an offline parameter optimization. A compilation

of ZMP approaches for biped walking can be found in Vukobratović and Borovac [89].
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2.3.2 Trajectory Generation
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Figure 2.7: ZMP and matching center of mass trajectory [37].

Since the ZMP has to be inside the supporting foot, the steps of the robot define

a desired ZMP trajectory (the reference ZMP trajectory). The robot has to move its

center of mass such that the resulting ZMP matches the reference ZMP. Figure 2.7

shows an example for a ZMP trajectory and a matching mass trajectory.

2.3.3 3D Linear Inverted Pendulum Model

The carted-pendulum model in figure 2.8 is the dual of the cart-table model. It can

be used to calculate the acceleration of the mass for a given position of the mass

relative to the cart using equation 2.3 with the origin position p, mass position x,

mass height zh and gravity g.

A 3D inverted pendulum models the movement of the mass in a similar way.
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Figure 2.8: The carted-pendulum model. [37]

θ

Figure 2.9: Example trajectories for the 3D inverted pendulum model and the linear
inverted pendulum model projected onto the xy-plane. [35]

A given ZMP position can be used as origin of the pendulum which defines the

acceleration of the mass. By assuming a constant mass height and zero input torque,

the movement of the 3D inverted pendulum can be described by two independent

linear functions for ẍ and ÿ [35].

ẍ =
g

zh
(x− p) (2.3)

Figure 2.9 shows an example movement of the 3D linear inverted pendulum and

the same trajectory shown in the xy-plane.
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2.4 Optimization and Learning

Since creating a stable, complex motion manually is very difficult, there have been

many approaches to use optimization or learning for generating motions.

Evolutionary strategies are used in [27] for learning a gait for a humanoid robot in a

simulator and on a physical robot. Similarly, Chernova and Veloso [6] use evolutionary

algorithms to learn a gait for a four legged robot.

Non-parametric methods such as dynamic bayesian networks and other proba-

bilistic techniques have been used largely in [21, 20, 62, 67, 29].

Learning or optimization of motions often requires many repetitions. Usually the

learning is first done in a simulation, before using a physical robot. Also, evaluating

bad parameters can already damage a physical robot.

2.4.1 Parameter Optimization

The optimization of the motions in chapter 3 is done using black box optimization

methods. The methods we used and compared are CMA-ES, xNES and PSO.

The Covariance Matrix Adaption Evolution Strategy (CMA-ES) algorithm [26, 41]

is one of the most widely used algorithms for parameter optimization. The family of

Natural Evolution Strategies (NES) [94, 93] algorithms are an alternative to CMA-

ES in order to perform real-valued black box function optimization. For medium size

dimensions, with highly correlated parameters, the exponential NES (xNES) [17, 72]

empirically shows significant performance compatible with CMA-ES. Particle swarm

optimizations [40] are simple and yet effective algorithms for optimizing a wide range
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of functions.

There are several existing approaches for using parameter optimization to learn

motions. For example, in Depinet et al. [13] CMA-ES is used for optimizing the

keyframes of a kick motion. The initial values are obtaining by observing another

robot.



Chapter 3

Optimization of Whole-Body

Motions

The approach for generating motions automatically described in this chapter uses

methods for parameter optimization to generate stable motions for humanoid robots.

We generated several motions for the simulated NAO robots in SimSpark needed to

play soccer and participate in the RoboCup 3D Simulation League (kick and stand-

up motions) in section 3.1. Section 3.2 describes a motion learning for imitating

captured human motions1. Section 3.3 describes the parallelization of these motions

in the simulator2. Section 3.4 applies the optimization of the captured human motions

on a physical robot and discusses the results.

1Section 3.2 is an extended version of “Motion Capture and Contemporary Optimization Algo-
rithms for Robust and Stable Motions on Simulated Biped Robots” [75] which I wrote together with
Justin Stoecker, Saminda Abeyruwan and Ubbo Visser.

2Section 3.3 is based on work from the Master Thesis of Piyali Nath, which benefited from my
infrastructure and advice.

21
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3.1 Optimization of Soccer Motions

The RoboCanes agent is used to participate in RoboCup 3D Soccer Simulation

League. The simulator used in this league is SimSpark. For playing soccer, the

agents have to be able to walk, kick the ball and stand up if they fall. The faster

these motions are, the better is the performance of the agent.

We improved most motions of the RoboCanes agent using parameter optimization

(CMA-ES). The disadvantage of this approach is the high amount of repetitions

needed to find a good parameter set. However, the simulated robot can not break

and SimSpark is a fast simulator that allows to run many evaluations in a short time.

The results of these optimizations increased the performance of the RoboCanes team

in the 3D Simulation significantly.

3.1.1 Special Action Optimization

The RoboCanes agent uses motions that are stored as “Special Actions”, lists of

keyframes consisting of joint angles and a timing value for the interpolation to the

next keyframe.

Some attempts had been made of creating these motions manually, but the re-

sult motions are slow and unreliable. However, these motions consist of only a few

keyframes and can be used as starting point for an optimization. We optimize these

motions by directly using all angle and time values of the special action as parame-

ters. The best parameter set found by the optimization can be saved as new special

action and directly replace the manually created motion.
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In [12] a similar optimization is used to optimize a kick motion that is defined by

keyframes, but the state space is reduced significantly by fusing joint values between

frames, if the angle does not change much. This reduction is neccessary for motions

that consist of a larger number of keyframes.

Reducing the state space might also improve the performance of our optimization,

but even without reducing the state space the optimization of the full keyframes is

able to improve the motions significantly. However, without using a working motion

as a seed, the optimization would get stuck in local minima and not be able to find a

good motion in this huge state space (¿ 100 parameters). Nevertheless, the seed can

be slow and unreliable and still allow the optimization to find better motions.

The RoboCup 3D Soccer Simulation League provides different heterogenous robot

types with different body part dimensions (e.g. wider hip, longer legs) or slightly

different joint behavior. To foster research in generating motions automatically, a rule

was introduced enforcing teams to use several different robot types in competitions.

Creating motions for each robot type can not be done manually. Instead, we can

use the optimization of the special actions to increase the speed and reliability of the

motions for each robot type.

Optimization of stand-up motions

In the 3D Soccer Simulation League, robots can not be damaged and there are many

collisions during a game. Robots fall very often and have to be able to stand up

quickly when they are lying on the front or on the back.

We manually created two special actions for standing up. These motions have been
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used in several competitions, but they are not very fast. However, these motions can

be used as seed in the optimization. The manually created “stand-up-front” motion

consists of 10 keyframes. Each keyframe consists of 20 joint angles (head joints are

fixed) and a time value for the interpolation. Therefore, the entire special action

is defined by 210 values that we can use as parameters to optimize. The “stand-

up-back” motion consists 8 keyframes and therefore requires 168 parameters to be

optimized.

The objective of the stand up motions is to bring a lying or falling robot as fast as

possible back to an upright pose from that it is able to start walking without falling.

To evaluation a set of parameter, the robot is initially lying on the front or back. The

motion is generated from the parameters and executed. After the execution of the

motion finished, the robot immediately starts walking into a varying direction for 2

seconds. The walking phase in the end is important to find stand up motions that

allow a fast transition into the walking motion.

We do not include the torso angle during the execution of the motion in the

fitness function to avoid local minima. Only the torso angle after the motion when

the robot starts walking is used. The smaller the sum over all measured torso angle

errors during the walking phase is, the more stable was the robot after the stand up

motion. If the robot falls while walking, there is a larger error. The earlier the robot

falls, the higher the error. Even if the robot does not stand up at all, the walking

phase is executed and the resulting large torso angle errors are used for the fitness.

Additionally to minimizing the torso angle error, the duration of the motion has to

be minimized to reduce the time needed for standing up.
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These two criteria yield the fitness function shown in equation 3.1, where taction

is the time in milliseconds used for executing the motion, ttotal is the total time for

standing up and walking, ObsTOt,up is a vector pointing upwards for the observed

torso orientation at time t and wtime defines the weighting between the torso angle

error and the duration of the motion (in our experiments wtime = 0.08).

fitnessstandUp = −
∑

t∈[taction,ttotal]

∠((0, 0, 1)T , ObsTOt,up)− taction ∗ wtime (3.1)

Since there is noise in the execution of the motions, we repeat the evaluation for

each set of parameters 30 times and use the average fitness to find a reliable motion.

Figure 3.1 shows the errors during the optimization of standing up from the front

with robot type 0. The optimization uses CMA-ES with a population size of 30.
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Figure 3.1: The dashed line shows the fitness for the manually created motion (stand
up from front). The optimization slowly increases the fitness by adjusting the angles
and timesteps in the keyframes of the motion.

Figure 3.2 shows how the duration of the motion and the error from the torso

angle change during the optimization. The optimization first reduces the torso angle

error and finds very stable, but still slow motions. It slowly reduces the duration,
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Figure 3.2: The duration of the stand up motion and the torso angle errors during
the optimization for robot type 0.

which adds more variance to the torso angles error. But some parameters produce

fast and stable motions and in the end only the best motion found will be used.

The optimization slowly reduces the time for the interpolation between the keyframes.

When a time reaches 0, the keyframe can be completely removed from the motion.

This is done in the end to keep the same number of parameters during the optimiza-

tion. This shorter motion could also be used as seed with less paramters for a new

optimization using the same or also other robot types.

Figure 3.3 and 3.4 show the minimum errors for both stand up motions on different

robot types in SimSpark. Each of these optimizations ran for more than 40 hours on

an Intel i7-5930K, but once a good motion is found it can be used in SimSpark for

that robot type without further changes.

The tables 3.1 and 3.2 list results of the stand up motion optimization for the

different robot types in SimSpark. These values are the average results for letting

the robot 1000 times fall and stand up. As for the optimization, the robot starts to

walk directly when the stand up motion finishes. After 2 seconds of walking the torso
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Figure 3.3: The maximum fitness during the optimization for the stand up front
motion for all different homogeneous robot types in SimSpark.
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Figure 3.4: The maximum fitness during the optimization for the stand up back
motion for all different homogeneous robot types in SimSpark.

angle is used to decide wether the stand up was successful (using a threshold of 30

degrees). If the robot was able to start to walk and is stable, the angle is most of

the time less than 10 degress, if it falls it is about 90 degrees. The seed motion was

created manually for robot type 0. Therefore, the success rate is lower for the other

robot types.

The success rate is not much improved, but the time needed for the motion is

reduced by 50% to 75%. Using a higher weight for the torso angle error in the fitness

function would yield slower motions with a higher success rate. We chose a high weight
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robot type manual optimized improvement
time success time success

0 2660 80.6% 620 86.4%
1 2660 64.6% 960 90.0%
2 2660 65.2% 720 91.6%
3 2660 65.6% 1060 93.7%
4 2660 77.0% 680 81.8%

Table 3.1: The time needed and success rate for the manually created stand up from
the front and the optimized motions for different robot types in SimSpark.

robot type manual optimized improvement
time success time success

0 2880 96.7% 860 95.7%
1 2880 78.3% 680 84.5%
2 2880 94.5% 1100 88.9%
3 2880 77.7% 940 77.5%
4 2880 79.5% 1200 90.1%

Table 3.2: The time needed and success rate for the manually created stand up from
the back and the optimized motions for different robot types in SimSpark.

on the duration, because in the simulation the robots can not break and if the first

attempt to stand up fails the motion can be repeated very quickly. This configuration

turned out to perform better in most games in the RoboCup 3D Simulation League.

Optimization of a kick motion

The same optimization as for the stand up motions can also be used to optimize a

kick motion. The only differences are that the ball needs to be positioned before

executing the motion and the fitness function has to be extended. Furthermore, we

added two parameters to the optimization for the ball position relativ to the robot.

The errors used for the fitness of the stand up motions, can also be used for the

kick, since the kick motion should not make the robot fall and it should be a short

motion that can be executed quickly. Thus, these errors still have to be minimized.
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Additionally, we have to maximize the distance the ball moved. The maximum height

reached be the ball is also used to give a slightly higher fitness to kicks that make the

ball fly, which reduces the friction and helps with finding long kicks faster.

fitnesskick = kickDistance ∗ wdist +min(1.0, kickHeight) ∗ wh

−
∑

t∈[taction,ttotal]

∠((0, 0, 1)T , ObsTOt,up)− taction ∗ wtime
(3.2)

The extended fitness function used for optimizing the kick is shown in equation 3.2,

where kickDistance is distance the ball traveled and kickHeight is the height reached

by the ball (limited to 1m).

The more values are included in the fitness function, the more difficult does it

get to choose good factors to combine these values. If is duration of the motion is

emphasized to much, the result might be a motion that only takes milliseconds and

does not kick the ball at all. After some experiments we found the values wdist = 30,

wh = 120 and wtime = 0.08 to produce fast, long kicks. Using these values, the results

are not the longest kicks seen in the 3D Soccer Simulation League (e.g. [12]), but the

kicks can be executed very fast.

Similar to the trade off between kick distance and the duration of the motion, we

also added random noise to the initial ball position to find kicks that are more reliable.

Optimizing the kick for an exact ball position might yield longer kick distances during

the optimization, but the robot will not be able to position itself close enough to this

position during a game, such that the result would be much shorter kicks. In our
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experiments, we position the ball randomly in a 2 cm x 2 cm area, which will later

allow the robot to position very quick and use the kick more often during a game.

The maximum fitness found during the kick optimizations for the different robot

types is shown in Figure 3.5.
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Figure 3.5: Maximum fitness values found by the optimizations of the kick special
action using different robots types.
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Figure 3.6: Kick distances and times of the kicks during the optimization using type
0.

Figure 3.6 shows the best kick distances and the duration of the motion during

the optimization for robot type 0. The initially 3 meter long kick that takes more

than 3 seconds is changed into a 12 m kick that only needs 0.7 seconds.
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robot type manual optimized improvement
time distance time distance

0 3500 3.2 500 12.1
1 3500 3.8 1300 11.2
2 3500 0.4 460 13.7
3 3500 3.3 1460 13.9
4 3500 3.2 1320 14.2

Table 3.3: The time needed and kick length for the manually created kick and the
optimized kicks for different robot types in SimSpark.

The results for all robot types are summarized in table 3.3. The optimization

improved the kicks for all robot types significantly. Most importantly, the time needed

for the motion is much shorter. A 3 second motion can almost always be interrupted

by an opponent. A kick motion that needs less than a second can be used in a lot

more situations in a game.

3.1.2 Optimization of Low-level Behaviors

The kick optimization positioned the robot close to the ball and executed the motion

that is optimized. However, the best kick motion does not make a difference in a

game, if the robot can not position itself correctly at the ball or needs too much time

for the positioning. This, we also optimized the kick positioning behavior similar to

the special actions optimization.

The kick positioning behavior controls how the robot approaches the ball, how

it walks around the ball if necesssary, how it positions to kick into a given direction

and when to start the kick motion. We use 8 parameters: 5 for the walk target to

approach the ball (distance to ball while walking around the ball, angle thresholds for

walking around ball, speed factor to slow down) and 3 for the target position relative
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to the ball (x and y coordinates, distance threshold to start kick). The direction of

the kicks is not a parameter, but observed and saved such that the positioning can

use the correct orientation to kick towards a target position during a game.

Since there are only 8 parameters, the values can be chosen manually. However,

the results are usually either a too accurate which yields reliable kicks but takes

too much time, or the positioning is fast but unreliable. The positioning might also

perform better with individually tuned parameters for the different robot types in

SimSpark. Therefore, we optimize the parameters automatically using CMA-ES for

each robot type and for different kicks. The robot is positioned with a random

orientation in 1.5 m distance from the ball. This is repeated with several different

angles for each parameter evaluation.

The optimization uses the fitness function in equation 3.3 to increase the kick

distance and reduce the time it takes to position and the kick angle standard deviation

for fast and reliable kicks.

fitnessstandUp = kickDistance ∗wdist + kickAngleStdv ∗wangle− taction ∗wtime (3.3)

Figure 3.7 and 3.8 show the results of an example run of the optimization using

the optimized kick special action and robot type 0. Since the number of parameters

for the kick positioning is small, it is easy to manually set values that work and let the

robot kick. However, the positioning takes too much time and many kicks are short

because the robot did not reach the best position. For the long kicks, the optimization

using CMA-ES with a population size of 15 finds better parameters after only a few
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iterations (Fig. 3.7). The average kick distance is increased from 5.7 m to 10 m, while

the average time to position is decreased from an average of 8.2 to 5.4 seconds.
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Figure 3.7: Fitness values during the kick positioning optimization for the long kick
(the optimized special action) using robot type 0.
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Figure 3.8: The best kick distances and positioning times during the optimization of
the long kick compared to the values reached by the manually chosen parameters.

We optimized the positioning behavior for the optimized long kick special action,

but also for a simple short kick that can be executed very quickly. The motion for

this fast kick is generated only by setting a high torque for the hip joint in only a few

frames (total time 60 ms). This trivial motion does not have to be optimized, but it

depends a lot on the positioning. Manually selected parameters result in unreliable
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kicks and the robot often misses the ball completely. Since the actual kick motion for

this quick kick can be executed almost instantly, we apply small random velocities to

the ball while the robot is positioning to optimize for situations in a game where the

ball is moved by an opponent.
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Figure 3.9: Fitness values during the kick positioning optimization for a quick forward
kick using robot type 0.
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Figure 3.10: The best kick distances and positioning times during the optimization
of the quick kick.

Figure 3.9 and 3.10 show the results of the kick positioning optimization for a

quick forward kick. The distance is improved from 1.7 to 2.8 m. The time for the

positioning is only slightly improved from 5 to 4.7 seconds, but before the kick fast
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started quickly in a wrong position which caused the average distance to be only 1.7

m.

The special action and kick positioning optimizations clearly show the benefit of

optimizing motions and low level-behaviors for a simulated robot. The optimization

of the positioning makes it possible to use the very fast kicks in almost any situation

during a game. The manually created kick special action has never been used in

games. It is better to not kick at all, if the kick is to short and takes too much

time. Using the special action optimization we were able to create a kick motion

for long kicks that is fast enough to be used during games. The faster and more

reliable motions created using the optimization increased the team’s performance in

the RoboCup 3D Soccer Simulation League significantly.

3.2 Kinect Motion Capturing and Optimization

In order to avoid the time-consuming process of manually generating motions, we

propose a methodology and a framework to use motion capture with inexpensive

equipment to record and map human motions to be deployed on humanoid robots.

The immediate problem with this approach is that the humans and the humanoid

robots do not share the same motor capabilities, range of motions, dimensions, masses,

and other physical attributes. In order to alleviate these constraints, we assume

that the dimensions and the body part masses of the humans and the robots are

approximately equivalent. With this assumption, (1) the motion processing stage

maps from human motion space to a specific robot motion space; and (2) the motion
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optimization state optimizes the robot motions to be deployed on humanoid robots.

3.2.1 Related Work

There are numerous systems exist that enable effective human motion tracking. Per-

haps the most familiar of these systems is marker-based optical motion capture [e.g.,

4, 73]. A user typically wears a suit with several reflective markers that are recorded

by several overhead cameras, and the positions are triangulated. An example of mo-

tion mapping using an optical marker system with the NAO robot is demonstrated in

Setapen et al. [77]. There are other motion capture systems, some are based on iner-

tial systems either partly or fully, [e.g. 102, 45, 80] or optical methods [23, 9]. Ziegler

et al. [102] propose a tracking approach that aims to provide globally aligned full

body posture estimates by combining a mobile robot and an inertial motion capture

system. The mobile robot uses a laser scanner to anchor pose estimates of a person

that is being tracked. Könemann and Bennewitz [45] use an inertial sensor system

for whole body imitation. They actively balance the center of mass of the robot over

the support polygon of the robot’s feet to achieve stability. Optical motion tracking

is used mainly in the video/gaming industry where numerous synchronized cameras

are used to reconstruct the body posture of the performer [23]. Cole et al. [9] collect

human body motions from a camera, map them onto a biped robot and then use a

learning-based probabilistic dynamic balance model to dynamically obtain a stable

sequence of motions on the robot. One major downside to these systems is that they

usually require large labs with expensive equipments, software, and time.
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The most related work to our approach has been introduced by [59]. Their work

describe a system that has the ability to reproduce imitated motions on a DARwIn-OP

humanoid robot continuously, on-line, and in real-time using the motions captured

from a Kinect sensor. Our work also involves mapping from captured motions to

humanoid robots, but differs in that we do not elicit any constraints on the dynamics

of the captured motions, and we use off-line parametric optimization techniques.

Our motion capture experiments were performed with the first version of Mi-

crosoft’s XBox 360 Kinect sensor3; while not as accurate as more expensive platforms,

our hypothesis is that the Kinect provides a sufficient level of detail and is easily ac-

cessible to researchers without the funds or space for a dedicated motion capture lab.

Even with a system that provides low-noise tracking, a significant challenge remains

in stabilizing the robot when motors are actuated; mapping of human to robot joints,

particularly in the legs, will often result in instability such that the robot falls over.

After acquiring motions either manually or with other methods, the mapped robot

motions need further optimization in order to achieve maximum performance and/or

robustness [48, 12].

Evolutionary algorithms (EA) have been applied largely for this and have been

proven to deliver acceptable results. Amor et al. [2], for instance, mention the use

of EA to adjust the features of a mapped motion until the result is stable. Another

examples has been carried out by Theeravithayangkura et al. [84] who use EA to find

the most suitable posture for each virtual plane created during body compensation in

adaptive biped robot gait control. Grimes et al. [22] learn a nonparametric model of

3http://www.microsoft.com/en-us/kinectforwindows/



38

Nao
Mapper

OpenNI

NITE
Skeleton
TrackerKinect Robot

Model
Joint

Recorder

RoboCanes
Agent

motion
�le

Robot
Scene

learning

joint positions
& f,r,u vectors

skeleton
data

sensor
data

Euler
angles

Figure 3.11: The motion capture processing pipeline. Each color designates a separate
software or hardware component: the OpenNI framework is shown in purple; the
motion capture mapping and recording is green; finally, the balancing is done on our
RoboCup soccer simulation agent in brown.

forward dynamics from constrained exploration to infer actions and full-body imita-

tion. Other authors do not attempt to solve the balancing problem and focus entirely

or partly on imitating and mapping the upper body [47, 69].

In addition to these systems, there are popular model-based methods to plan tra-

jectories of the motions. Kim et al. [44] have produced stable whole-body motions

from motion capture by imitating a zero moment point (ZMP) trajectory of a simpli-

fied human model and dynamically adjusting the pelvis for balance. PETMAN [58]

also uses motion capture data with model-based approaches for different activities.

We use the parameter optimization methods CMA-ES, PSO and xNES in the

optimization stage (see section 2.4.1).

3.2.2 Human Motion Capture

The Kinect itself does not generate motion capture (MoCap) information, but it

provides color and depth images (RGB-D) that can be used to track a user’s body.
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Figure 3.12: The human motion capturing using kinect and mapping to the NAO
model.

Microsoft’s Kinect SDK4 and an open source alternative, OpenNI [63], both imple-

ment skeletal tracking algorithms. OpenNI is a framework that provides an interface

to a variety of natural interaction (NI) devices, such as vision or audio sensors, that

record motion and sound for the purpose of human-computer interaction. Rather

than directly providing implementations for all imaginable sensors, both low-level

and high-level features of the OpenNI API are enabled by middleware packages. We

chose to use OpenNI over the Kinect SDK as it can be used with non-Windows op-

erating systems and provides access to existing and future NI devices, such as the

Xtion Pro5. The PrimeSense NITE [66] middleware enables skeleton tracking for the

Kinect sensor.

4http://www.microsoft.com/en-us/kinectforwindows/develop/beta.aspx
5http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO/
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Figure 3.13: In (a), the OpenNI user skeleton model in the calibration pose. In (b)6,
the physical NAO model with all joints at 0 degrees rotation. Hinge joints in the NAO
are represented as cylinders through the respective rotation axis. In (c), example pose
mapped from the skeleton model to the robot model.

An overview of our motion capture processing pipeline is shown in Fig. 3.11.

The Kinect is connected to a single machine by USB and provides raw sensor data

to the OpenNI framework. The NITE middleware provides the skeletal tracking

algorithms. Our client software uses the Java library and API to register as a listener

to skeleton data updates from OpenNI. Immediately after receiving an update, the

joint positions and calculated orientation vectors are packaged into a data structure

that is passed on to the mapper module that modifies the state of the current robot

model. For our experiments, a mapper was written specifically for the simulated

NAO, though the robot model and mapper are interchangeable components and can

be easily reconfigured for another robot. Finally, a real-time visualization displays

the updated model (without physics) and the angles of the model are written to a

motion file. This motion file serves as the input for our agents that adjust the angles

to ensure a stable motion.

When OpenNI is configured to provide user tracking, data is presented as a skele-
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ton model that approximates the motions of a human user. This skeleton model is

defined by fifteen joints, each containing a position in sensor space; these joints are

shown in Fig. 3.13a. To map the OpenNI user skeleton to the simulated NAO model,

we first calculate two local coordinate systems for the user skeleton in terms of the

vectors f (forward), r (right), and u (up); one coordinate system has the upper torso

as the origin, and the second has the lower torso as the origin. For the upper body,

which is used to calculate the arm angles: f = (l shoulder−torso)×(r shoulder−torso),

r = r shoulder − neck, and u = r × f . For the lower body orientation, which is used

to calculate the leg angles: f = (r hip − torso) × (l hip − torso), r = r hip − l hip,

and u = r × f . Finally, the f , r,u vectors for both the upper and lower body are

normalized to unit length.

Once the skeleton coordinate systems are established, Euler angles are computed

for the joints in the NAO model. Our mapping approach uses the vectors between

skeleton joint positions to calculate the NAO joint angles; this approach can be ex-

tended to any robot model consisting of revolute joints. Inverse kinematics could be

used as an alternative approach to determine joint angles, although it introduces a

degree of unpredictability: the trajectory of intermediate joints in a kinematic chain

are not guaranteed to follow the motion of the human. Furthermore, our goal is not

to position the end effectors of the robot, but instead to ensure the relative angles of

body parts are correct; a 90◦ bend in the human’s elbow should result in a 90◦ bend

in the robot’s elbow. For these reasons, a direct calculation of the joint angles is the

6http://scienceblogs.com/startswithabang/2012/05/27/weekend-diversion-and-here-

come-the-robot-zombies/nao-robot-dof/
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Figure 3.14: Using OpenNI skeleton joint vectors calculate to Euler angles for the NAO
joints θs = l shoulder pitch, ϕs = l shoulder roll, ψe = l elbow yaw, and ϕe = l arm roll.
The X,Y,Z vectors correspond to f ,−r and u for the upper body.

most appropriate. Figure 3.13c shows an example pose mapped from the skeleton

model to the robot model. Unfortunately, the NAO’s head and foot angles must

be ignored, as the skeleton does not provide enough information to determine their

orientations (see Fig. 3.13).

Each NAO arm has four joints that apply rotation in the following order: shoulder

pitch (θs), shoulder roll (ϕs), elbow yaw (ψe), and elbow roll (ϕe). Fig. 3.14 illustrates

the calculation of these angles for the left arm. Using the joints of the OpenNI

skeleton, the bicep vector from l shoulder to l elbow, B, is projected onto the plane

spanned by X and Z to get BP = X(X ·B) + Z(Z ·B). From this, we also calculate

the bicep normal BN = BP×B
|BP×B|

. The shoulder pitch θs = ∠(X,BP,Y), where the

notation ∠(U,V,R) means the angle that rotates vector U into V around R. The

shoulder roll ϕs = ∠(BP,B,BN). After the shoulder joint angles are calculated,

the elbow joint angles are found using the same process. The forearm vector F is

found from l hand to l elbow, and the forearm normal FN = F×B
|F×B| . The elbow yaw
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ψe = ∠(BN,FN,B) and the elbow roll ϕe = ∠(B,F,FN).

For the legs, we observe that the hip, knee, and foot joints form a plane in space

(see Fig. 3.15). The hip yawpitch and hip roll angles establish the orientation of this

plane, and the hip pitch and knee pitch angles rotate the leg with in this plane. The

current thigh vector T (knee - hip) and shin vector S (foot - kee) can be used to deter-

mine all angles for the leg. We initialize a lookup table to store the hip yawpitch and

hip roll angles as well as the thigh vector used in the calculation: forward kinematics

is used to iterate over possible combinations of these angles, and the normal vector

of the leg plane is used as the key. To retrieve the hip yawpitch and hip roll angles

during mapping, the current leg normal (the cross product of the thigh and tibia

vectors from the skeleton) is compared with normals in the lookup table. The knee

pitch θk = angle(ST,N). The hip pitch θH = ∠(T,ZH,N) where ZH is the thigh

vector stored in the lookup table.

X
-Y

-Z
S

T

N

ZHθK

θH

Figure 3.15: Calculating the NAO leg joint angles using the OpenNI joint vectors.
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3.2.3 Optimization for Stabilizing Captured Motions

The MoCap framework provides a set of traces for each motion. These motions have

variable durations, and are inherently noisy. The MoCap framework captures traces

only for most of the angles, but any unknown angles (e.g., head, ankle pitch, and

ankle roll) default to zero. The direct replay of the captured motions (interpolated to

the robots control cycle frame rate) causes the agent to fall, since the mapping of the

human motion to the robot does not consider physics or the masses and capabilities

of the robot. The sequences of joint angles provided by the direct mapping have

to be adjusted to obtain a stable motion. This is the main problem that we are

addressing in this section. Given some motions as input, we extended our framework

to (1) construct models of the motions; (2) initialize the model parameters using

maximum likelihood and least squares methods; (3) optimize the prior parameters to

follow the original motions; and (4) find the joint angle traces that can be replayed

by the robot without falling.

Models and Initialization

A motion consists of a sequence of target angles for each joint. These sequences

consist of e.g., 50 angles per second for the joint control. Instead of adjusting these

angles directly, we create models for the movements of the joints. By approximating

the given joint angle traces with functions, only a relatively small set of parameters

has to be optimized to achieve the correct motions on the robot.

We use linear function approximation with fixed nonlinear basis functions of the
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input variables to build the motion models. Each motion file contains 22 traces of

target angles, which corresponding to 22 degrees of freedom available on the robot.

Each trace has M sampling points. We select K traces from the motion file to

build models depending on the complexity of the problem. We use linear function

approximation to build motion models for each of the K traces. A trace comprises of

M observations {xm}, where m = 1, . . . ,M , x1 is the trace start time while xM is the

trace end time such that xi < xj for all i, j ∈ [1, . . . ,M ] and i < j, and xm ∈ R≥0,

together with the corresponding target angles {tm}, where tm ∈ R. For each input

pair, (xm, tm), we create a feature vector, φ(xm) ∈ RN , where N ∈ N>0, using a

suitable form of basis function expansion. We use a model of the form y(xm,θ) =∑N
j=0 θjφj(xm) = θTφ(xm), where φj(xm) is a component of the the feature vector

with φ0(xm) = 1, θ = (θ0, . . . , θN)T, and φ(xm) = (φ0, . . . , φN)T. Therefore, there are

N+1 number of parameters in the model. With the choice of suitable basis functions,

we model arbitrary nonlinearities in the input traces. Basis functions take many

forms, and we use polynomial basis functions of the form φj(xm) = xjm, or sigmoidal

basis functions of the form φj(xm) = σ(
xm−µj

s
), where σ(a) is the logistic sigmoidal

function defined by σ(a) = 1
1+exp(−a) , µj fixes the location of the basis functions

in the input space, s represents the spacial scale, and j ∈ [1, . . . , N ]. Polynomial

basis functions are global functions of the input, which cause changes in one region

to affect all the other regions. On the other hand, sigmoidal basis functions are

local, and a small change to input only affect some of the nearby basis functions.

The application of global and local basis function can have a significant influence on

the optimization. We independently minimize the objective functions
∑M

m=1(tm −
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θTφ(xm))2 using ES/PSO algorithms to find the maximum likelihood parameters for

the K traces. These models use a total of K × (N + 1) parameters, which will be

subjected to further optimization in subsection 3.2.3 to obtain stable motions.

Model Optimization

The evaluation of the models with the initial parameters provides approximately close

enough traces to the original motions. A replay of a motion with the respective model

initially fails to capture the desired outcome of the original motion. The joints are

moved according to the input motion. However, depending on the specific robot

model (e.g., the masses of body parts) it is necessary to change the motion slightly.

The initial optimization of the model parameters is used as a seed for the op-

timization of the motion for stability on the robot. This task is an optimization

problem with two conflicting objectives. Following exactly the joint angles provided

by the MoCap does not guarantee that the outcome is the correct motion. For in-

stance, for a kick motion the robot could fall back and kick into the air, which might

follow exactly the given joint angles. This can be avoided by including the captured

torso orientation of the human for every time step in the motion capture data as a

desired torso angle. This captured torso angle can be compared with the robots torso

angle during the execution of the motion. The torso orientation of the simulated

robot is provided by the simulator as ground truth. The distance to the desired torso

orientation is one component of the fitness function (torso error). Additionally, the

changes in the joint angles (joint error) have to be small to make sure that the final

result is close to the captured motion, e.g., a kick motion should not be stabilized by
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removing the actual kick from the motion. Thus, the differences between the joint

angles provided by the MoCap and the measured joint angles from the robot are the

second component of the fitness function. The Equation 3.4 calculates the torso angle

errors while the Equation 3.5 calculates the joint angle errors:

M∑
t=1

max
i∈{forward,up,side}

(∠(MoCapTOt,i, ObsTOt,i))
2 (3.4)

M∑
t=1

K∑
j=1

(MoCapAnglet,j −ObsJointAnglet,j)2 (3.5)

where MoCapTOt,i represents the MoCap torso orientation and ObsTOt,i repre-

sents the observed torso orientation at time t for forward, up, and side angles, and

MoCapAnglet,j represents the MoCap captured joint angle and ObsJointAnglet,j rep-

resents the observed joint angle for time t for joint j. The combination of the Equation

3.4 and the Equation 3.5 is the input to the parameter optimization algorithms.

We use ES/PSO algorithms again to optimize the model parameters until the

desired motion is learned. In this phase, we optimize K×(N+1) parameters directly.

We use the sum of the torso errors and the joint errors over all frames of the motion as

the fitness to perform real valued black box function optimization. We have decided

to optimize only the traces of the agent’s legs. There are twelve such traces for each

motion. Therefore, we directly optimize 12× (N + 1) parameters (e.g., if we were to

commit to a polynomial model with eight parameters, we optimize 12× (7 + 1) = 96

parameters.
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(a) (b)

(c) (d)

Figure 3.16: These screenshots show the motions we have used in the experiments: (a)
lifting the leg, (b) a kick, (c) bending forward and balance, (d) leaning to the side. The
poses in (c) and (d) look similar, but for the balance motion (c) the torso is moved only
forward and not sideways as in the side balance (d).

3.2.4 Experiments using Simulated Robots

We use four different motions in the experiments (cf. Fig. 3.16) in which the robot

(1) lifts the right leg for a few seconds (motion leg); (2) performs a simple kick

motion (motion kick); (3) leans forward and balances on one leg while stretching

the other leg back (motion balance); and (4) leans the torso to the side (motion

side). The joint motions are modeled using two different function approximations,

which are linear: polynomials and weighted sigmoidal basis functions. These models

are initialized by minimizing the least squared error to the input angles. Using the

initial parameters as a seed, the twelve leg joints are optimized by CMA-ES, xNES,

and PSO using the fitness function based on the joint and the torso error explained
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in subsection 3.2.3.

In [88], twelve parameters were learned with a population size of 30; since we

optimize up to 96 parameters, we use a higher population size of 50 for all optimization

methods. CMA-ES and xNES start with the parameters from the initialization of the

models as the mean and a standard deviation of 0.06, which produces a suitable

amount of exploration in the beginning of the optimization. The samples for PSO are

initialized using the same mean and standard deviation. Our PSO implementation

uses the parameters proposed in [5]. To calculate the fitness function; the robot is

initialized to the pose in the first frame of the motion. While the motion is executed

using the current parameters, all torso and joint errors are added; these errors are

used as the fitness of the tested parameters.

We did not learn the transition from and to different motions in this paper. The

evaluation of a parameter set starts with a short preamble phase during in which the

robot moves all joints to the angles at frame zero of the motion. The robot is also

moved to an initial torso position using an operator interface of the simulator. This

way, the motion is always started from the same initial situation. At the end of the

motion, the robot keeps the joints at the angles from the last frame for half a second.

During this time, the torso and joint errors for the evaluation are still accumulated;

this prevents learning of motions that are unstable in the end and would make the

robot fall immediately after the motion is done. Transitions could be learned by using

different angles in the first or last frame, which is planned as future work.

The first set of experiments were conducted using SimSpark. The fast simulation

speed allowed us to run many experiments and obtain good average results for differ-
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(a) (b)

Figure 3.17: (a) The captured leg joint angles of the balance motion. (b) Two examples
for leg joint motions (l knee pitch and r hip pitch) during the balance motion with the
corresponding models using the initial parameters and the adjusted models of the stabilized
motion. A small difference in the joint angles is sufficient to stabilize the motion.

ent models and optimization algorithms. To prepare running the optimization on the

physical Robot, we ran similar experiments in Webots, which runs slower, but has a

more accurate NAO model. In the final experiments we use the physical NAO.

Experiments in Simspark

Table 3.4: The errors after learning for five hours simulated time using polynomials with
five parameters as models (average over 30 runs).

Motion Optimization evals min.err. avg.err. stddev torso err. joint err. success

leg CMA-ES 2989 0.009 0.016 0.004 0.006 0.009 83%
leg PSO 2987 0.006 0.058 0.154 0.049 0.009 70%
leg xNES 2990 0.013 0.017 0.003 0.007 0.010 86%
kick CMA-ES 4926 0.018 0.027 0.005 0.011 0.016 60%
kick PSO 4924 0.015 0.135 0.210 0.106 0.029 46%
kick xNES 4931 0.023 0.037 0.047 0.020 0.017 60%
balance CMA-ES 2970 0.051 0.096 0.076 0.046 0.050 60%
balance PSO 2971 0.072 0.807 0.403 0.720 0.088 13%
balance xNES 2971 0.047 0.089 0.153 0.050 0.039 60%
side CMA-ES 1816 0.432 1.351 0.466 1.203 0.149 0%
side PSO 1816 0.474 1.634 0.370 1.505 0.129 0%
side xNES 1816 0.401 1.229 0.490 1.092 0.137 0%

For the model of the first experiment, we used polynomial basis functions with

five parameters. Fig. 3.17a shows the joint angles of the balance motion, and Fig.
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Figure 3.18: The learning curves for different motions using polynomials of degree four.
The motions for the twelve leg joints were optimized using CMA-ES, PSO and xNES. The
error is the minimum total error (joints MSE + torso angle MSE) averaged over 30 runs.
The error bars represent one-standard deviation over these 30 runs.

3.17b shows the traces of two of the joints. The optimized motion slightly adjusts the

initial values of the parameters to obtain stable motion, and the combination of all

joint traces together needs to be stable. However, the experiments show that often

only very small changes in the joint motion provide a stable and complete motion. In

Fig. 3.17b the polynomial seems to be able to sufficiently approximate the motion of

the joint.

We used the same polynomial approximation to learn four different motions, and

Fig. 3.18 shows the average learning curves. In these experiments, both CMA-ES

and xNES quickly learn solutions, with CMA-ES finding a solution with a slightly
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smaller variance. Both algorithms perform better than PSO. It is possible that the

results of PSO could be improved by tuning some internal parameters; CMA-ES and

xNES do not require this.

-2

-1.5

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450

Frames

A
n

g
le

/
ra

d

(a)

-2

-1.5

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450

Frames

A
n

g
le

/
ra

d

(b)

Figure 3.19: An example joint motion (l knee pitch) of the side balance and the initial
and learned model using CMA-ES and (a) a polynomial with eight parameters or (b)
sigmoidal basis functions with a sum of eight parameters.

There is a swift learning curve for leg motion. For the kick motion, PSO yields

a very high variance, which indicates that the found motion is often unstable. For

the balance motion in Fig. 3.18c, CMA-ES and xNES find good solutions, but the

learning time increases. While the polynomials work for these three motions, the

algorithms could not find a stable motion for the side balance motion in Fig. 3.18d.

In fact, the results for the other motions are also often unsatisfactory. Polynomials

cause these motions to be very smooth. Although the errors are often small and the

motion is stable, there is a noticeable lack of detail, and the high-degree polynomials

introduce numerical instabilities. In most motions, polynomials cause some joints to

move unexpectedly towards the end.

Table 3.4 shows the error values of the experiments after five hours of simulated
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Figure 3.20: Using sigmoidal basis functions instead of polynomials improves the results
of the learning. The learning curves of the same experiments as in Fig. 3.18 are shown
(averages over 30 runs).

time. The success rates are created by manually evaluating how many result motions

are stable and close enough to the original motion. A longer learning time improves

the success rates. However, another reason for lower success rates, despite small

average errors, is the noise in the fitness values. There is a chance that an unstable

motion gets a small error once and never works again. Averaging the fitness over

several runs could lower this noise and improve the learning, but each evaluation

would need much more time.

As an attempt to improve the learning, we ran the optimization of the side balance

motion again using polynomials, but increased the number of parameters to eight.
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It still did not find a solution. Increasing the number of degrees only creates more

instabilities. Fig. 3.19a shows that a reason for the unsatisfactory performance is the

global influence of parameters on the function. Changing the first part of the motion

can create completely wrong angles for the remaining motion.

Table 3.5: Results of the optimization using sigmoidal basis functions.

Motion Optimization evals min.err. avg.err. stddev torso err. joint err. success

leg CMA-ES 1781 0.011 0.016 0.004 0.007 0.008 93%
leg PSO 1782 0.005 0.051 0.149 0.044 0.007 76%
leg xNES 1782 0.012 0.042 0.086 0.027 0.014 70%
kick CMA-ES 2935 0.029 0.150 0.206 0.124 0.027 53%
kick PSO 2935 0.012 0.038 0.068 0.029 0.009 43%
kick xNES 2940 0.037 0.047 0.007 0.025 0.023 40%
balance CMA-ES 2970 0.029 0.042 0.016 0.018 0.024 93%
balance PSO 2971 0.027 0.119 0.256 0.092 0.027 73%
balance xNES 2971 0.030 0.041 0.009 0.020 0.020 76%
side CMA-ES 1816 0.041 0.099 0.060 0.073 0.026 70%
side PSO 1816 0.024 0.093 0.085 0.064 0.029 60%
side xNES 1817 0.038 0.102 0.062 0.078 0.024 40%

Since the side motion could not be learned at all and the other motions suffered

from the high generalization and numerical instabilities of the polynomials, we ran

the same experiments again with the linear weighted sigmoidal basis functions as the

model. Fig. 3.19b shows that the local basis functions improve the optimization.

All four motions can be adjusted to be stable on the robot using this model (Fig.

3.20). Although the number of parameters that are optimized has been increased

from 60 to 96 (twelve joints, five or eight parameters per model), the optimization

needs less time to find solutions for the balance motion and also works for the side

balance. The average joint and torso errors are listed in Table 3.5. For the balance

motion the improved models yield significantly smaller joint angle errors compared

to the polynomials.
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Figure 3.21: The same optimization works in a different simulation environments. These
results from the optimization in Webots are very similar to the results using SimSpark
(sigmoidal basis functions, CMA-ES, averages over three runs).
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Figure 3.22: The optimzation of the balance motion using only the 12 leg joints compared
to the results for the optimization of all 20 leg and arm joints (using sigmoidal basis
functions, CMA-ES, averages over 30 runs).

In all previous experiments we only optimized the joint angle traces for the leg

joints. The arm joints always followed the angle traces obtained during the initial-
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Figure 3.23: The results of the optimization in Webots without ground truth (sigmoidal
basis functions, CMA-ES, averages over three runs).

ization. We assumed that small changes in the arm movements only have a minor

influence on the overall motion. To verify this assumption we compared the previous

results for the optimization of the balance motion when the optimization includes all

20 joints. Figure 3.22 shows that the optimization including the arms yields higher

errors and variances without finding smaller errors in the end.

Experiments in Webots

The goal is to create motions for the physical robot. As the next step towards this

goal, we have repeated some of the experiments in Webots simulator. The NAO model

in Webots is slightly different from the model in SimSpark and the physics seem to
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be more accurate. The behavior of the NAO on Webots is closer to the behavior of

the physical NAO. Motions that were optimized and stable in Simspark are stable

neither in Webots nor on the physical robot. In fact, the robot in Webots and the

physical robot sometimes fall in a similar way.

However, the simulations in Webots can not run faster than real-time using the

NAO model in Webots (since Webots and the NAOqi controller are not synchro-

nized). Therefore, the evaluation of parameters takes significantly more time than in

SimSpark and we are stipulated to reduce the number of experiments. In all experi-

ments using Webots and on the physical robot, we used only sigmoidal basis functions

and CMA-ES or xNES to optimize the angle traces of the 12 leg joints. The exhaus-

tive experiments in SimSpark have shown that this configuration yields good results.

Figure 3.21 shows the errors during the optimization in Webots for the same motions

as in Fig. 3.20. The results are very similar to the optimization in SimSpark.

Overall, we have observed that CMA-ES and xNES are similar in performance.

Also, the PSO algorithm shows partly smaller errors with a larger variance and it takes

longer to learn. The optimization using models with sigmoidal basis functions yields

good results for all three algorithms. Optimizing only the leg motions is sufficient for

the used robot model.

Some small modifications have to be considered to apply the same optimization on

a physical NAO. Since the physical robot can easily get damaged during experiments,

we will have to stop the motion and measurement when the robot falls. Therefore,

for the experiments in Webots, we already have added a threshold for the error. If

the error exceeds this threshold, the motion is stopped and all remaining frames of
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the motion get the last measured error is assigned. As the results show, this does

not effect the optimization procedures and even speeds up the evaluations in the

beginning when the robot falls significantly.

For the optimization in the physical robot, we will have to calculate the error with-

out ground truth. The orientation of the torso will be estimated using the gyroscope

and accelerometer of the NAO. Since the NAO has only a 2-axis gyroscope, rotations

about the Z-axis (upright) can not be measured. Figure 3.23 shows the results of the

optimization in Webots without the ground truth provided by the simulator. The

optimization can still find joint angle traces with small errors. However, depending

on the motion, the missing ground truth information causes the optimization to con-

verge slower (motion side balance) and sometimes does not find a good solution at all

(higher variance of motion leg).

3.3 Parallel Optimization

The motion optimizations discussed in the previous sections are done using simulated

robots. Therefore, it is possible to run many iterations of the optimization without

breaking the robot. Since the simulated robot always behaves the same in the simula-

tion (the simulation always adds noise the same way), we can use multiple simulators

to run the optimization in parallel.

There have been several approaches for parallelizing optimization algorithms.

Hakkarinen et al. [24] presented a development of a parallel CMA-ES algorithm

that reduces the runtime for a specific geophysical data analysis, dipole localization.
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For problems with dimensions as high as 400, a cloud scale distributed covariance

matrix adaptation based evolutionary strategy was developed and evaluated in [95].

Müller et al. [54] developed a computationally efficient, scalable and portable soft-

ware library that implemented parallel CMA-ES and some other variants in Fortran.

Wong [97] and Fok et al. [15] proposed to implement a parallel EA on consumer-level

graphics cards which gave considerable speed up for a large population size. Paral-

lelizing in Graphics Processing Unit (GPU) is always effective owing to its massively

parallel architecture and many researchers have used it in various ways to parallelize

both EA and PSO [86, 34, 74, 56, 57].

As the motion optimizations discussed in the previous sections use parameter opti-

mization, they are all based on evaluating parameter sets. This is done by executing

a behavior or motion to evaluate the parameters. The robot’s behavior has to be

observed to calculate the fitness using a predefined fitness function. In the methods

used (PSO, CM A-ES or x-NES), the updates in the optimization algorithm to pro-

vide parameter sets are computationally much less expensive than evaluation of the

parameter sets. Most of the CPU time is used by the physics simulation of the robot.

Therefore the optimization algorithm itself does not have to be parallelized.

Optimization methods that work with populations of candidate parameter values

can provide all individuals of a generation at once. These candidates can then be

evaluated completely independent from each other. Therefore, an optimization using

a population size k can reach a speed up factor close to k if the evaluation of the

parameters needs most of the CPU time and assuming there is only a low overhead

and no communication delays.
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Section 3.3.1 describes the parallelization of the optimization of the captured

motions as in section 3.2. Section 3.3.2 shows the result for the same parallelization

infrastructure applied to the kick and stand up motions for SimSpark from section

3.1.1.

3.3.1 Parallel optimization of captured motions

We have chosen to implement the client-server model to achieve parallelism as it

would need minimum modification of the existing code and all the different optimiza-

tion algorithms can be used with the same model without any need to change the

optimization algorithms code. The basic idea of the parallelization approach is to

distribute the fitness evaluation phase of the sequential approach into multiple sys-

tems such that there can be multiple simulations for fitness evaluations of different

parameter sets at the same time. In the following, each parameter set that needs to

be evaluated is referred to as particle (as in PSO).
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Figure 3.24: (a) Parallel approach using multiple (five shown here) agents and one
soccer simulation. (b) Parallel approach using multiple agents and multiple simula-
tions (three agents and three soccer simulations shown here).
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The process starts with initialization and the resetting of the particle’s parameters

like the sequential approach. The only difference is that the server is now responsible

for this part of the work. All the client system connect with the server using TCP

connections. The sending phase of the parallel process starts where the server sends

the particles to different clients. For this, it is required that multiple clients connect

to the server through a port that the server listens on. After the client is connected,

the server sends a particle to the client. The server keeps track of the particle number

that was sent last and thus sends the next particle to the new client. For example,

if there are k clients connected to the server at any point of time and the server has

sent already n particles, then in the next sending phase, a total of n+k particles

are sent to the clients by the server. After each client receives a parameter set, it

is responsible for evaluating the fitness of the particle after one simulation. Each of

the simulations are independent of one another and after they are done, each of them

sends the errors separately to the server. The server collect each error as it receives

and sends it to the optimization algorithm method using the particle number as the

index of the evaluation. The server then updates the count of the particles received

until a certain point of time (n = n + k) and then checks to see if it has reached

the population size, i.e. whether one iteration has completed or not. Similar to the

sequential approach, the value of n can lead to two different cases. If the iteration

is not complete then the server goes back to the sending phase and sends the rest of

the particles left for the iteration to complete which is POPULATION SIZE - n to

the clients. If the value of n becomes equal to the population size then the server

calls the update method of the optimization algorithm which updates the particles’



62

parameters. It also sets the counter n to 0 to restart the entire process.

One way to implement it is having all of the agents connect to a single soccer

simulation (Figure 3.24a). The main drawback of this process is that this is not

ideally parallel. The reason behind this statement is that when an agent connects

to a soccer simulation server, it communicates with the server and exchanges values

in order to play the motion. The soccer simulation can send and receive messages

from only one agent at a time. Thus when multiple agents are connected to the

soccer simulation server, then all the messages from the agents are sent to the server

in sequence and received in a sequential order as well. The soccer simulation is

quite fast and running multiple agents is not much of a problem but the behavior of

the soccer simulation server is definitely not parallel and thus does not give us the

maximum throughput.

Another way to parallelize the approach is to have one simulation corresponding

to each agent where the server connects to multiple agents and sends the parameter

values generated from the underlying optimization algorithms (Figure 3.24b). Each

agent connects to its own soccer simulation server and exchanges messages to and from

the soccer simulation server in order to run a simulation i.e. play a motion using the

parameters received from the main server of the client-server model. They evaluate

the fitness independently like the other approach and send it to the main server

program and then wait to receive the next parameter set from the server to play the

motion using the new values. Each of the agents along with their soccer simulation

servers are independent of each other and thus can be said to be ideally parallel.

Each client system can be envisioned as an individual binary of the agent running in
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a separate processor. Each agent sends its errors to a client optimization interface.

This client optimization instance forwards the errors to the server which actually

interacts with the optimization algorithms and updates the particles thus generating

a new set of particles. The server sends the particles to the agent via the client

opt interface which forwards the values to the agent. The agent gets the parameter

set and then exchanges the necessary values with its own soccer simulation values in

order to play the motion. This kind of a setup enables the entire optimization process

to be ideally parallel and also allows us to parallelize the approach to any number of

clients. We can use multiple processors or systems to host multiple agents with their

simulations and a single system running the server program. Since this entire setup

is based on TCP connections, it is not necessary to have an interconnected set of

computer systems to run this in a distributed manner. If we know the IP addresses of

the different computer systems, we can run this on any number of systems available

to us at any point of time. Since each agent is connected to its own soccer simulation

server, there will be no delay in the simulation and it will be faster than the previous

architecture. It is designed in a way that the amount of particles each client gets is

not the same but depends on the speed of the system, then the mechanism is made

dynamic i.e. a faster agent will get more parameter sets to evaluate rather than a

slower agent.

Experiments & Results

The experiments were performed using four different types of human motions and each

of them were optimized by the three optimization algorithms: PSO, CMA-ES and
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xNES. These motions were captured by Kinect and then processed further to produce

four individual motion files (cf. figure 3.27 on page 70 to see the motions) consisting

of the sequence of joint angles that can be played on the simulated humanoid robot.

The optimization experiments were run in three different experimental setups. The

first setup is a single multicore system called the RegenBase system with 2.0 GHz,

15MB cache IntelR XeonR E5-2620 processor. It has a total of 12 cores. The second

setup is a network of 20 dual core computer systems/nodes where each of the system

has a 2.4 GHz, 4MB L2 cache IntelR CoreTM 2 Duo processor. The experiments

used a total of 24 cores. The third setup is on Pegasus which is a parallel cluster of

computers where the maximum number of cores used for a particular experiment was

30. The server and the clients communicate with each other using a combination of

TCP and a special set of libraries, Message Passing Interface (MPI).

After multiple preliminary experiments we found that optimization using a popu-

lation size of minimum 30 particles gave us a solution for the motion in an acceptable

amount of time. Hence all the experiments of multiple agents, multiple simulations

approach were performed with a population size of 30 particles. All the experiment

results are averaged over 30 runs. It should be noted that a low error does not al-

ways guarantee a stable motion because of some noise in the fitness level. There is a

chance that an unstable motion gets a small error once and never works again. The

performance of the optimization process is measured in the form of time taken in mil-

liseconds. Our experiments were successful in finding a solution for the optimization

process and all the motions were learned i.e. when played on the simulated humanoid

robot, these motions were found to be stable. From the performance point of view, it
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was seen that there is considerable speed-up in the process as we increase the number

of nodes for the optimization process.
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Figure 3.25: (a) Decrease in best error over time with optimization of a leg motion
using PSO optimization algorithm with 1, 2, 3 and 4 clients. (b) Speed-up comparison
between multiple agents, single simulation approach and multiple agents, multiple
simulations approach for 1, 2, 3, and 4 agents.

It can be seen from figure 3.25a that with the parallel approach, the error de-

creased over time as the number of clients were increased. Figure 3.25b illustrates

the difference in the approaches and shows that the approach using multiple agents,

multiple simulations performs better and achieves higher speed-up as compared to

the multiple agents, single simulation approach for experiments performed using 1, 2,

3 and 4 agents. The reason for this difference in results between the two approaches

is explained in the previous section 3.3.1.

Since the approach with multiple agents and multiple simulations was found to

yield higher speed-ups than multiple agents, single client approach, we performed the

following experiments using the better approach in different experimental setups.

We observed in the first setup, which is the single multithreaded 12 cores Regen-
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Figure 3.26: (a) Speed-up for all the optimization algorithms using 1, 2, 3, 4 and 5
clients (1,500 evaluations) - RegenBase System (b) Speed-up for all the optimization
algorithms using 1, 5, 10, 15 and 20 clients (1,500 evaluations) - Lab Systems (c)
Speed-up for all the optimization algorithms using 1, 5, 10, 15, 20, 25 and 30 clients
(3,000 evaluations) - Pegasus Cluster.

Base system, on that the soccer simulator server (SimSpark) used up to 300% of the

CPU i.e. used 3 cores and thus the experiments were made with 1, 2, 3, 4 and 5

clients to show the speedup in the process. In these experiments, the server and all

the clients were running on the same system. Figure 3.26a shows almost linear in-

crease in the speed-up of the optimization process with 2, 3 and 4 clients as compared

to the one client optimization with an average speed-up in the range of 1 to 3.11 for



67

1 to 4 clients. Howerver, the speed-up value for 5 clients was not found to be better

than for the optimization process running with 4 client simulations with an average

speed-up value of 1.708 (Figure 3.26a) because the system did not have enough cores

to support simultaneous running of 5 different SimSpark simulators considering the

CPU usage percentage of one simulator. We can see that we never achieve a linear

speedup. This is due to the fact that there is always an overhead of sending and re-

ceiving values using TCP and also an overhead due to certain parts of the algorithm

which run sequentially. Since the number of clients range from 2 to 5 in these exper-

iments, the overhead does not account for much considerable effect in the execution

time of the program and we get almost linear speedup.

The next set of experiments were conducted with a group of 20 individual sys-

tems. Experiments were made with 1, 5, 10, 15 and 20 clients and 30 particles as

the POPULATION SIZE. It can be seen in figure 3.26b that the speed-up for the

optimization experiments using clients 15 and 20 are almost similar. This is because

of the fact that for the optimization algorithm using 30 particles as the population

size, the sending phase of the algorithm can send the particles to 15 clients in two

batches and even for 20 clients, it has to send the particles in two batches. Similar to

the sending, the receiving phase also receives fitness values in two batches for both

the cases and thus there is hardly any sizable difference in the time taken by the op-

timization process for 15 and 20 clients. Nevertheless, the optimization process using

20 clients does yield a slightly higher speed-up as it has some extra clients that can

compensate for any slow clients in the set up, owing to the fact that the algorithm

is implemented in a way such that the faster clients get a higher number of particles.
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For the 15 clients optimization, a single slow client can become a bottleneck in the

performance of the optimization process as there are no extra possibly faster clients

to which the particles can be sent. Having extra clients over 15 helps the process to

compensate for any slow clients present in the optimization process and thus helps in

reaching a speed-up value of about 15.

The graph 3.26c for the next set of experiments, performed in Pegasus with a

maximum number of clients of 30, shows similar nature of the plots. If we see fig-

ure 3.26c, we see a sudden jump in the speed-up with respect to the corresponding

speed-up value for the 25 clients optimization experiment. In this case, the send-

ing/receiving phases send/ receive values in one batch, thus almost reducing the time

by half when compared to the time taken for sending and receiving for 15, 20 or 25

clients optimization. The speed-up increases with an increase in the number of clients

as illustrated in figure 3.26c. This is the maximum level of parallelism that this op-

timization using 30 particles as population size can reach. If we use more than 30

clients, we can expect a slight increase in the speed-up and maybe achieve a speed-up

value close to 30 as long as we can get most clients (at least 30) which are not busy

running other programs and can run the individual simulations fast. Table 3.6 shows

the results for the experiments performed with a particular leg motion on Pegasus.

After seeing all the results for the three different experimental set ups, it was

observed that for XNES algorithm, the speed-up does not scale with the increase in

the number of clients like the other algorithms, PSO and CMAES. We performed three

experiments to investigate this observation by recording the execution times of the

different parts of the server program. The percentage of the total execution time taken
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Table 3.6: Results of parallel optimization experiments in Setup 3 with different
numbers of clients and their respective speed-ups for the leg motion.

SETUP 3 EXPERIMENTS - Leg Motion
Opt. Evals. RMSE Min. Error Client(s) Time (ms) Std. Dev. (ms) Speed-Up

PSO 990 0.90704 0.00669 1 415083 4321.66 1.000
PSO 990 0.88491 0.00552 10 47223 1650.44 8.790
PSO 990 0.84064 0.00630 20 29320 434.97 14.157
PSO 990 0.82386 0.00757 30 15724 279.67 26.398

CMAES 990 1.17818 0.01706 1 424373 5064.30 1.000
CMAES 990 1.19996 0.01805 10 51092 1636.81 8.306
CMAES 990 1.19247 0.01674 20 29295 858.86 14.486
CMAES 990 1.16812 0.01508 30 16155 620.07 26.269
XNES 990 1.18037 0.01951 1 524482 4653.31 1.000
XNES 990 1.16340 0.01679 10 154422 3159.07 3.396
XNES 990 1.21483 0.01742 20 138786 3833.12 3.779
XNES 990 1.19902 0.01993 30 121072 1176.77 4.332

Table 3.7: Percentage of the total execution time used in different phases of the server
program.

PERCENTAGE OF THE TOTAL EXECUTION TIME
Opt. Clients Update Phase (%) Sending & Receiving Phases (%)

PSO 1 0.0126 99.9873
PSO 10 0.1048 99.8938
PSO 20 0.1538 99.8443

CMAES 1 0.0937 99.9062
CMAES 10 0.9119 99.0870
CMAES 20 1.3799 98.6184
XNES 1 13.8059 86.1939
XNES 10 61.4714 38.5279
XNES 20 71.2221 28.7771

by the two major phases; update phase and the sending and receiving phases is shown

in table 3.7. The results reveal that the execution time taken by the update phase of

the algorithm, which is the only sequential phase in the parallel algorithm, was much

higher than the time taken by the sending and receiving phases of the algorithm in

case of XNES as compared to the other algorithms. As the number of clients increases

in the parallel approach using the XNES algorithm, the execution time spent by the

sending and receiving phases decreases. This is because these phases are meant to be

parallel whereas the time taken by the sequential phase i.e. the update phase remains
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the same for all the multiple client optimization experiments, thus accounting for a

higher percentage of the total execution time thus limiting the speedup.

The four human motions as shown in figure 3.26 were optimized using the opti-

mization algorithms and was played in the simulated humanoid robot. The optimiza-

tion algorithms were successful in finding a stable motion for each of the four human

motions which are shown in figure 3.27.

(a) Motion: j balance 2

(b) Motion: j kick l 1

(c) Motion: j one leg r 2

(d) Motion: j side balance 1

Figure 3.27: The optimized human motions played on the simulated humanoid robots



71

3.3.2 Parallel Optimization of Soccer Motions

The infrastructure for the parallel optimization of motions described in the previ-

ous section can be used for any optimization in the simulator, since it is only based

on the independent evaluation of candidate solutions. The optimizations of soccer

motions for the 3D simulation league described in section 3.1 uses the same param-

eter optimization classes and interfaces as the optimization of the captured motions.

Therefore, it can run in parallel just by activating the optimization client module in

the agent.

For the special action optimization, the time needed for each evaluation is even

longer than for the motion optimization in the previous section. Therefore, there is

still only a small overhead caused by the network communication and the paralleliza-

tion yields the same good speed-up as for the parallel optimization of the captured

motions show in section 3.3.1.

By running the optimization in parallel on a cluster, it is possible to run various

optimizations quickly, for example to find weight factors for the components of the

fitness functions that produce the desired results. We also ran the optimization using

different fitness functions to create different kicks, such as a kick for a certain distance

or a very high kick. Instead of running the optimization sequentially for one or two

days, the same results can be produced by running it for an hour on an MPI cluster

with 50 clients.
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Figure 3.28: The results of the optimization for the physical robot using seeds from the
simulation (sigmoidal basis functions, CMA-ES, single run).

3.4 Motion Optimization on a physical robot

This section shows the results of the motion optimization from section 3.2 on a phys-

ical robot.

3.4.1 Experiments on the Physical Robot

Parameter optimizations often need a lot of evaluations. On physical robots, some

optimization problems are very challenging or even unfeasible. The approximately

2000 evaluations we executed for each experiment in SimSpark and Webots are already

too much. It would stress the hardware and take too much time. In contrast to
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the fully automated simulated experiments, now a human operator is needed, who

positions the robot, starts the motion and catches the robot when it falls to avoid

damaging the robot.

During the experiments we made sure not to hold the robot at any time during

the evaluation of a motion. Only when the motion causes the robot to start falling,

we let it fall but slowed it down before hitting the ground. This way we did not

interfere with the learning process too much and were able to obtain useful error

measurements.

According to the simulation result, the simplest motion in our experiments is the

leg motion. However, even for this relatively simple motion we needed 200 to 300

evaluations to find stable results. These are still many evaluations, if they need to be

executed using the NAO.

We reduced the number of evaluations by using simulation results as a seed for

the optimization on the NAO. The parameter values, used to create the seed motion,

are only used as the mean in the initialization of the individuals of the optimization

algorithms. The original capture data is still the reference in the calculation of errors

during the evaluation of parameters, since this is the motion we are trying to imitate.

Additionally, we reduced the population size from 50 to 30. Figure 3.29 compares the

errors for the leg motion learned with seeds from the simulators or without a seed.

We stopped the optimization when a good solution was found or after at most 200

iterations. Even in the simulation 200 evaluations are not always sufficient to find a

stable solution for the leg motion. Without a seed the learning did not find stable

motions within 200 evaluations. If no seed is used, almost all parameters during the
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first iterations make the robot fall immediately. This can be avoided by using results

from the simulation as a seed. The simulated robot models are sufficiently accurate

to provide seeds that are already close to stable solutions for the NAO. Skipping the

unnecessary exploration in the beginning speeds up the learning significantly, which

makes the method feasible for a physical robot.
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Figure 3.29: The optimization of the leg motion with different seeds / no seed (using
sigmoidal basis functions, CMA-ES, single run).

Figure 3.29 shows that we found stable results already after 100 evaluations. Al-

though the robot behavior in Webots seemed to be more realistic in the previous

experiments, optimization results from Webots are not necessarily better seeds for

the NAO. The differences of the simulators do not have a significant influence on the

seed quality. There are other factors that can cause a solution from the simulation

to be a less efficient seed. Since, we used black box optimization of the joint angle

traces of the motion, sometimes small error values were reached by exploiting missing

self-collision checks in the simulators. Therefore, some motions learned in the simu-

lator have a small error value, but are less useful as a seed for the optimization on

the NAO robot.

Using seeds from the simulation we were able to find solutions for three of the
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four test motions that we used also in the simulation experiments. Figure 3.28 shows

some example learning curves. The generated motions are shown in Figure 3.30. In

general, our approach works on the NAO. As expected, the results are not as good

as in the simulation and there are high variances in the results. As mentioned in

section 3.2.4, the optimization does not try to start or end the motion with given

poses. We do not learn transitions. Thus, the starting pose in the first frame and the

last part of the motion can vary without increasing the error much. The objective

function needs to be improved to yield more consistent results. Another problem

for the optimization using the NAO is the backlash in the joints. The initial pose

and foot positions can vary, especially on carpet, if the foot gets stuck in different

positions. This complicates the optimization on the physical robot.

Some motions could not be stabilized completely. For example, the remaining

error for the balance motion in 3.28c indicates that the best result found was still

not completely stable. The side balance motion is challenging, too. The results in

Webots (Fig. 3.23d) showed already that it often takes many iterations to find good

parameters. The experiments showed that this is caused by a local minimum. The

robot is stuck in a simple motion that is easy to balance, but from that it is difficult

to reach the expected motion. Nevertheless, it was possible to find stable results for

the other three motions. The MoCap motions are static joint angle traces, that can

only be perfectly stable in a simulated environment. A dynamic balancing is needed

to improve the results.

Overall, the results show that the optimization also works on a physical robot, but

7Video material: http://web.cs.miami.edu/home/aseek/motionlearn/
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(a) leg

(b) kick

(c) balance

Figure 3.30: The optimized motions on the NAO.7

the number of evaluations has to be reduced further. The optimization on a physical

robot is possible, but still tedious. The generated motions are stable, but they need to

be improved to be used e.g. in the soccer environment. The generated motions need

defined poses before and after the learned motions and allow transitions from and to

other motions. Additionally, the results on the physical robot are highly optimized

motions, that are only stable under the exact conditions under that the optimization

was done. Since the generated motions are static sequences of joint angle, we did not
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expect the results to be perfectly stable using a physical robot.

3.5 Conclusion

The optimization of motions for the RoboCanes agent in the 3D Soccer Simulation

League has shown the potential in optimizating motions. The resulting motions have

increased the teams performance significantly.

Furthermore, this chapter described a system for creating human-like motions for a

biped robot using inexpensive motion capture techniques combined with optimization.

The Kinect sensor provides enough information to map complex and initially unstable

poses, such as the balancing motions. Applying modern optimization algorithms

to the mapped motions will lead to robust and stable motions on the robot; that

said, we do not make the claim that our approach will hold for all possible motions.

Nevertheless, our results are very promising, and it shows that we have found a process

that can be used to produce a number of motions needed for humanoid soccer robots.

We ran our parameter optimization on a desktop CPU with four cores and 2.27

GHz. After running simulation experiments with four motions, three algorithms, two

model functions with different number of parameters and 30 runs each, we can say

that the motions were mostly stable after 30 min (in average). Making use of parallel

processing on a cluster of computers can bring the processing time down to 10-30 min

per motion, including the motion capture.

Overall, the results are very good in a simulation. Very stable motions can be

produced in a short time, but the learned motion can not directly be transferred to
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a physical robot.

The complete optimization can not be done in real time using a physical robot,

but we showed that the optimization in the simulator can be used as a preprocessing

step, that produces a seed for the optimization on the robot. This reduces the re-

quired number of evaluations significantly and the optimization on the physical robot

becomes possible.

However, the results of this approach are limited. Executing even only a hundred

evaluations on the robot is still very tedious and the resulting motions are not as

stable as in the simulation. The behavior of each physical NAO is slightly different

from the others and optimizing the motions this way for each robot is again too time-

consuming. Additionally, without balancing the motions dynamically, the results can

not be robust enough considering the variances in the robots hardware and joint

control and the possibility of external disturbances.



Chapter 4

Dynamically Generated Motions

and Balanced Biped Walking

The results of the motion optimization in the previous chapter are very stable in the

simulator they were optimized in, but the experiments on the physical robot show

that a static motion is often not robust enough due to the hardware variances, loose

joints or external disturbances.

Having a set of static motions is also too limiting for some types of motions. For

example, a walk should be able to walk with different velocities in different directions.

If there are only separate actions a walk might consist of a sequence of actions such

as “walk forward”, “turn left” or “turn right“. However, this would be a very limited

walk and the transition between the motions might be unstable or slow.

A better approach is to generate the motion dynamically. This also allows to react

to measurements and adjust the motion to balance and compensate errors caused

by hardware variances or external disturbances. One of the motions optimized in

79
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the previous chapter lifts one leg and balances on the other. This motion could be

generated using inverse kinematics and moving the supporting foot under the center

of mass. When the center of mass is above the supporting foot, the other foot can

be lifted. If the robot does not move too fast, it stays stable as long as the center of

mass is above the supporting foot. This motion is statically stable.

Keeping the center of mass always above the supporting foot was used for walks

[39, 78], but a dynamically stable walk can be much faster. However, a humanoid

robot with a high degree of freedoms can have very complex physical dynamics.

Calculating the exact dynamics for all body parts (more than 20 body parts for

the NAO) is computationally too expensive. Therefore, usually a simplified physical

model is used to predict the dynamics of the robot. Motions on humanoid robots are

often generated based on an inverted pendulum model [35, 38, 19].

Since with this approach, the motion is generated online and can not be optimized

directly. Instead, components of it can be optimized to improve the walk motion.

This chapter describes a new walking engine for creating a balancing, dynamic

walk for the NAO with the focus on optimizing parameters of the used model from

observations gathered while the robot is walking. The goal is a stable walk motion that

does not require manual fine-tuning of parameters to be stable in different simulators

or on different physical NAOs.

4.1 Related Work

Working on this.
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4.2 LIPM-based Closed-Loop Gait Generation

This section describes the implementation of the new walking engine for a dynamically

generated walk on the NAO. As a model for the motion of the center of mass of

the robot, we use the linear inverted pendulum as described in section 2.3.3. A

center of mass reference trajectory is generated and the steps are created according

to this model. While walking the sensor measurements need to be used to adjust the

estimated robot state and react to errors and disturbances.

4.2.1 The Pendulum Model and Walk State Representation

We use the linear inverted pendulum model as in Kajita et al. [35]. It assumes that

the center of mass stays at a constant height h. The position and velocity of the

center of mass in the plane at height h can be calculated by

x(t) = x0 ∗ cosh(k ∗ t) + ẋ0 ∗
1

k
∗ sinh(k ∗ t) (4.1)

ẋ(t) = x0 ∗ k ∗ sinh(k ∗ t) + ẋ0 ∗ cosh(k ∗ t) (4.2)

with k =
√

g
h
, where g is the gravitation and x0, ẋ0 ∈ R2 are the position and velocity

of the mass at t = 0 (see [19]).

Since this model describes the movement of the center of mass, the most important

information about the state of the robot is the position of the supporting foot relative

to the center of mass and the current velocity of the mass. For representing the foot

position, we use a coordinate system with the center of mass as origin and the x/y-
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plane aligned to the ground plane (CoM coordinate system).

The supporting foot always has to move according to the pendulum model. As-

suming the models are correct, accelerating the mass this way keeps the ZMP centered

in the supporting polygon (see section 2.3.1). If the foot would move differently, the

mass would still be accelerated by the gravitation. If the difference is large enough

the ZMP might reach the edge of the support polygon and the complete robot would

rotate around that edge and falls.

Other components of the walk might need additional values (e.g. the balancing

still needs the torso angles). Therefore, we represent the robots state by the positions

of both feet and the torso in the CoM coordinate system and the mass velocity.

We refer to these values as the walk state. When calculating the movement of the

supporting foot and planning steps, the torso position in this representation can be

ignored, since the foot positions are stored relative to the mass. The torso pose

(torso angles and position in the CoM coordinate system) is only important for the

balancing and to transform the foot positions back to positions relative to the torso

for controlling the joints in the end.

For every step, we use the model to generate the movement of the mass relativ to

the supporting foot. Given the duration of a step, the position of the supporting foot

and the velocity can be predicted using the model. If we assume that the swing foot

reaches the step target position, we can predict the complete walk state (both foot

and the velocity) from the step target and duration. This information is stored in

walk actions, which can represent left or right steps, but also double support phases.

This representation using states and actions allows us to generate the walking motion
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as a sequence of states with actions as transitions between the states.

In contrast to some other implementations, we did not derive equations for step

positioning or balancing directly from the equations of the pendulum model. Instead,

the model is basically used as a black box. We use the fact, that we can use the

model to create the successor state for a given walk state and a step action. The step

planning finds good actions through iterative methods and using the prediction. This

allows us to change the model or add new parameters and offset without having to

change all the other modules.

4.2.2 Reference Trajectory

The center of mass reference trajectory describes the required mass movement for a

given walk velocity and step frequency. This trajectory describes the optimal move-

ment according to the model for the current requested walk velocity. A full cycle of

the walk consists of a left and a right step. If the walk speed does not change, the

same two steps can be repeated.

s0

vm

s1 s2

vm
vm

right step left step

Figure 4.1: The reference trajectory can be defined by the two states when the sup-
porting foot is changed. For the reference trajectory, v has to be the velocity that
yields s2 = s0, which means that the steps of the reference trajectory can be repeated
continuously and the robot maintains the requested average walk speed.

Figure 4.1 shows this cycle. The states shown are the states when a step is finished
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and the support is changed. The states consist of foot positions and mass velocities.

The actions define a duration and step target. This maintains the same velocity and

can be repeated only if the state s2 is equal to s0. The mass velocity in those states

depends on the walk model and is not equal to the requested walk velocity. The

requested velocity is the average velocity over the complete cycle. Since the duration

of the steps is given by the step frequency and the average velocity is given, we can

calculate the distance that has to be covered by the two steps. Thus, the step length

and the target positions for the swing legs can be calculated. Therefore, the requested

walk velocity defines the walk actions in the sequence in figure 4.1.

The predicted mass position after a step and the swing target define the initial

position of the next supporting foot. The only unknown values are the velocities in

the support exchange states. There is only one mass velocity in s0 that yields the

same velocity in s2 after executing the steps. If the velocity in s0 is too high, the

velocity will increase over the two steps. If the velocity is too small, it will decrease

further. The velocity and foot positions in the support exchange states are sufficient

to describe the complete reference trajectory for the mass.

It is possible to derive closed form equations for the velocities in the reference

trajectory. However, we want to be able to change the model without updating

other modules. Therefore, we use the model as a black box, such that the reference

trajectory generation is independent of the exact model. This is less efficient, but

more flexible. Using the predictions of the model and the known information about

the steps from the requested walk request, we can use a simple iterative method to

find a velocity that fits to the given steps and yields s0 = s2. The only requirement
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is that the velocity error in s2 for a given velocity in s0 is a monotonic function.

Algorithm 1 Iterative method for finding the velocity in the support exchange states
of the reference trajectory.

1: findVelocity(model, a0, a1):
2: s0.supportingFoot = a1.stepTarget
3: s0.velocity = (0, 0)
4: while vUpdate > threshold do
5: s1 = model.predictState(s0, a0)
6: s2 = model.predictState(s1, a1)
7: prevError = error
8: error = s2.velocity − s0.velocity
9: if first iteration then

10: vUpdate = error ∗ −0.0001
11: else
12: gradient = (error − prevError)/vUpdate
13: vUpdate = −1.0 ∗ error/gradient
14: end if
15: s0.velocity = s0.velocity + vUpdate
16: end while
17: return s0.velocity

Algorithm 1 shows how to compute the velocity in the first state of the reference

trajectory. The step time and step length and target positions for the requested walk

speed are given as the actions a0 and a1. All other values are computed by the model.

If the approximate gradient from the previous two iterations is used to update the

velocity as in the Newton method, it takes only a few iterations to compute a very

accurate velocity. In fact, without any modifications the velocity error is linear with

respect to the changes in the velocity of s0, such that two iterations are needed to

compute a gradient and the third iteration directly finds a good velocity. Only if the

steps also include a a foot rotation for turning, another iteration is needed. With 4

to 5 iterations this method finds a velocity for s0 that produces a velocity error in s2

of less than 1 mm/s.
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Figure 4.2: Example reference trajectories for walking forward with 0.2 m/s (in x and
y direction). The position of the support foot is relative to the center of mass of the
robot.

Figure 4.2 shows the result reference trajectories in x and y direction for walking

forward with 0.2 m/s. This is generated by repeatedly executing the same two steps

of the reference trajectory starting with the correct initial velocity.

4.2.3 Step Planning

The behavior of the robot can request different walk directions and velocities. The

walking engine has to make sure that this velocity is reached as fast as possible

without falling.

The previous walking engines used by the RoboCanes agent did not always gener-
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ate stable motions. A sudden acceleration could make the robot fall. Additional limits

on the acceleration had to be added, but they were chosen manually and probably

limited the walking speed and acceleration more than necessary.

A better approach is to let the walking engine control the acceleration. The max-

imum acceleration depends on the physical behavior of the robot, which is modelled

e.g. by the pendulum model. The walk should be generated based on the physical

behavior of the model and guarantee a feasible acceleration. The maximum speed

should only depend on the maximum step length.

The task of the step planning is to choose the current step, such that the robot can

reach the reference trajectory. The duration and the swing target of the current step

are chosen such that the predicted state after the next action is as close as possible

to the support exchange state defined in the reference trajectory. The step target we

choose is similar to the capture step foot placement strategies used e.g. in Missura

and Behnke [51, 52].

We determine the step values similar to the calculation of the velocities in the

reference trajectory iteratively using the physical model as a black box. This might

not be the most efficient solution, but it is the most flexible solution for changing the

model and again only a few iterations are needed.

Due to errors in the joint control or external disturbances, it can be necessary to

adjust the step time and step target position for the current step. The step planning

updates these values in every control cycle (e.g. with 100 Hz on the physical NAO).

First, the remaining step time is calculated such that the lateral velocity at the end

of the step is close to the velocity defined in the reference trajectory. Using this
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time and the current position of the support foot, the mass position at the end of

the step can be predicted using the model. The position of the supporting foot

that is used beginning from this predicted state, depends on the step target for the

current step. The current steps target position changes the outcome of the next step.

Therefore, the step target position is chosen (again approximated numerically), such

that the predicted state after that is close to the ideal support exchange state from

the reference trajectory.

If the requested walking speed changes rapidly, the reference trajectory will imme-

diately change to the new trajectory. However, the step planning will choose feasible

steps that will not make the robot fall. The walk velocity is changed according to the

model.
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Figure 4.3: Step target positions and resulting velocities visited to find a good step
target. The step target positions (left) produce the predicted velocities (right) after
the next step.

Figure 4.3 shows an example for positions visited by the step planning to find a

good target position. The robot was walking on a spot. It starts from the ideal step

target defined by the reference trajectory (x = 0m, y = 0.05m). For the current

estimated state this will result in a small forward velocity (positive x) and a too
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small velocity to the right (right: negative y). The ideal velocity from the reference

trajectory is (0,−0.223) (the blue cross). Therefore the step planning adjusts the

target position of the current step in two more iterations until the predicted velocity

is close to the ideal velocity. Similar to the generation of the reference trajectory,

this search needs only a few (most of the time 3) iterations to find the target position

for the current step. This search is repeated every cycle to update the step target

(needed when the current estimated state is changed by feedback in the closed loop

walk).

By using different criteria as the error for setting the step target position, this

search can be used in different situations, such as walking, standing or the transition

from standing to walking.

Each robot state is either a ”left support“, ”right support“ or ”double support“

state. While walking only the left and right support states are used and the step

time and target positions are chosen as described. When the robot is standing, it

is in a double support state. In this case, the walk actions only define a center of

pressure within the support polygon instead of a step target. In this state the robot

moves according to the pendulum, too. By using the model also when the robot is

standing, it is possible to create a smooth transition between standing and walking

by choosing the right center of pressure in double support to reach the right initial

velocity before the first step. It is not necessary to start stepping on a spot and then

slowly accelerate.

Similarly, the model can be used when the robot stops walking to decide whether

it is safe to stop and choose the parameters of the last step such that the remaining
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Figure 4.4: The modules and information passed between them for an open-loop
walking engine. The white boxes represent information passed. The round objects
are modules (see A.2.3).

mass velocity is small when the double support begins.

4.2.4 Open-Loop Walk

In addition to the reference trajectory and the step planning, only a simple module for

predicting the state in the next timestep is needed for an open-loop walking engine.

Figure 4.4 shows the components described so far and how they can be used to

create an open-loop walk. The state of the robot is only an internal state and is

updated every time step using the model and the chosen action. No feedback from

the robot’s sensors is used. This can only generate a stable walk, if the robot’s actual

motion is similar enough to the model and there are no external disturbances.

This open-loop walk is already stable in the simulation since there are no distur-
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Figure 4.5: Test walk generated by the open loop walking engine that starts with
speed 0, walks 0.2 m/s forward, then 0.1 m/s to the side, slows down to speed 0 and
stops.

bances, the robot model is known exactly and the robot is walking on a perfect plane.

Figure 4.5 shows a short test walk. Figure 4.6 also shows the prediction for the state

at the end of the current step. Since the motion is generated only using the model,

the prediction is perfect and the predicted state is reached after every step.

For the same model parameters, this walk will always be generated exactly the

same way for the requested walk velocities. On a physical NAO the motion would be

the same. If the robot’s actual movement starts to differ from the model, the motion
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Figure 4.6: Foot positions and velocities each with predicted values for the end of the
current step. Since the open loop walk follows exactly the model, there is no error in
the predictions.

will just continue, the errors might increase and cause the robot to fall.

There are too many variances and disturbances on a physical robot for an open-

loop walk to be stable. Fine-tuning the model parameters can make the motion stable

under good circumstances, but as with the optimized static motions from chapter 3,

the resulting motion will not be robust.

Errors in the motion have to be detected and the motion needs to change to

compensate for the errors. Nevertheless, the better the model fits to the actual

physical behavior of the robot, the smaller are the errors and only smaller adjustments

in the steps are needed.

4.2.5 Closed-Loop Walk

The walk can only be robust if it reacts to unexpected errors in the motion. These

can be caused by external disturbances, inaccurate joint control or also by the errors

in the model.

The foot positions relative to the mass can directly be perceived by the measured
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joint angles combined with the forward kinematics of the robot. The rotations of the

torso can be measured using the gyroscope and the torso angle estimated using the

gyroscope and accelerometer.

The velocity can not directly be measured and has to be estimated from other

sensor values. The accelerometer can be very noisy and small errors in the torso angle

can cause problems with distinguishing accelerations on the x/y plane from gravity.

Therefore, we do not integrate the accelerometer values to retrieve the current

torso velocity. Instead, we use a particle filter [85] to estimate the velocity using

the observed movement of the foot, the measured torso rotations and the pendulum

model. The point of observing the state is to detect differences to the expected

movement. That means differences to the model are expected and we need to use

high noise values in the state estimation.
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Figure 4.7: Motion generated by the open loop walk (speed 0) and observed state
when the motion is executed on a physical NAO.

The estimated velocity, the measured foot positions and estimated torso angles are

used as observed walk state. Figure 4.7 shows the internal state from the open-loop
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Figure 4.8: Components of the closed-loop walk.

walk and the estimated velocity and foot positions from the observed state when the

motion is executed on a physical NAO. Without disturbances the motion is stable

(speed 0, only walking in one position). At the end the NAO is pushed a little. Once

the motion of the NAO is not synchronized to the walk motion, the errors increase

and the robot falls.

The observed state can be noisy and directly using it as current state in the step

planning would transfer this noise into the control of the joints. Responding too much

to the observed state can also cause oscillations, e.g. if the steps are always a little

too long, after one long step, the next step will be longer in the opposite direction,

causing the step after that to be even longer in the first direction, and so on.

Additionally, there is a delay in the control loop of several cycles, which can also

cause oscillations when the observed state is used directly. Using the model we predict
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Figure 4.9: The support foot positions and velocities in y direction (lateral) using
the closed loop walk. The support foot position and velocity set by the walk are now
adjusted slightly, if the observed state differs from the expected values.
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Figure 4.10: Foot positions and velocities each with predicted values for the end of
the current step. There is a bias in x direction and the velocity in y direction is
underestimated.

the state after the delay time from the observed state. This predicted state is then

used to only slowly change the current estimated walk state which is used for the step

planning and to move the feet.

Figure 4.8 shows the modules of the closed-loop walk. This walking engine can

now produce a stable walk also on the physical NAO. The plot in figure 4.9 shows a

stable walk, although the values do not reach the values of the reference trajectory.
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Nevertheless, the error is not increasing and the walk is stable. Towards the end of

the plot the robot was pushed from the side and is able to recover from that.

Figure 4.10 shows the predicted values that are expected to be reached at the

end of the current step. The error in the prediction is small, but there are errors in

every step and the predicted state at the end of each step (each walk action) change

over time. During the experiment, the robot was leaning back slightly which caused

it to also walk slowly backwards. The changes in the predicted positions will also

change the step target position for the current action while the swing leg is already

moving. The higher the error in the prediction, the higher is the error in the position

reached by the swing leg. This can again cause errors and will prevent the robot from

following the reference trajectory.

4.2.6 Joint Hardness

The feet never reach exactly the correct target position at the end of a step. There are

errors in the control of the leg, the kinematic model (not perfectly calibrated joints)

and the target position can change due to disturbances which update the estimated

walk state and change the step target. All errors caused by model inaccuracies and

measurement delays effect the stability of the walk, because the movement of the

mass is not exactly the required movement to keep the ZMP in the center of the

supporting polygon.

This might not be a problem for small errors, since they will only cause a small

change in the center of pressure (or ZMP).
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NAOqi, the software controlling the joints of the NAO, allows to set a target angle

and a hardness value for each joint. The hardness value limits the maximum current

used for that joint.

If all joints are controlled with a high stiffness/hardness, small errors can simply

be ignored. They only move the center of pressure in the foot. As long as the errors

are small and the center of pressure stays within the supporting polygon the walk is

stable and the mass acceleration can be executed.

On the other hand, the high stiffness can stress the joints more and the errors are

difficult to measure. Using a high stiffness the errors are basically hidden. The joints

are forced to move in a certain way and only the center of pressure is moved slightly,

which is are difficult to observe. For example, measuring the center of pressure can be

difficult, since the force sensors in the feet of the NAO are noisy and the measurements

can vary depending on the ground surface.

The experiments on the physical robot in this section were done using a lower

hardness in the ankles and hip. A lower joint hardness does not only protect the

joints. It allows us to observe if an acceleration was wrong. If the center of pressure

moves, the lower stiffness allows the foot and torso to turn slightly, which is easier to

measure. These angle changes the observed robot state, which will be used to adjust

the walk and reduce the errors. However, this means that the walk has to be more

responsive to the torso angle and it requires a better control of the torso angle that

keeps the torso upright.
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4.2.7 Torso Angle Control

The walk state described in 4.2.1 contains the foot positions relative to the mass

using the orientation of the world coordinate system. Most modules of the walking

engine do not use the torso angle. The torso angle is used in the transformation

from the measured foot positions relative to the torso into the walk state and for

the transformation back from the updated walk state to the foot positions used to

calculate joint angles using inverse kinematics.

Since the step movements are created in the walk state reference frame which

is aligned to the ground, the feet do not hit the ground when the torso is rotated

slightly. Nevertheless, the torso rotations have an effect on the step planning, since

the foot positions relative to the center of mass in the walk state depend on the torso

angle. A rotation of the torso changes the observed walk state, which changes the

current walk state used for the step planning.

An additional controller is needed to turn the torso back and keep it in an upright

position. The torso can be rotated back by slowly turning the coordinate system

used to generate the foot movements. However, that can quickly result in hitting the

ground with the swing leg if the torso does not rotate as expected.

Therefore we added a controller that is completely independent from the other

modules of the walking engine. The torso should be turned by a torque applied by

the supporting leg. We use a simple PD controller that modifies the angles of the hip

joints of the supporting leg. This controller is executed after the angles for the legs

are calculated using the inverse kinematics. If this hip controller starts turning the
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torso, the walking engine will measure the torso rotation and update the observed

walk state accordingly to position the feet using the updated torso orientation.
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Figure 4.11: The torso angles of a standing NAO that is tilted to the side (left) or
back (right) and is released.

The same torso angle control is used when the robot is standing and the walking

engine uses the measured torso angle to balance. Figure 4.11 shows the measured

torso angle of a standing physical NAO when it is tilted around the x-axis (pushed

from side, lateral) and the y-axis (pushed from front, saggital) and falls back. If

the joints positioned at fixed angles for the stand and stiff, the robot oscillates for

seconds because the robot stands only on the edge of a foot and builds up a high

angular momentum.

The balanced stand uses the closed-loop walking engine in the double support

state and the hip controller. This stabilizes much faster than the robot with stiff

joints. The oscillations are avoided mainly because the measured torso angle directly

causes the robot to adjust the foot positions. Unlike the unbalanced robot, it does

not fall back on the feet, since the feet are always aligned with the ground and it

never stands only on the edge of a foot. The balancing robot can also be pushed back
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further, because the feet are positioned depending on the measured center of mass.

The stiff robot would fall back for larger angles. The fact that the robot is balancing

and uses the measured torso angle already avoids the oscillations. The hip controller

only moves the torso back to an upright pose.

4.2.8 Challenges on Physical Robots

This section gives some examples of problems with the physical robots that do not

exist in the simulation. There are many obvious differences between the simulation

and the physical robot (higher noise, errors and delays), however even seemingly small

errors or different movements can cause unexpected problems.

IMU and Feet Angles

Since we use the estimated torso angle is used to generate foot movements in a

coordinate system aligned to the ground and to set the ankle angles, a small difference

between the expected foot angle and the measured angle can have a big effect.

If a physical robot sets the angle of the ankle joint such that the torso angle should

be 0, the measured angle from the IMU is usually not 0 (see table 4.1). If the robot

then uses the measured torso angle from the IMU to set the foot angle for the current

torso pose, it will increase that torso angle, such that the IMU measure an even higher

angle in the next step. This angle adds up very quickly. Directly using the measured

torso angle from the IMU for the foot angle will make the NAO rotate the torso

until the foot positions are not reachable any more in less than a second. A reactive

torso angle control can keep the angle small, but it constantly has to compensate for
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Robot Standing Walking

SimSpark type 0 0 -0.0001
Webots NAO 0.002 0.007
physical NAO 1 -0.08 -0.075
physical NAO 5 -0.06 -0.025
physical NAO 6 -0.003 0.03

Table 4.1: Average differences between the measured torso angle (in saggital plane)
from the IMU and the expected torso angle from the leg joints of the supporting legs
while standing and walking with speed 0 (angles in radians).

that error to avoid this wrong rotation. This could result in different behaviors when

the robot is leaning in different directions. The control might be ”softer“ towards

the direction of this wrong rotation. The hip controller that tries to keep the torso

in an upright pose, constantly pushes the hip in one direction which can cause the

balancing to start slowly forward or backwards.

We measure both torso angles, the angle from the IMU and the expected angle

for the current joint positions, and use the average difference to reduce the effects

of these errors. Table 4.1 shows the average torso angle measured using the IMU

on different robots while standing and walking on a spot. This is only one example

showing the difficulties on a physical robot when the balancing is too responsive to

sensor values. Using a high hardness to move the legs and assuming a torso angle of

0 hides some problems, but it also less responsive to measurements.

In simulators as SimSpark or Webots this error is much smaller and causes less

problems, since the simulated robot is perfectly calibrated and walks on a perfect

plane.

On physical robots, these errors vary and there might be more unexpected errors.

Therefore the robot should detect problems and adjust the motion.
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Knee Currents

The used current and resulting joint temperatures are an important aspect of motions

on physical robots, while it is not of any interest in simulations as the RoboCup 3D

Soccer Simulation League.

For the new walking engine and also the previously used B-Human walking engine,

the knee joints use the most current. However, for most robots one knee uses more

current than the other. Reducing the current or at least balancing the knee currents

is important to avoid overheating and damaging the joints.

However, the current can not directly be controlled (only target angle and hardness

can be send to NaoQi) and several experiments have shown, that simply leaning to

one side or shifting the mass does not change how much current is used in the knee.

Also the speed or height of steps and walk direction only have a minor effect on the

current.

Instead, the movement of the supporting leg has a significant effect on the current.

Especially, changing the height of the torso can cause high currents, even if the reason

for changing the torso height is keeping the center of mass height constant. Small

changes in the torso angle and how the foot hits the ground when it becomes the new

supporting foot also have a large influence on the current.

To reduce the torque in the hip joints, we intentionally tilt the torso towards the

supporting leg while walking. However, these small rotations change the height of

the hips slightly if the center of mass stays at a constant height. If the robot is

leaning to the left, the left hip is moved down and the right hip up. When the torso
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rotation starts moving towards the other side, the left hip will have to be moved up.

Although the height of the center of mass is constant (according to the robot model),

this movement of the hips causes high currents. The current is lower, if the hip height

of the supporting leg is not changed by the torso rotations even if that changes the

height of the center of mass slightly. Since the height of the center of mass is increase

while leaning to the side, the overall mass motion is closer to the oscillations of the

stiff robot in section 4.2.7 which might be the explanation for the improved energy

efficiency.
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Figure 4.12: Example for measured knee currents during the walk. There is a lot
of noise and the current varies a lot, but overall the supporting leg uses less current
when the hip height is kept constant. There are similar peaks in the currents in the
beginning and at the end of each step, but changing the hip height produces a more
constant high current while the leg is supporting.

Figure 4.12 shows the currents used by the left knee joint while walking. There

is a 1.5 mm oscillation either in the height if the supporting side of the hip or the

center of mass caused small torso angles to the sides. The experiments on the physical

robot have shown that the average knee current is about 15 to 20% lower if the hip

height is constant. However, there are many factors that change the used current.
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For example, small differences in the calibration of the joints on each robot can make

a difference.

There are many similar situations were small changes in the movement have an

unexpected effect on the stability or the joint currents. Automatically optimizing

the walk motion for each individual robot should help to reduce these unpredictable

effects on physical robots.

4.3 Walk Optimization

In a closed-loop walk the measured state of the robot is used to react to errors

caused for example by model errors, inaccurate joint control or external disturbances.

However, any change in the step planning for balancing can cause the robot to not

walk the way it is supposed to. Therefore, the smaller the errors are, the more

controlled is the walk.

If the observed walk state always differs from the expected behavior of the model,

the model might be wrong.

A very common problem is a robot that leans to the back and constantly walks

slowly backwards to balance. If the robot is supposed to walk slowly forward, it might

not move forward at all. In a RoboCup environment this can prevent the robot from

reaching the ball if the robots behavior tries to approach the ball slowly.

Using the observed walk state, we will optimize the parameters of the model

to improve the prediction and change how the motion is generated. Since most

components of the walk use the model, changing the model parameters will change
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the complete motion (the step planning and the movement of the supporting foot).

4.3.1 Model Parameters

The movement of the inverted pendulum only depends on its length. Theoretical,

the height of the center of mass of the NAO can be measured, but there are errors.

A shorter or longer pendulum might model the motion of the robot better, since the

exact center of mass position is not known. Similarly, an error in the center of mass

in x and y direction might cause errors in the predictions. The predictions will always

be noisy, but a bias should be avoided. For example, if the predicted forward velocity

is always overestimated, each step chosen according to the model results in a lower

velocity and the robot can not reach the desired walk speed. In this case the model

should be changed to reduce this error.

The basic pendulum model will not be changed by the optimization, but we add

parameters to the mapping from the estimated state of the robot to the model. We

add offsets for the center of mass position in x, y and z direction, offsets for the

estimated velocity, factors to adjust the measured foot positions in x direction and a

time scaling factor.

Some of these parameters might not be physically reasonable and maybe some

values will not help improving the predictions. However, the point of using a black

box parameter optimization to fit the predictions to observations is to improve the

model without knowing exactly what is causing the errors and which parameters need

to be changed.
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4.3.2 Model Optimization

The estimated state of the robot (positions of feet and center of mass) is updated

every cycle using the model and measurements from the sensors. In the beginning of

each step, the model can be used to predict the trajectory of the center of mass using

the current supporting foot as origin.

After observing several steps, this data can be used to test how much the pre-

dicted movement using only the state from the beginning of each step differs from the

observed movement (in position and velocity). These errors have to be minimized by

changing the model parameters.
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Figure 4.13: The minimum error during the model optimization using data from a
NAO in Webots. This error is calculated by comparing the observed positions and
velocities with the predicted motion for several steps.

After collecting data from several steps the optimization can be done offline. Each

candidate solution (parameter set) is evaluated by calculating several positions on the

trajectories using the model and comparing the result positions and velocities to the

observed values to calculate an overall mean squared error for the used parameters.

This optimization can run on a physical robot in the background with low prior-

ity. After a constant amount of iterations it stops and the robot can use the new
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Figure 4.14: The velocities of the observed steps used for the optimization in Fig.
4.13.

parameters.

Figure 4.13 shows an example run of this optimization using data from simulated

robot in Webots. The 10 model parameters were optimized using CMA-ES with a

population size of 20. Figure 4.14 shows the velocities of the step data and the values

predicted by the model before and after the optimization.
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Figure 4.15: Examples for the estimated walk state and the predicted positions and
velocities in Webots before (left) and after the optimization (right). The requested
walk speeds are -0.15 m/s and 0.15 m/s. There is only a small difference, but the
walk speed is a little more constant using the optimized values.

Since the optimization adds some random noise in the beginning, the optimiza-
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tion starts with higher errors, but it quickly finds parameters that are better than

the model without any modifications. Although the error is already small without

modifying any model parameters, the small improvement by adjusting the parame-

ters is noticable in the predictions and improves the step planning slightly. Figure

4.15 shows the predictions in webots for walking forward and backwards with 0.15

m/s with and without the optimization. The predictions are already quite accurate

without the optimization, but the small change in the parameters causes the robot

to walk with a more constant 0.15 m/s. Without the optimization, the velocity is

predicted to high causing the average walk speed to be less than the desired 0.15 m/s.

Since the steps that are used as observations in the optimization vary a lot, the

error is not always reduced as in figure 4.13. Sometimes the error is higher and can

not be reduced much, but the error is never higher than the error for not changing

the parameters. If the errors are already small and adjusting the parameters does not

improve the predictions, it will stay close to neutral values (offsets set to 0, scaling

factors set to 1).
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Figure 4.16: An example run for the model optimization on a physical NAO.

Figure 4.16 shows the error and figure 4.17 the step trajectories and predictions
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Figure 4.17: The velocities of the observed steps from the physical NAO used for the
optimization in Fig. 4.16.

Parameter Neutral parameters Webots physical NAO

mass offset x 0 -0.0014 0.0016
mass offset y 0 0.0001 0.0012
mass offset z (for x movement) 0 0.0046 0.015
mass offset z (for y movement) 0 -0.0029 -0.0154
velocity offset x 0 0.0026 -0.0144
velocity offset y 0 -0.0017 0.0008
foot position factor x 1 0.9938 0.9382
foot position factor y 1 0.9785 1.0578
foot position factor 1 0.981 1.0218
time factor 1 0.9989 0.9991

Table 4.2: The parameters found by the optimization in Webots and on a physical
NAO.

for the same walk and optimization on a physical robot. The errors are not much

larger than in Webots. This is only one run and the error is different depending on

the observed steps, but in most cases the optimization is able to reduce the prediction

error for the observed steps significantly on the physical NAO.

Table 4.2 shows the parameter values found in this two experiments the different

environments produce different adjustments in the model parameters. This would be

very tedious/impossible to do manually for multiple robots. The values also show,

that Webots does not benefit much from these parameters, since the values from

Webots stay close to the neutral values, that do not modify the model.
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The optimization reduces the model error for only a few specific observed steps.

More experiments are needed to verify that the adjusted parameters improve the walk

in general.

4.3.3 Experiments

We conducted several experiments using different physical and simulated robots to

evaluate the effect of the optimization on the walk.

The experiments executed using two different simulators and different physical

NAOs (Nao1-Nao6). Five of the physical NAOs are the model NAO V4 H21. Nao6

is the model V4 H25 with additional wrist and hand motors.

The simulator Webots contains a NAO H21 model, which is very similar to the

physical NAOs. The simulator SimSpark uses a robot model similar to the NAO, but

with slightly different dimensions and masses. Additionally, it is possible to modify

some parameters of the robot model (e.g. longer legs, wider hips). In our experiments,

we use the robot types used by the RoboCup 3D Soccer Simulation League.

The optimization of the model parameters runs for 20 seconds, then gathers new

steps data and restarts the optimization. In the experiments using physical robots,

it directly run on the robot.

We compare some results in this chapter to the previously used walking engine

which is based in the walk of the RoboCup team B-Human and described in [19].

The B-Human walk is a very stable closed-loop walk based on the inverted pendulum

model and has been used by several RoboCup teams since it was published as part
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of the B-Human code releases (e.g. [68]).

We integrated the B-Human walking engine into the RoboCanes agent. However,

the B-Human walking engine depends highly on an accurate calibration of the NAO

and a very accurate estimation of the torso angles. If some errors are too high, it does

not walk at all. There are also almost 100 parameters (offsets, limits, thresholds) that

can be set manually. Some parameters are easy to set or can always be 0, but many

parameters are important, e.g. the maximum speed and acceleration. We found a

configuration that is very stable, but the acceleration is limited and the robots can

not react quick enough in many situations. This walking engine could probably be

faster and stable, but we did not fine-tune all parameters. Nevertheless, this walk

was used by the team RoboCanes in several RoboCup competitions (1st place at US

Open 2015) and will be used in some comparisons.

Walking on a spot

In the first experiment, the robot walks on a spot (the requested speed is 0) for several

minutes. The lateral movement is most important in this experiment, which depends

on the step timing and selection of step target positions. The robot should make steps

such that it maintains a stable oscillation from left to right without much variance.

The model parameters are optimized using information from only a few steps. If

better parameters are found, the walking engine directly starts using these param-

eters, which decreases the average prediction error of the model. Table 4.3 shows

the prediction errors in different environments with and without the optimization.

Additionally, it shows the average of adjustments in the step targets during each step
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mean pred err mean step change support foot err
x ẋ y ẏ x y mean avg. abs. error

Webots NAO 1.6 -10.3 1.0 -6.0 0.77 0.38 1.2 2.5
0.9 -7.8 0.3 -0.14 0.47 0.28 0.5 2.6

SimSpark type0 -0.03 0.2 0.1 0.3 -0.03 -0.02 0.1 4.5
0.2 -0.4 0.3 -1.6 0.06 -0.4 0.5 4.7

physical Nao2 1.9 -11.6 5.8 -38.7 0.68 3.94 8.3 8.9
3.0 -23.9 2.1 0.9 1.9 0.31 3.2 5.8

Nao6 5.8 -40.6 3.1 -20.3 2.83 2.29 5.5 8.4
1.8 -23 0.3 12.1 1.08 -0.73 3.2 6.7

Table 4.3: Observed values while walking on a spot with different robots. The second
row for each robot contains the results using the optimization. All values are averages
over 5 minutes walking (≈ 1200 steps).

and distance values of the supporting foot to the desired position from the reference

trajectory.

The better the predictions for the movement of the mass are, the better are the

step target positions that are chosen in the beginning of each step and the position

does not have to be updated much during the step.

Since the robot did not walk forward or backward, the observed steps do not con-

tain much movement along the x axis and therefore does not improve the predcitions

in this direction. In some cases the errors increase, because the optimization overfits

the model to small x values in the observed steps. However, these results show, that

the optimization is able to reduces the prediction errors in y direction (lateral) in all

experiments. This results in smaller adjustments in the step targets during the steps

and the movement is closer to the reference trajectory.

The ”support foot error“ is calculated at every support exchange by comparing the

position of the previous support foot to the reference trajectory. The table shows the

distance of the mean position over all steps to the reference position and the average

distance for the individual steps. There will always be variance, but the mean can be
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close to the planned position. If there is a bias, the robot might walk slowly although

the requested speed is 0.
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Figure 4.18: The positions of the support foot at the end of each step in Webots
without (left) and with the optimization (right). The variance is not reduced, but the
mean of the measured positions moves even closer to the position from the reference
trajectory.

If the robot model would perfect, the robot would be able to choose each step such

that the robot’s state at the end of each step is the state defined by the reference

trajectory. Figure 4.18 shows the variance in the support foot positions at the end of

the steps made in Webots. There is only a small variance in Webots, but there is a

small bias. Using the model optimization, the mean of the observed positions moves

closer to the position defined by the reference trajectory.

Figure 4.19 shows similar results for a physical NAO. Without the optimization

the robot walked slowly forward (the feet move toward negative x) and the feet are
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Figure 4.19: Variance in the positions of the support foot at the end of each step on
a physical NAO without (left) and with the optimization (right).

further apart than the position from the reference trajectory (which is based on the

50 mm hip offset of the NAO’s legs). Using the optimized model, the robot does not

walk forward anymore (almost no error in x direction) and also mean y position is

improved.

Walking forward/backward

For the next experiments the robots receive a walk requests that change from 150

mm/s forward to 150 mm/s backward every 3 seconds. The walking engine is expected

to accelerate towards the requested walk speed as fast as possible, but without falling.

Table 4.4 shows that the optimization again reduces the overall prediction error

in these experiments. The forward and backward steps provide better data for the

movement along the x axis than the steps in the previous experiment. Most prediction
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mean pred err mean step change walk speed err.
x ẋ y ẏ x y mean std.dev.

Webots NAO -0.2 1.5 2.0 -12.0 0.25 0.81 -37.0 23.8
-0.4 3.2 1.1 -3.7 -0.4 0.25 -28.5 18.2

SimSpark type0 -0.2 1.4 0.8 -4.8 -0.1 0.4 -24.4 16.5
0.4 -2 0.6 -5.6 0.08 0.5 -3.8 20.8

type3 -0.1 0.4 0.9 -5.3 -0.08 0.51 -12.9 15.7
0.2 -0.4 0.4 -1.1 0.04 -0.01 -8.6 19.1

physical Nao1 2.7 -16.8 4.6 -29.8 1.05 2.48 61.0 106.3
1.3 -4.7 1.4 -0.8 0.32 -0.16 38.0 45.7

Nao2 1.6 -10.3 4.9 -32.0 1.26 2.94 64.8 102.9
0.3 -1.2 0.5 8.8 0.32 -0.15 24.8 77.5

physical old walk - - - - - - -51.8 88.6

Table 4.4: Observed values for the forward/backward walk with 0.15 m/s with differ-
ent robots. The second row for each robot contains the results using the optimization.

errors are now reduced by the optimization.

In this experiment, we use odometry information from the motion of the torso

(position and angle) relative to the feet to calculate the approximate current walk

speed. If errors in the predictions prevent the robot from walking with the desired

speed, the robot measures that but consistently chooses wrong step target positions

which do not change the walk speed correctly. Therefore, a smaller error in the

predictions allows the robot to follow the requested walk speeds more accurately.

For 0.5 seconds before each change in the walk direction, we comparing the mea-

sured walk speed with the requested speed for the average speed error shown in table

4.4.

The joints in Webots react slow and the walk is too slow. The optimization

improves it slightly, but it does not reach 150 mm/s. On the other hand, the physical

robots move too fast and the speed varies. The optimization reduces the error in the

walk speed and reduces the standard deviation of the speed, which means that the

robot walks with a more constant velocity.
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Without changing any parameters and without optimization, the new walking

engine walks too fast backwards, such that it can not slow down and falls. For the

experiments in the physical robot without the optimization, it was necessary to set a

mass offset of 5 mm to shift the mass forward. This improves the stability slightly,

but the robot still falls sometimes. Figure 4.20 shows measured walk speeds using

this offset and no optimization on a physical robot. The walk speed varies and it

walks too fast. Especially the velocity backwards is too high, such that it sometimes

takes longer to slow down and change the direction.
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Figure 4.20: Forward/backward walk with 150 mm/s on a physical robot without the
model optimization.

Figure 4.21 shows walk speeds measured on a physical NAO with optimized pa-

rameters. The improved prediction yields a more stable walk that maintains a more

constant velocity. The backwards velocity is still too high, but not as much as without

the optimization and the robot does not fall.

Since the observed walk speed does not depend on information from the walking

engine, we can compare these results with the speeds of the previously used walking
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Figure 4.21: The new walk on a physical robot with optimized model parameters.
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Figure 4.22: Results for the forward/backward walk using the B-Human based walk-
ing engine. Using our current parameters this walk accelerates slowly to be stable

engine (B-Human based walk). This walk is very stable, but figure 4.22 shows that it

accelerates much slower and the forward velocity is faster than backwards. One of the

parameters of this walk controls the maximum velocity change. However, increasing

this parameter does not neccessarily improve the walk. With a higher allowed accel-

eration the walk is less controlled and the torso starts oscillating more. This walk

uses a balancer module that is activated when certain thresholds are exceeded. When

the walk is too unstable, the robot balances more often and ignores the walk request
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as shown in figure 4.23.
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Figure 4.23: The old walk with a higher acceleration is unstable. It ignores the
requested walk speed and only balances.

The B-Human RoboCup team showed that the walk can be very stable and fast.

Therefore, the old walk can probably perform better. However, it depends a lot on

the robot’s calibration and the fine-tuning of many parameters.

Acceleration

Some walking motions on humanoid robots start to walk with a fixed first step to

bring the robot into the correct oscillation. Once the robot made two or three steps

on the spot it starts to accelerate and walk forward.

When the walk request is received, our walk engine already starts moving forward

in the double support, such that it walks forward beginning with the first step. It

accelerates as fast as possible according to the inverted pendulum model. In the

following experiments the robot initially stands. The motion request is changed from

”stand“ directly to ”walk forward with 200 mm/s“. The walk is stopped after walking

0.5 m. We measure the total time it takes to reach 0.5m, the delay in the beginning
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until the robot starts to move (first step forward), the average acceleration and the

error in the velocity reached.

mean pred err total time delay acc. speed error
x ẋ y ẏ in ms in ms in m/s2 mean std.dev.

Webots NAO -2.1 15.6 1.8 -10.5 3758 402 0.44 -44.1 35.8
-1.2 11.6 0.7 -0.1 3588 301 0.43 -38.0 24.7

SimSpark type0 -0.6 4.7 0.5 -3 3000 296 15.0 18.8
-0.24 4.0 0.33 -0.8 2082 301 14.6 16.4

physical Nao1 4.6 -32.3 5.1 -33.5 2920 331 0.68 57.1 44.1
1.4 -12.2 1.0 5.5 3030 354 0.75 15.3 43.3

physical old walk - - - - 4287 856 0.12 -1.3 36.8

Table 4.5: Observed values for the acceleration test. The second row for each robot
contains the results using the optimization. The results are average numbers over 30
runs.
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Figure 4.24: Velocities during the acceleration test using the B-Human based walk,
the new walk without optimization and the new walk with optimized parameters.
The optimization prevents the robot from walking too fast.
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Table 4.5 summarizes the results for the acceleration test. As in the previous

experiments, the new walk accelerates much faster than the B-Human based walk, but

it is less controlled and walks too fast. The old walk accelerates slowly and reaches

the requested velocity very accurately. The optimization improves the new walk

and reduces the error in the reached velocity without slowing down the acceleration.

Figure 4.24 shows examples for the observed velocities during the experiments.
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Figure 4.25: Walking speeds averaged and smoothed over all test runs.

Figure 4.25 compares the walking speed using the different configurations on a

physical robot. At time 0 the walk request starts. The new walk accelerates much

faster. Using the optimization, the accuracy of the walk is improved.

4.4 Conclusion

We have implemented a closed-loop LIPM-based dynamic gait for the NAO. Compo-

nents such as the reference trajectory generation and step planning use the physical
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model as black box to generate the corresponding motion. This allows to easily mod-

ify the model. We added several parameters to the inverted pendulum model that can

be modified to improve the model predictions. These parameters are simple offsets

and scaling factors that can compensate systematic errors caused by variances in the

hardware of physical robots.

We optimize the model parameters using CMA-ES to fit the model to observations

of the robot’s movement. The experiments show, that the optimization reduces bias

in the predictions by approximately 50% to 90% (varies depending on walk requests,

robot, environment). It is able to improve the walk, even if it uses only a few observed

steps to adjust the parameters and runs with limited computational resources, e.g.

on the 1.6 GHz Atom CPU of of a physical NAO.

In simulations, the optimization is not able to improve the walk much, since the

errors are already small. On physical robots, the errors are different from robot to

robot. The optimization can quickly improve the model parameters for individual

robots.

Approaches for motion generation using optimization (optimizing trajectories,

training CPG’s) work well, but often do random exploration and can be difficult

to apply to physical robots. On the other hand, model-based approaches only gener-

ate feasible motions, but often need some fine-tuning of parameters and an efficient

balancing to compensate for model errors additionally to external disturbances.

We successfully applied a parameter optimization to components of a model-based

motion generation to combine the benefit of limiting the search space to safe motions

that will not break a physical robot with an optimization such that the motion is
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automatically adjusted for different robots (physical robots or different simulated

robots) and no manual parameter-tuning is needed.

4.4.1 Future Work / Extensions

More components of the walking engine could be improved using parameter optimiza-

tion. The movement of the mass in x- and y-direction does not have a big influence on

the used current in the legs. It seems that very small changes in the hip height or the

angle of the supporting foot can have a bigger effect on the current. The control of

the supporting leg could be optimized to reduce the currents. Since a walking robot

makes more than 1000 steps per minute, it should do enough repetitions to run the

optimization on a physical robot. Another task that can probably be improved using

optimization or learning is the torso angle control.

A possible general extension of the walk engine is the integration of a kick. A kick

can be added as a walk action (a different step type). A kick action could be seens as

a step with longer duration and maybe constraints on the swing target position after

the kick, such that it is treated as a long step.

For a kick integrated in the walking motion, it would be useful to plan the pre-

vious steps such that a kick is possible at a certain position relative to the robot.

Therefore, the most important change would be a step planning with a different ob-

jective. Instead of reaching the reference trajectory, the step planning would have to

choose steps such that it reaches a given target state at a given relative position to the

current state. This would also be helpful for just walking to a given position without
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using arbitrary values for slowing down when approaching the target position.



Appendix A: The RoboCanes

Software

This chapter gives an overview over the RoboCanes software, including the agent,

various tools and scripts and how to use them. The described framework and tools

were build from scratch to allow the RoboCanes team to work more efficiently with

the simulated and physical NAOs and successfully participate in the RoboCup 3D

Soccer Simulation and Standard Platform League. The RoboCanes framework is an

important infrastructure for most of our research with the robots.

The focus is on information needed for working with the framework and under-

standing the general concepts. Some implementation details are discussed, but the

information in those sections is not needed for only using the framework and tools.

After giving an overview over the included files and directories, section A.2 de-

scribes the agent framework and general module structure for the 3D Soccer Simula-

tion and the SPL. Additionally, section A.5 and A.6 will describe various scripts and

tools.

124
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A.1 Repository Overview

The robocanes repository contains the following directories:

• bin/binNao

The bin directory contains all files needed to run the agent. After compiling

the agent, the executable file robocanes is copied there. Additionally there are

config files, start scripts and all other files loaded by the agent at runtime (e.g.

motion files for special actions).

• build

The build directory is created automatically by the configure script. Usually,

there is no reason to touch this directory. It only contains dependency files and

objects created during the compilation.

• doc

Directory for creating a doxygen documentation.

• lib

Additional libraries used by the agent should be stored in lib. The configure

script already adds lib/include to the include path and links the binary such

that it will find the libraries in lib/linux32. In fact, the binary searches for

libraries in ../lib/linux32, ./lib (local in the bin directory), and /root/lib (for

the physical robot).

• scripts

This directory contains several scripts, e.g. for running games against different
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opponents automatically or several scripts for configuring and working with the

physical NAO.

• src

This directory contains all the source code for the agent (the robocanes binary).

The configure script searches for all c and cpp files in this directory (unless a path

is explicitly excluded in the configure settings). Everytime a cpp file is added

or removed, the configure script has to be executed to update the makefiles in

the build directory.

• utils

Additional tools that run independent from the agent. These can be own tools

written by the RoboCanes group or tools from external sources (e.g. the SPL-

GameController provided by the RoboCup community).

A.2 The RoboCanes Framework

A.2.1 Build system

The RoboCanes agent does not use a build system such as CMake, SCons, etc. Some

build systems require a lot of extra files within the source file directories (CMake-

Lists.txt) that sometimes have to be updated manually when files are added or moved.

For most build systems, everyone working on the project has to know how to use and

maintain it. Some build systems are also slow or waste time, e.g. by unnecessarily

updating all dependencies every time “make” runs. Since portability is not a priority,
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the RoboCanes agent uses an own, simple configure script. The goal was to use a

build system that is as easy to use as possible, does not require editing files, does

not add extra files in the source directories and handles and updates dependencies

correctly.

The RoboCanes build system consists of a single configure script that searches

for all C and C++ files in the given source directories and creates a Makefile and a

build directory. When a file is added, moved or deleted, the configure script has to

be executed to update some files in the build directory, but no files have to be edited

manually.

The configure script does not have to be executed to only update dependency

information. Dependencies for existing files are updated by the Make files every time

they are compiled.

There are several settings at the top of the configure script, such as the name

of the binary, source directories (also directories to ignore), compiler flags or used

libraries. Those settings can also be overwritten by command line arguments passed

to the configure script.

The RoboCanes agent can be compiled with several different configurations (SimDe-

bug, SimRelease, Nao, NaoLocal, NaoRelease), which use different compilation flags

and ignore source files in some cases. The SimSpark agent for example ignores the

Nao subdirectories which would require OpenCV, which is not used for the SimSpark

agent. All these configurations can be initialized by different scripts that call the

configure.sh with different arguments.

For example compiling the release binary for the SimSpark agent can be done by
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executing ./configureSimRelease.sh followed by make. This will write the binary

directly to the bin directory. The configure scripts for different configurations only

add make targets to the Makefile. The default target that is compiled with make is

always the last configuration that was created/updated using the configure script. All

other configurations can be compiled as separate targets, e.g. with make SimDebug

or make NaoRelease. The target all compiles all configured versions of the agent.

More Details

The build directory is created to store the compiled object files and files needed for

the dependecies. When the configure script is executed, it checks the dependencies

for all source files, which takes several seconds. This should not be done every time

the agent is compiled. Usually only a small number of source files is changed and only

those files are compiled. Those files are also the only files that might have different

dependencies. Therefore, it is sufficient to only update the dependency information

for these files.

The configure script realizes this by creating a dep file for each object file which

contains the Make target to compile this object. The target’s dependencies are gener-

ated by gcc using the -MM flag. The configure script adds commands to these targets,

such that they compile the objects and update the dep file. All these generated dep

files are included in the main Makefile, such that all targets are checked for changes

when “make” is executed.

Executing the configure script with a new target name does not overwrite the

Makefile. It only adds another target to the Makefile and creates a new subdirectory
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for the target in the build directory.

If the name of the output file (the linked binary) uses the extensions .so or .a

the configure script will automatically add the correct compiler flags and compile

a shared or static library. By defining the source directories or ignored directories

correctly, parts of a project can be compiled as a library. The target for the main

executable can be configured to use that library. When configuring the main target,

the library target can be given as a dependency, such that compiling the main target

will also check if there are changes in library files that need to be compiled to create

a consistent complete build.

Some files in the RoboCanes project are generated automatically (the parsers

using Flex/Bison). This is not hardcoded in the configure script. Instead, the config-

ure script assumes by default, that non-existing files can be generated by additional

targets. Those targets can be added by including additional Makefiles.

All extra files to include need to be listed in the configure script settings under

“includedMakefiles”. Additionally, generated cpp files might have to be listed under

“generatedFiles” to make sure those files are compiled. A simple additional Makefile

could contain just one target to generate a specific file:

myGeneratedHeader.h: inputFile

@bash_command_to_generate_file inputFile

By including additional targets, it is also possible to provide generic targets for

generating certain files. The follwing code automatically generates code using Flex

and Bison:

BISON=‘which bison‘
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FLEX=‘which flex‘

# --- targets for creating code with bison and flex

%.tab.c %.tab.h: %.y

@echo $(TUQ)[BISON]$(NOR) $(notdir $*.y)

@$(BISON) -d --file-prefix=$* $<

%.l.c: %.l %.tab.h

@echo $(TUQ)[FLEX]$(NOR) $(notdir $*.l)

@$(FLEX) -t $< > $@

A similar extension is used for the configure in the RoboCanes Manager (see

section A.6.2) to gerate code for Qt using the Qt User Interface and Meta Object

Compiler (uic and moc).

A.2.2 Agent Structure

An agent observes its environment and acts upon it. In other words, the interaction

of an agent with its environment is limited by its sensors and actuators. The agent

has to read sensor values, process them and produce a stream of outputs that control

the actuators. Usually, this can be represented by a cycle as shown in Figure A.2.26.

When the agent receives new perceptions, it needs to process these perceptions, up-

date some internal states and in the end produce new control outputs that are send

back to the environment. An agent can be implemented in complicated ways, in-

cluding modeling and learning, but overall there is always the cycle that processes

perceptions and produces control outputs.

Figure A.2.27a shows an example structure of a model-based reflex agent, that

contains the same loop. Several types of agents are described in [70] using a control

loop consisting of different components. The model-based reflex agent could also be
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Figure A.2.26: General control loop of an agent acting in an environment.

(a)

Modeling

Behavior

Perception

Motions

Control actuators

(b)

Figure A.2.27: The control loop of a model-based reflex agent (a) (from [70]) and a
more general example for possible components of an agent (b).

split into two main components, the modeling and the behavior. Depending on the

format of the perceptions and the outputs, the agent would require additional steps

in the processing and can be split further into a sequence of more components as in

Fig. A.2.27b. These components can be seen as categories of tasks. For an agent

controlling an autonomous robot these can be split into a lot of much smaller tasks,

e.g. the detection of a certain feature in a camera image, self-localization or the control

of the robot’s head. All these modules require some information and produce new

information that might be required by other components. The RoboCanes module

framework supports exactly this structure and helps to maintain it.
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A.2.3 Module Framework

The RoboCanes module is a general framework that helps to organize the code of

the agent. It guarantees that the various modules are executed in the correct order,

helps avoiding hard to debug problems with side-effects and makes it easy to add or

replace modules.

The RoboCanes framework is based on concepts of a blackboard architecture [32,

10]. In a blackboard architecture, all known information is gathered on a blackboard.

The modules can be seen as experts or knowledge sources. Each module can perform a

specific task, but it has to wait for all information it requires to be on the blackboard.

Once the constraints of a module are fulfilled, it can use the information on the

blackboard and add additional information to it. Each module solves only a small

subtask, but they all work together to solve a complex problem. The requirements of

the modules (the dependencies) can be used to find the correct execution order of the

modules. After all modules have been executed, the blackboard contains all available

information including the solution to the overall problem, e.g. the control outputs for

the joints of the robot.

The RoboCup team B-Human uses the same architecture [71]. There are several

similarities in the RoboCanes framework, especially in the way of creating modules

and defining their dependencies. The RoboCanes framework followes several ideas of

the B-Human framework, but it is implemented differently. It is much smaller and

less complex than the B-Human framework and simplifies some aspects further, e.g.

adding modules does not require to modify any framework code. It is not necessary to
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know anything about the implementation of the framework to work on the modules

of the agent.

The complete RoboCanes agent consists only of two types of classes: modules and

representations. Most of the computation is done in the modules. Representations

only store information and can be seen as data containers or interfaces between mod-

ules. Modules can require and provide representations. A module can not be executed

before all required representations have been updated in the current cycle. When a

module is executed it can read the information from the required representations and

update other representations that might then allow more modules to be executed.

BallLocator

BallPos

Odometry BallPercept RobotPose

Module

Representation

Figure A.2.28: Example for a module and representations. Here, three representations
are required by the BallLocator. It provides the representation BallPos.

Modules have no direct access to other modules. Modules can only access repre-

sentations that are declared as required or used representation in the class definition

of the module. Each module also declares which representations it is able to pro-

vide. Figure A.2.28 shows an example for a module and its required and provided

representations. Those are the only representations the module can access.

All modules declare the used representations and are registered in the framework.

This way the framework knows all available modules and can activate and execute

them. It is not necessary to call any methods of the module somewhere in a central
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file to activate it. The framework controls the execution of modules.

The information about the required and provided representations is used by the

framework to create the module graph (a directed acyclic graph) that contains all

modules and representations and shows their dependencies. By sorting the modules

topologically, the framework finds an execution order of the modules, such that all

modules are only executed after the required representations where updated by other

modules. The framework stops and shows an error message, if a required representa-

tion is never updated or if there are dependency cycles in the graph.

If the agent is compiled as debug version, the framework creates a .dot file

when the agent starts to visualize the module graph using the Linux Graphviz

tools [14]. This file can be used to generate a picture, e.g. with the command

"dot -Tpdf modulegraph.dot > modulegraph.pdf".

Creating representations and modules

Representations are classes that only store information. Therefore, most representa-

tions will only list some member variables. The framework needs to be able to access

all representations through a common base class and some type dependent methods

need to be defined for each representation. This is all done by the REPRESENTATION

macro. This macro creates a base class for the given representation. The name of this

base class is the name of the new representation with “Base” appended. By extending

this base class, the new representation class inherits all bases and methods that are

required by the framework. The following code example shows how to create a new

representation with the name “ExampleRep”:
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#include "framework/Representation.h"

REPRESENTATION(ExampleRep)

class ExampleRep : public ExampleRepBase

{

//...

};

Representations do not have to implement any methods and can only consist of the

class definition in a header file.

Modules are created in a similar way. The macros MODULE and END MODULE gen-

erate the code for the module base class. The following code is sufficient to define a

module, that could be added to the framework:

#include "framework/Module.h"

MODULE(ExampleModule)

END_MODULE

class ExampleModule : public ExampleModuleBase

{

public:

void init() { }

void execute() { }

};

There are abstract virtual methods in the base class. Some methods have empty

default implementations, others might be abstract and have to be implemented in

the module. The methods init and execute are optional. Those methods are called

by the framework. The execute method is called in every cycle, the init only

once in the beginning (all representations are available when init is called, which

is not the case in the constructor). The macro MAKE MODULE has to be used in

the modules .cpp files to register a module in the framework (e.g. with the line
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“MAKE MODULE(moduleName);”). Otherwise, the framework would not know that this

module exists, since it is not included or created in any other file. This is not re-

quired for the representation. The modules register all representations they use in

the framework when they are created.

There are two macros for creating the module base classes, because the represen-

tations used by the module need to be defined between these macros. The macro

REQUIRES defines that a module requires the information of a representation and can

only be executed after that representation was updated. This macro automatically

adds a pointer to the base class to access that representation. The name of the pointer

is the name of the representation with the prefix “the”. It only allow reading from

the representation.

#include "framework/Module.h"

#include "representations/perception/BallPercept.h"

MODULE(ExampleModule)

REQUIRES(BallPercept)

END_MODULE

class ExampleModule : public ExampleModuleBase

{

public:

void execute()

{

log << theBallPercept->pos.x;

}

};

The macro PROVIDES defines that a module is able to provide a certain represen-

tation. An update method has to be implemented in the function for each provided

representation. When the framework calls an update method, it passes a pointer

to the representation that allows the module to write to it. The following code
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shows an example of a module that provides BallPos based on information from

BallPercept.

#include "framework/Module.h"

#include "representations/perception/BallPercept.h"

#include "representations/modeling/BallPos.h"

MODULE(ExampleModule)

REQUIRES(BallPercept)

PROVIDES(BallPos)

END_MODULE

class ExampleModule : public ExampleModuleBase

{

public:

void update(BallPos* theBallPos)

{

theBallPos->relativePos = theBallPercept->pos;

}

};

Modules can provide multiple representations, but it is not necessary to always use

all of them. It depends on the configuration of the framework, which update methods

are used. Since writing to representations is only possible through the pointer that is

passed to the update method, the framework controls which module can write to a

representation. A faulty module can not write to a wrong representation by accident

which otherwise might cause difficult to debug problems. The execute method is

always called before any update methods.

In some cases, a module has to access a representation, but adding it as require-

ment would add circular dependencies. In that case, the macro USES can be used to

just add the representation pointer to the base class. However, this should be used

only if it is really necessary. A USES does not have any effect on the execution order

of the modules. It can be used to read values from the previous cycle, when accessing
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a representation that is updated later. The USES macro also does not guarantee that

the representation is provided at all. The representation pointer can be NULL.

The macro REQUIRES IF PROVIDED works exactly as the REQUIRES macro, if the

representation is provided by another module. However, if the representation is not

provided, the framework does not show an error. In that case, the representation

pointer in the module will be NULL. This macro can be useful for optional represen-

tations that should be updated in the correct order if they are used, but the agent

would also work without them.

Module configuration (modules.cfg)

The framework does not always use all available modules. There can be different

version of the same module or alternative modules for the same purpose. The modules

configuration defines which modules are active and which representations each module

provides. The default location for this config file is bin/config/modules.cfg.

Each line in the modules.cfg can contain a module name followed by a repre-

sentation that this module provides. Listing only the module name means that the

module is only executed, but it does not provide anything. If a module provides

more than one representation there has to be one line for each provided representa-

tion. Figure A.2.29 shows a module graph that is created by the following modules

configuration (part of the SimSpark agent configuration):

SimSparkConnection ServerMessage

Parser FrameInfo

Parser SensorData

Parser PlayerInfo

Parser JointData
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TorsoAngleEstimator TorsoAngles

SimSparkConnection

ServerMessage

Parser

FrameInfo PlayerInfo SensorData JointData

TorsoAngleEstimator

TorsoAngles

Figure A.2.29: Example module graph containing only a few modules from the
RoboCanes agent.

If a modules configuration produces a modules graph with cycles or missing de-

pendencies, the framework shows an error message and exits.

Threads

It is possible to define two or more graphs in the modules.cfg that run independently

in threads. A thread is created by a line as for example “[cognition 5]”. This defines

the thread with the name “cognition” and priority 5. All modules listed after this

line are added to that thread. Modules can only run in one thread. Multiple threads

are not synchronized. A thread can not be blocked by other threads (unless a thread

with the maximum priority 15 uses the complete CPU time).

Each thread has to contain a complete module graph and all representations re-

quired by modules in a graph have to be provided. Representations provided in
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another thread can not directly be accessed (with USES or REQUIRES). However,

representations can be copies from one thread to another to be provided there. For

example, if a representation BallPos is provided in the cognition thread, but is re-

quired by modules in another thread, the line “cognition BallPos” can be used to

provide a copy of BallPos in that thread. This copy is always the current state of the

representation in the source thread. Since there is no synchronization or blocking,

this copy might not get updated every frame or miss information depending on the

frequencies the threads run with.

The following example configuration creates two threads:

[thread1 5]

Module1 Data

[thread2 1]

thread1 Data

Module2

The first thread executes a module that provides a representation Data. If Module2

in the second thread requires Data, the line “thread1 Data” is needed to copy that

representation from the first thread and provide it in the second thread.

Network streaming of representations

An agent can request representations from another agent running on a remote machine

just by letting the module “network” provide that representation and setting the IP

address where the remote agent is running in the file config/NetworkModule.cfg.

The example above could run in two agents, each executing the modules of one

thread. The first agent only needs to execute the module that provides Data and the
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network module:

[debug 1]

network

[thread1 5]

network

Module1 Data

The network module needs to be executed to run a server and accept connection of

remote agents. If there are multiple threads, each thread should execute “network” to

allow access to all representations in those threads (this module is a special module

that can be executed in multiple threads). Additionally, there should be an extra

thread for sending all information to avoid slowing down or blockign the other thread

if the network is too slow. The configuration file defines the name of the thread used

for sending (e.g. “debug”). Another agent can use the following configuration to

request Data from a remote agent:

network Data

Module2

When this agent is started, it tries to connect to a remote agent using the IP and

port defined in config/NetworkModule.cfg and requests the representation Data. If

this representation exists in the remote agent, it starts sending it every cycle. If the

bandwidth is limited it might not send the representation every time it is updated.

If the receiving agent runs too slow it also skips frames to provide the most recent

information instead of buffering all information which could create an increasing delay.

Copying representations from one thread to another or streaming over the network

uses the stream method described in A.2.5.
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Internal structure and plugins

This section describes more details about the internal structure of the framework and

how to add functionalities or objects through plugins. This information is not needed

to only work with the framework and write new modules or representations.

Figure A.2.30 gives an overview over the most important objects and how they

interact with each other. All modules are implemented using the macros described

in the previous sections. The CREATE MODULE macro in each cpp file of the modules

create a loader object that registers itself in the controller. For the controller this

loader class is a generic module loader, such that the module’s header file does not

have to be included anywhere. This way the controller has access to loader classes

for all available modules and representations. It creates a process object for each

thread defined in the modules.cfg. These processes use the loader objects to create

instances for all activated modules.

The macros used in the header file of each module create the module specific

base classes (module name with “Base” appended), which defines the representation

pointers used to access representations. All the object specific base classes extend a

generic module base class, such that all modules can be treated as generic objects in

the controller and process class.

When a module instance is created using a loader class, the module specific base

class registers representation loader objects and information about the required and

provided representations in the controller. This way the processes get access to repre-

sentation loader objects from the used modules without including all representation
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controller

process (thread)

module graph

...

executes

initializes

module loader

module loader

module loader

representation loader

representation loader

registerred as generic
loader for modules
or representations

initializes
(using loaders
from controller)

defines

module specific base

module base

plugins

executes
(before, after action/cycle)

provide extra
functionalities
for all modules

module specific base

access to
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.

.

.

module

module module

representation

representation

Figure A.2.30: All available modules register loader objects in the framework con-
troller, which creates process objects that use the loader objects to create the module
graph. Plugins can add objects to the module base class.

header files and listing the representations explicitly. The representation pointers

defined in the module specific base class (pointers with the prefix “the”) gain access

to the representation instances through the controller.

The framework plugins are classes with methods that are called by the processes

before and after every call of an execute or update method and at the end of each

cycle. The plugins can add additional objects to the module base class (the module

base extends a class PluginModuleBase). For example, all modules in the RoboCanes

framework have access to a “debug” object through the module base class, which

probides methods for debug drawings or time measurement. The plugin initializes the

debug object, measures the time used by each module execution and representation

update and sends a flush message for drawings at the end of each cycle.

Additional objects can be added to the module base class (via the PluginMod-
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uleBase) without adding a plugin class. Similarly, the representation base class can

be extended by adding variables to the class PluginRepresentationBase (not shown

in Fig. A.2.30, but analoguos). Any actions that should be executed e.g. after ev-

ery representation update or once every cycle need to be implemented in a plugin

class. This avoids adding extra code for specifig extensions to the process class of the

framework. Instead, all extensions can be integrated as plugins.

module M

MBase requiring representation R

Module base

ModuleLoaderTemplate for M representation R

RBase

Representation base

RepresentationRequirement for R

ObjectLoaderTemplate for M

RepresentationLoaderTemplate

CREATE_MODULE macro

ObjectLoader<Module> ObjectLoader<Representation>

ObjectLoaderTemplate for R

Module and Representation implementations

Framework controller and process classes

Figure A.2.31: Base classes and templates of modules and representations and loader
classes. The thin arrows upwards point to the extended base class. The thick arrows
show where instances of another class are created.

Figure A.2.31 shows a part of the framework’s class hierarchy and how modules

and representations can be added to the framework without modifying any framework

code (adding header files, creating representation instances, etc). All classes below

the dashed line are created by the implementation of the module and need the defini-

tion of the type of the module. The macro CREATE MODULE in the cpp file of a module

creates an instance of a loader class for this specific module. Several templates and

base classes are used to register the object as a loader for a generic Module class

in the framework, which is completely independent of the exact type of the module.

However, this can be used to create an instance of the module. This module uses a
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base class generated by the macros of the framework. It is known to the controller

only as a generic Module. The module specific base class contains instances of repre-

sentation loader classes (created by the macros, e.g. REQUIRES). These is registered

in the controller as generic Representation loader objects, but using templates they

are able to create instances of the representations.

From the view of the framework controller all classes are generic loader classes

or generic rrepresentations and modules. All other classes that depend on the exact

types of the modules and representations are created using templates and generated

by the macros provided by the framework.

Framework modules (RepTransfer and NetworkModule)

Currently, two special modules can be used that are implemented without using the

macros and behave different from usual modules. These modules are the module

for copying representations from another thread and the network module. They

have access to all representations known to the controller and they can provide any

representation. They can be added to multiple threads.

Since these modules can use only representations that are registered in the con-

troller, it is not possible to stream a representation to an agent, if that representation

is not used by any other module (e.g. only for seeing the RoboViz drawings sent by

the draw method in the representation).

Similar to the network module a log module could be implemented, that can save

representations to a files and read from it later.
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A.2.4 Framework Extensions in the RoboCanes Agent

In the RoboCanes agent, several tools have been added through plugins and modules

in the module base class. The following objects are available in all modules of the

agent: debug, config, log, monitor.

The debug object

The debug object provides methods for debug drawings and stopwatches. The draw-

ings are send to the monitor RoboViz.

The config object

The config object provides a simple way of storing config values.

Log stream / LogProcess

The log stream can be used to write messages to an internal buffer. If the agent

crashes (e.g. with a segmentation fault), another process writes the last log messages

to the file “crash.log”. When the agent is started with the option “-v”, it additionally

prints all log messages on the standard output.

SimSpark monitor commands

The monitor object is only useful for the simulation. It can be used to send commands

to the monitor port of SimSpark. It can move the ball and robots or change the current

game state.
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A.2.5 Streamable Objects

The Streamable base class is important for sending representations from one thread

to another, to remote agents through the NetworkModule and for sending values

through the debug interface.

All basic data types are streamable (bool, char, int, float, double). Vectors of

streamable objects are streamable (not vector of pointers to streamable objects!).

Classes can be made streamable by extending the base class Streamable. This base

class is an abstract class with a virtual stream method. Every streamable object

needs to implement this stream method, which is used for serialization. Some classes

used in the RoboCanes codebase are already streamable, e.g. the vector and pose

classes in the math directory. The following code shows an example of a simple class

that is streamable:

class Example : public Streamable

{

public:

int a, b;

double v;

Vector2<int> p;

void stream(InStream *in, OutStream *out)

{

STREAM(a);

STREAM(b);

STREAM(v);

STREAM("vec", p);

}

};

In most cases, the stream method does not require any other code besides the

macro STREAM. This macro generates the required code to serialize the class and
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write to the out stream. It can also read from a stream and set modified values. Only

one stream method is required for reading and writing. The variable passed to the

STREAM macro has to be streamable. Optionally, the value get be given a label (e.g.

shown in the debugger). If no label is defined, the variable name is automatically used

as the label.

Two different types of streams are implemented: a binary stream and a text

stream. The stream method of streamable objects is independent of the stream type.

It works with both stream types. Using a binary stream, the example above will

simply write on value after another to the stream without any overhead. The text

stream will create a human readable string that also shows labels, e.g.

{[a] 0 [b] 3 [v] 5.820000 [vec] {[x] 2.000000 [y] -1.500000 }}.

The text stream is used for the debug interface. The purpose of the labels is only

used to improve the readability of the outputs in the debugger. When the stream

method reads from a string, it ignores the labels. The curly brackets and order of the

values is important.

Representations have a default implementation of the stream method, that sends

the representation as a block of binary data. It uses the sizeof operator to deter-

mine the size of the representation. This works correctly only if there are no pointers

to variables that are not included in the representation. This default stream imple-

mentation is sufficient for sending representations from one thread to another or to

another agent through the network, if the representation does not contain pointers.

Those connections are always using a binary stream.
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A.2.6 Debug Interface

This section describes the debug interface of the RoboCanes agent. It provides the

possibility send commands to the agent to read or set variable values or activate

debugging code.

Section A.6.1 will describe rdb, a separate tool that connects to the debug inter-

face. However, the debug interface is independent from the debugger. It can be used

by directly sending commands as strings, e.g. through simple tools as nc (netcat).

The debugger rdb only provides a console with some additional functionalities. This

section describes how to use the macros of the debug interface in the agent code.

Only streamable variables that were registered for debugging in the agent code

can be accessed through the debug interface. Similarly, only code blocks that are

declared as debug response can be switched on and off. Registering variables or

debug code in the debugging interface can be done using macros in the agent. By

default, all of these macros do not change the behavior of the code, since all debug

requests are deactivated when the agent starts. The macros only add the possibility

to access values or activate debug code later. Table A.2.6 gives an overview over the

implemented macros.

The id string used to identify variables or debug reponses can be any string. How-

ever, meaningful prefixes should be used to avoid conflicts, e.g. “module:ExampleModule:

someValue”. The following shows examples on how to use the macros:

OUTPUT("module:Example:debug", myVar); //by reference, uses &myVar, no copying

OUTPUT_BY_VALUE("module:Example:debug", someFunction(x,2)*0.1);

DEBUG_RESPONSE("module:Example:test", createPlot());
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Macro Command Description

OUTPUT(”id”, variable); get id Read the variables value once.
watch id Read the value repeatedly.

MODIFY(”id”, variable); set id x Overwrite value of variable
with x every cycle.

setOnce id x Overwrite value only in the
next cycle.

unset id x Stop overwriting variable.
Implies OUTPUT.

OUTPUT BY VALUE(”id”, value); Same as OUTPUT, but value is
copied.

DEBUG RESPONSE(”id”, code); dr id Activates debug response.
”code” is executed every cycle.

dr id off Deactivate debug response.
Stop executing ”code”.

dr id once Execute code only once (in next
cycle).

DEBUG RESPONSE OUTPUT(”text”); Can only be used inside DE-
BUG RESPONSE.

DEBUG RESPONSE ONCE(”id”, code); Debug response that always
runs only once.

Table A.2.6: Debug interface macros and the corresponding debug commands.

DEBUG_RESPONSE("module:Example:test",

{

//do

//something

DEBUG_RESPONSE_OUTPUT("Text printed in the debugger.");

});

The only requirement for the debug interface to work is the module “DebugMod-

ule”. It has to be activated in the agent (preferably in a low priority debug thread).

This module needs to call on update method of the debug interface regularly to accept

new connections and send or receive data. The debug interface itself is initialized as

a singleton. There is always only one instance that can be accessed globally by the

macros. Thus, the macros can be used anywhere in the code, not only in modules.

Some objects are automatically registered by the framework for debugging:
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• MODIFY on representations, id “representation:NAME”.

• MODIFY on all config values, id “config:CONFIG:VALUENAME”.

• OUTPUT on all stopwatches (see debug object, section A.2.4) with the id “tim-

ing:STOPWATCHNAME”. This is for example used for all execute and update

methods, e.g. “timing:NaoCamera:execute” or “timing:SelfLocator2:updateRobotPose”.

A.3 SimSpark Agent

In the 3D Soccer Simulation League, SimSpark simulates the environment and the

robots. The RoboCanes agent has access to sensors and actuators of one simulated

robot (through a TCP connection to the server) as shown in figure A.3.32. The

monitor RoboViz connects to SimSpark to show the environment and the robots.

The agent can send commands directly to RoboViz to show debug drawings.

goalposts, ball,
lines,

sensor data, ...

Joint commands

Simulator
RoboViz

Agent

Debug drawings

perceive

act

Figure A.3.32: The connections between SimSpark, the agent and RoboViz.

Figure A.3.33 shows the module graph for the SimSpark agent. The SimSpark-

Connection module receives the messages from the server. It provides it as one string.
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Figure A.3.33: The complete module graph of the SimSpark agent.

The Parser module reads out all information from the server message and provides

separate representations. At the end of every cycle the SimSparkSend module uses

the connection provided by the SimSparkConnection module to send the joint com-

mands to SimSpark. Since the complete process only depends on the messages of the

server that are received with 50 Hz, all modules of the SimSpark agent are in one

thread. The complete processing from receiving the server message to sending the

joint commands is split into modules for the seperate tasks:
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Perception

• CognitionConfigLoader → FieldDimensions, SkillKickParameters)

Provides representations that contain values from config files that never change

while the agent is running (e.g. FieldDimensions). It only initializes the repre-

sentations once.

• SimSparkConnection → ServerMessage, SimsparkInfo

Connects to SimSpark and provides the received server messages as a string.

Additionally it provides information about the connection (e.g. socket, time

connected).

• Parser → FrameInfo, Gamestate, SensorData, GoalPercept, ...

Parses the server message and provides all received information as separate

representations. The parser is generated using flex and bison.

• TeamComRecv → TeamComInfo, TeamComDataIn

Messages between players are send as strings through the server. The length

and character set is limited. The Robocanes agent converts the binary data to

send into base 64 to encode up to 120 bit information into a string with length

20 using 64 different characters (some more characters are allowed, but they

cause problems in the parser).

The module TeamComRecv decodes the message provides received binary data

and for example information about the sender.

• TeamComDemux → TC BeliefShareIn

Splits messages from other players into separate parts (currently the communi-
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cation is only for sharing robot and ball positions).

• TeamComMux → TeamComDataOut

Combines all data to send in one buffer.

• TeamComSend → SayMessage

Encodes the data to send into a 20 character string.

Modeling

• AccEvaluator → Odometry

This module has been used to provide the upright vector and torso pose of

the robot using the accelerometer and gyroscope. Most of this is replaced by

the module TorsoAngleEstimator. Only the odometry is still provided using

information from the gyroscope and walking engine.

• TorsoAngleEstimator → UprightVec, TorsoAngles

Filter for estimating the torso angles using the accelerometer and gyroscope.

• RobotModelProvider → FKModel

Uses forward kinematics to provide cartesian coordinates of all body parts and

joints and the center of mass relative to the torso of the robot.

• GroundContactDetector → GroundContactState

Detects whether the robot is on the ground using the force sensors in the feet.

• TorsoPoseProvider → TorsoPose

Combines the FKModel and TorsoAngles to provide the pose of the robots torso

in the world coordinate system relative to a reference point between the feet of

the robot.
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• FallDetector → FallState

Sets the FallState (standing/fallen) using the torso angles. This module also

detects whether the robot is sitting.

• PolarBallPerceptConverter → BallPercept

Converts the ball perception in polar coordinates from sent by SimSpark into a

position on the field relative to the robot using the TorsoPose.

• AugmentedSelfLocator → RobotPose, LocalRobotPose

Self-localization using a particle filter.

• BallLocator → LocalBallPos

Kalman filter for the ball tracking. This provides only the local ball belief.

The overall BallPos representation combines the local belief (LocalBallPos) and

received information from the team (TeamBallPos).

• NaiveAgentLocator → LocalOtherRobots

Tracking of other robots from body part perceptions.

• BeliefShare→ TC BeliefShareOut, TeamRobotPose, TeamBallPos, Received-

BallPos, TeamOtherRobots

This module provides robot and ball positions received from teammates.

• BeliefCombinator → BallPos, OtherRobots

Combines the local belief with received information. If the confidence is high

enough, the local ball belief always has priority over the received ball position.

• OppAnalyzer → OppInfo

This module uses observations of opponent players to obtain information about

the opponent. Currently, it only provides an estimated average walk speed of
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the opponent and the estimated time until an opponent reaches the ball.

Behavior

• BlockOpponent → BlockPosition

Provides a position to block an opponent robot. This position can be used e.g.

by the Formation module as position for supporting players.

• Formation → PlayerRole

The formation sets the player role (goalie, striker, supporter). If the role is

supporter, PlayerRole also contains the suggested walk target position.

• BeforeKickOff → BeforeKickOffOutput

Positions the robots in the “before kickoff” game state using the SimSpark beam

effector.

• KickOffOwn → KickOffOwnOutput

Behavior for own kickoffs that chooses the direction for the kick.

• FreekickOpp → FreekickOppOutput

Behavior for opponent freekicks, which overwrite the target position for the

robots close to the ball to wait and block.

• GoalkickOpp → GoalkickOppOutput

Behavior for opponent goalkick. This module overwrites the target positions

for the robots close to the opponent penalty area to either block or get to a

position the ball is moved to if the opponent goalie does not manage to kick the

ball before the time out.

• GoalkickOwn → GoalkickOwnOutput
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Behavior to kick the ball out of the own penalty area and avoid blocking the

own kick with own robots.

• CornerkickOwn → CornerkickOwnOutput

Behavior for corner kick that kicks towards the opponent penalty area and

positions three robots in front of the opponent goal to score.

• Striker2 → StrikerOutput

This module chooses the action executed by the striker. If possible, it uses a

long kick or kicks to the goal. Otherwise, it dribbles, blocks or uses quick, short

kicks.

• Supporter → SupporterOutput

Simple module that always uses the suggested supporter position of the forma-

tion modules as walk target.

• Goalie → GoalieOutput

The goalie behavior.

• BehaviorCombinator → SkillRequest, BeamRequest

All output representations of the behaviors contain a skill and beam request.

This module checks which behavior outputs are active and provides the requests

that have to be used. The skill request contains request as “walk to a given

position” or “kick to a given position”.

Low-level Behavior / Skills

• FootSelector → ActiveFoot

This module chooses which foot should be used for dribbling based on opponent



158

positions and where the opponent goal is.

• PathPlanning → SafeWalkDirection

The path planning module uses rapidly exploring random trees (RRT TODO

cite) to avoid obstacles and find a path to the target position. Since this path

is updated every frame, the SafeWalkDirection representation contains only the

direction to walk to in the current cycle.

• SkillMoveToPos → SkillMoveToPosOutput

This module sets walk requests (walk velocities relative to the robot) to reach

a given position and orientation.

• SkillGetBall → SkillGetBallOutput

Skill to position at the ball with a given orientation.

• SkillKick → SkillKickOutput

For a given kick target in absolute field coordinates, this module walks to the

ball, positions and kicks.

• SkillDribble → SkillDribbleOutput

Module to dribble the ball to a given position on the field.

• SkillCombinator → MotionRequest

Similar to the BehaviorCombinator, the SkillCombinator selects the active skill

output and provides the MotionRequest that will be used by the motion mod-

ules. The motion

Motions

• MotionSelector → MotionSelection
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This module selects the active motion based on the motion request and whether

it is safe to stop the previously active motion. It can also set factors for each

motion for interpolation.

• WalkingEngine → WalkingEngineOutput

The walking engine.

• SpecialActions → SpecialActionsOutput

Module for motions created by keyframe interpolation. Used for stand-up mo-

tions and long kicks.

• KickMotion → KickMotionOutput

Module to set the joint request for quick kicks.

• DeadMotion → DeadMotionOutput

Deactivates all joints. Never active in SimSpark agent.

• SimpleHeadMotion → HeadMotionRequest

This module always sets the head angles. Depending on the role and position

the robot chooses to look around for self-localization or look at the ball.

• MotionCombinator → JointRequest

Each motion module provides an output that contains a joint request. The

MotionCombinator copies the active joint request or interpolates between joint

request depending on the MotionSelection.

• JointPDControl → JointRequestWithSpeeds

This modules uses a PD controller for each joint to reach the requested joint

angles.

• SimSparkSend Module to send the joint commands, messages for commu-
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nication and beam commands to simspark using the socket provided by the

SimSparkConnection module in the beginning.

The general structure of the RoboCanes agent is very similar for the 3D Sim-

ulation League and the Standard Platform League, but there are several additions

that help with working with the RoboCanes agent in Simspark. The beam command

for SimSpark can only move the robot that sends the beam command, therefore the

agent is also able to connect to the monitor port of SimSpark (the same way as

RoboViz) to send commands to move any robot or the ball. This is added as plu-

gin in the framework such that it is available in all modules through the “monitor”

object in the module base class. Furthermore, the parser can provide the represen-

tation “Groundtruth” with exact positions of all robots and the ball. The module

“GroundtruthModule” can provide RobotPose or BallPos to let the complete behavior

use groundtruth positions instead of the estimated positions.

The SimSpark connection module has several options in the config file. Very useful

for learning tasks in SimSpark are the options to let the agent start SimSpark and

reconnect automatically. The SimSpark instance started by the agent will randomly

choose free ports for the communication such that multiple agents can run on one

computer, each in an own instance of the simulator. If the simulator is killed or

crashes, it restarts it and reconnects.
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Figure A.4.34: The connection of the agent to the physical robot and RoboViz.

A.4 SPL Agent

The SPL agent runs on the robot and directly reads sensor values and controls the

joints through NAOqi (software from Aldebaran) with 100 Hz. At the same time it

needs to capture images from the NAO’s camera for image processing with 30 Hz.

Therefore, there are two threads running in the RoboCanes SPL agent, a cognition

and a motion thread. Figure A.4.34 shows this setup. The agent can still connect to

RoboViz to send drawings.

The streaming of representations from one agent to another through the network

module implemented in the framework allows to connect an agent running for example

on a laptop to a robot and stream representations as in figure A.4.35. This connection

helps with debugging, since modules can show debug outputs or the complete agent

can even run in a debugger (with stopping the agent or using single stepping) while

it used images or sensor values directly from the robot.
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Figure A.4.35: The network module of the framework allows streaming representa-
tions from the robot to another agent.

A.4.1 Differences to SimSpark Agent

Since all sensor values from NaoQi are read with 100 Hz and the camera images are

read with 30 Hz, the processing has to be done in two separate threads. The figures

A.4.36 and A.4.37 show the module graphs for the two threads of the SPL agent.

The overall structure of the SPL agent is very similar to the SimSpark agent.

Several modules are used for both leagues only with different values in the config

files, e.g. the formation module, some behaviors, the path planning, belief share and

combinator modules.

The cognition thread starts the execution with a module that provides camera

images and there are several additional modules for the image processing and SPL

specific tasks:

• NaoCamera → V4L2Image

The camera images are read using Video4Linux2 and provided as raw image

buffers in the V4L2Image representation.
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Figure A.4.36: Module graph for the cognition thread.

• FullResolutionImageGridProvider → ImageGrids

Module that provides an image grid that can change the resolution used in

different parts of the image (lower resolution for areas that are close, high res-

olution to see details far away). Currently, the full resolution is used for the

entire image, since the image processing is fast enough.

• RunLengthImageProvider → RunLengthImages

Module that provides the run length encoded images.

• BallPerceptorRLE2 → BallPercept

Detects the ball in the RLE image based on color, size and roundness.

• GoalPerceptorRLE2 → GoalPercept
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Figure A.4.37: Module graph for the motion thread.

Detects the goal posts in the RLE image.

• LinePerceptorRLE2 → LinePercept, InvalidLines

Line detection using the RLE images. Lines that were detected, but filtered out

because they did not match the expected width are provided as InvalidLine.

• RobotCameraMatrixProvider → RobotCameraMatrices

This module provides matrices for the transformation from the torso to the

camera coordinate systems.

• CameraMatrixProvider → CameraMatrices

The camera matrices represent the transformation from the reference point

between the feet of the robot in the world coordinate system to the camera

coordinate systems.

• SPLTeamComRecv → TeamComInfo, TeamComDataIn

Replaces the module TeamComRecv in the SimSpark agent. No special encod-

ing is needed for the SPL. Instead the message can be attached as binary data
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to the SPL standard message. This module opens a UDP socket, receives mes-

sages from other robots and provides the data in the same way as the SimSpark

agent.

• SPLTeamComSend → r

This module attaches the data to send to a SPL standard message, fills in the

mandatory values of the message and sends it to the other robots through a

UDP socket (broadcast or multicast).

• SPLMessageReader → TeamBallPos, TeamRobotPose, TeamOtherRobots,

GoalieBallPos

This module has can be used in SPL drop-in games to use the information stored

in the SPL standard messages of robots from other teams. The RoboCanes

agents usually use only the data from the binary buffer at the end of the message.

• SideModelProvider → SideModel

Module to keep track of the half the robot is in to avoid problems with the

localization when robots get turned and start localizing on the wrong half.

• LedDebug → LedRequest

This module sets the colors of all LEDs of the NAO. It reads information from

several representations and shows for example whether the ball is seen or the

team communication is working.

• SPLGameController → Gamestate, PlayerInfo

This module receives packets from the SPL game controller and sets the GameS-

tate representation accordingly. If no packets are received, it switches to the

manual button interface.
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• AudioFFT → MicFrequencies

Records audio data from the microphones, runs a fast fourier transformation

and provides the frequencies.

• AudioPredictionModule → AudioPredictionRepresentation

Module for whistle detection used for the kickoff.

• RCMModule → RCMData

This module sends information about the robot’s status to RCM (see section

A.6.2). It sends the information over ethernet and provides a representation

with the same data to be attached to the SPL standard message and sent over

wifi.

• JoystickModule → JoystickData, JoystickBehaviorOutput

Once the image processing modules provide the perception representations, the

remaining modules for the modeling, communication and behavior are structured

similar to the SimSpark agent. However, the cognition thread ends after the Mo-

tionRequest is provided. All motion modules run in the motion thread. This thread

accesses the motion request from the cognition thread, but runs independently with

100 Hz and a higher priority to guarantee smooth motions even if other threads use

too much CPU time.

The sensor values and joints of the NAO can only be accessed through the software

NaoQi from Aldebaran. To separate the RoboCanes framework completely from

NaoQi and avoid dependecies to the NaoQi SDK, a single NaoQi module is added on

the robot, which communicates with the RoboCanes agent through shared memory.
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It writes all sensor values to the shared memory and reads the joint target angles

written by the agent. In the agent the modules NaoBodyProvider and NaoBodySend

read and write to this shared memory.

The following modules are added for the SPL agent in the motion thread:

• NaoBodyProvider → RawJointData, ForceData, ButtonState, BatteryInfo

Reads all sensor values and provides separate representations, e.g. for joint

positions, the force sensors, the battery information, or button states.

• USControl → USRequest

This module controls the sonars. The USRequest representation contains the

request to fire the sonars.

• MultiObstacleModelProvider → ObstacleModel

Uses sonar perceptions to detect obstacles in front of the robot.

• ArmContactProvider → ArmContact

Detects when an arm is pushed by an obstacles. The ArmContact representation

is used to switch of the arm joints.

• StandMotion → StandMotionOutput

This module interrupts the stand-up special actions as soon as the feet are below

the center of mass. It completes the stand-up motion using inverse kinematics.

• HeadMotionControl → HeadJointRequest

Module to move the head smoothly with a given maximum speed towards target

pan and tilt angles provided by the cognition thread with a lower framerate.

• IKArmMotion → ArmMotionOutput

Module for arm motions using interpolation in cartesian space and inverse kine-
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matics.

• NaoBodySend

Writes the values from the joint request to the shared memory for the NaoQi

module.

A.4.2 Module Configurations and Agent Start Scripts

The directory binNao contains several scripts to start the agent with different config-

urations for connecting to the robot and streaming representations from the agent on

the robot to the agent running locally. Executing “./testRLE.sh 192.168.1.101” for

example will connect to an agent running at that IP and show several debug outputs

of the image processing as in figure A.4.38. Only the RLE compressed image and

representations important for the image processing (e.g. the camera matrices) are

streamed. This allows the image processing modules to run locally with the same

result as on the robot. The agent has to be compiled with the configuration set

by “./configureNaoLocal.sh” in the source directory to be able to show the images.

Another example is the script “testRemoteSensorsNoCam.sh” which streams most

sensor values, but not the camera images. This modules configuration is sufficient to

show for example debug drawings of the perceptions in RoboViz.

A.5 Scripts

This section describes the most important scripts in the RoboCanes repository, e.g.

for automatically running 3D Simulation games in SimSpark or for configuring a NAO
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Figure A.4.38: Debugging outputs of the image processing modules.

robot to run the RoboCanes agent.

SimSpark Binary Package

The script scripts/createBinaryPackage.sh creates a tar.gz file in /temp/ that

contains all files from the bin directory that are needed to run the agent. It removes

unnecessary files, such as .svn directories or additional start scripts. Furthermore, it

removes local files that are not under version control (never committed to the SVN).

Those files are not shown as modifications by “svn st”, but could change the behavior

of the agent. The archive created by scripts/createBinaryPackage.sh contains a

clean version of the agent, which corresponds exactly the current SVN version if the

command “svn st” does not show local changes. This script should be used to create

a clean agent package used in competitions of the 3D simulation league.
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SimSpark Autoplay

The directory scripts/autoplay contains several scripts for running full games in

SimSpark automatically. The script startGame.sh starts SimSpark and two teams

(using the standard start script). It automatically sends a kick off signal to SimSpark

to start the game, starts the second half and stops all processes after the game finished.

The final score is written to games.log. If the server crashes or hangs, the script kills

all processes. The runOppList.sh can be used to games against different opponent

binaries automatically. These scripts can be used to run games continiuously on a

headless system. The scripts getAvgSteps.sh and getAvgForEachOpp.sh read the

results from the log file and show average scores.

NAO Robot Initialization

There are several configurations that need to be changed on a new robot or after a

factory reset. The script ./scripts/nao/naorootInit.sh helps with this process.

The complete configuration can be done in a few minutes by executing the following

steps:

• Make sure all files are updated (svn up) and run ./configureNaoRelease.sh

and make in the source directory to compile the release version of the agent for

the NAO. This binary will by copied to the robot.

• Connect with the NAO directly with an ethernet cable.

• Choose the connection type “direct link” in the network manager (on the laptop)

to get an IP address assigned. If the connection works, it should be possible to
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ping the robot using “ping Nao.local”.

• Change to trunk/scripts/nao and execute ./naorootInit.sh Nao.local.

Follow the instructions. This script will connect to the robot several times

to change passwords and allow SSH access as user root. It copies all files from

the directory scripts/nao/naoroot to /root/ on the robot. This includes

the binary, libraries, wifi scripts and files needed for configuring the robot.

The last step is to execute the script configureNao.sh which changes several

configurations on the robot (use correct arguments for host name and IP!).

• Reboot the robot.

All changes in system configuration files or any other modification in the NAO’s

system should be added to the configureNao.sh, such that it can be applied auto-

matically to all robots and they are configured the same way. Currently, the script

applies the following changes to the NAO:

• Setting the hostname.

• Link to /root/autostart.sh in /etc/local.d/.

• IP for wifi in /root/wifi lab.sh.

• Changing autoload.ini of NaoQi and setting the permission to deactivate the

NaoQi fall manager.

• Modifications in sudoer file.

• Installation of init.d scripts for robocanes agent in /root/bin/.

• Deactivate DNS lookup in ssh server config (causes delays when connecting

through SSH).
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• Adding a kernel module for joystick support (joydev.ko).

• Prevent NaoQi from opening microphones. Exclusiv access would prevent agent

from using the microphones with Alsa).

• Installation of files from ./tools (e.g. the program “screen”).

• IPv4 ethernet configuration.

The script is implemented such that executing it multiple times will not cause errors.

Therefore, it can be executed to update robots and apply changes if when the script

is changed.

NAO Helper Scripts

There are various helper scripts in scripts/nao/ for stopping or restarting the

RoboCanes agent on a robot, reboot or shutdown a robot or updating the agent.

These scripts can be used for individual robots (e.g. ./agentRestart.sh nao1, with

nao1 defined in /etc/hosts) or they can be combined with the script forall.sh. For

example, “./forAll.sh naorootUpdateBinary.sh -y” updates the binary in /root/binNao

on all robots.

The script “copyBinary.sh” can be used to copy a binary from binNao for testing

to a directoy in /home/nao/. It uses rsync to avoid copying the complete binNao

directory for every test.
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A.6 Utilities

A.6.1 RoboCanes Debugger (rdb)

The debugger rdb is a stand-alone program that connects through TCP to the debug

interface of the RoboCanes agent. The module “DebugModule” has to be activated

in the agents configuration to open the port that accepts rdb connections.

As mentioned before, debug commands can be send as a simple string to the

agent (e.g. with nc). It is not required to use an extra debugger, but it can add extra

functionalities.

Since the debug interface sends information already in a human-readable text

format, the debugger does not need any information about the objects or data that

is streamed. Therefore, rdb does not have to be recompiled when the available values

or debug responses in the agent change.

The debugger rdb has to be started with ”rdb [ip-address]”. If no address is given,

it connects to localhost. Figure A.6.39 shows the rdb console (using the ncurses

library) with a plot window (using OpenCV). Commands typed into the rdb console

are forwarded to the debug interface of the agent rdb is connected to. Additionally,

the rdb console provides the following functions:

• The console stores a history of all previously executed commands, which is saved

to a file when rdb is closed.

• The file ”alias.cfg” contains definitions of aliases in the form "A|B". Every

string ”A” in the input will be substituted by ”B”. For example, the line " r:|
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representation:" makes it possible to write ”get r:BallPos” instead of ”get

representation:BallPos”.

• All watched variables are printed and updated in the top of rdb.

• There can be more complex commands implemented in rdb, that are using

values received by the basic commands. The commands currently implemented

are:

– plot value [windowName [numValues [repaintInterval]]] The com-

mand ”plot” sends a ”watch” command to the agent and shows the received

values in a plot window. The only required parameter is the value to show.

Additional parameters control the title of the window, the number of values

shown and how often the plot is updated. Multiple values can be plotted

in one window by using the same window title.

Figure A.6.39: RoboCanes debugger rdb that shows some watched variables received
representation values and a plot.
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Planned extensions include for example parsing more complex streamable variables

and accessing only part of it, e.g. for plotting. Furthermore, an automatic completion

in the console would be very helpful. Lists of all registered variables and debug

responses are available in the agent. Sending these to the debugger would allow an

automatic completion in rdb, similar to the behavior of the tab key in a linux shell.

Available commands could be send to rdb including a syntax definition (e.g. as ”get

STREAMABLE”). Additionally, the agent could send all strings that can be used as

STREAMABLE parameter.

A.6.2 RoboCanes Manager (rcm)

The RoboCanes Manager (rcm) is a tool, that receives status packets from the robot

and shows an overview of those values for all robots in a Qt window. The agents

running on the robots need to execute the module ”RCMModule”, which sends the

status packets via UDP broadcasts or multicasts. All settings can be found in the

config file for the RCMModule. In competitions, it might be important to change e.g.

the broadcast ip address.

Since the communication between the agent is limited to the SPL standard mes-

sage format, the RCM status packets need to be embedded in the binary buffer at

the end of the standard messages.

Figure A.6.40 shows the rcm window, which shows some important values for each

robot, such as the battery status, the temperature of the hottest joint, the team color,

jersey number (ID of the robot in the game controller) and the current role. The box
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Figure A.6.40: RoboCanes Manager GUI. Four robots are running an agent, two in
the red and two in the blue team.

”TeamCom” is only green, if communication packets from another robot are received.

The left bottom corner shows the game controller state. Only if rcm receives game

controller packets, the colored boxes for the robots are activated and indicate with

green or red whether each robot receives game controller packets.

The area below shows on the left side the status received from an SPL GameCon-

troller. The remaining space is used for showing the team communication between

the agents and for a GUI for sending commands to the robots. It shows a list of

commands that can easily be send to robots using the detected ip address, e.g. for

activating debug modes or restarting the agents. The commands can be edited in a

configuration file and new commands can be added. These commands can be shell

command that are executed on the robot or debugger commands that are sent to the

agent’s debug interface. An example use command is “shutdown robot”, which can

quickly be send to all robots and executes the bash command ”halt” everywhere.
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Figure A.6.41: A 11 vs 11 game in SimSpark shown in RoboViz (left) and the 2D
monitor (right). Besides uses significantly less resources, the 2D view can also give a
better overview over the team behavior.

A.6.3 2D Text-based SimSpark Monitor (simplemonitor)

Simplemonitor is a fast and lightweight SimSpark monitor that runs in a terminal.

The robot and ball positions are shown using the terminal UI library ncurses (see

Fig. A.6.41). This monitor was developed as a simple alternative to RoboViz that

needs less resources and can even be started in an SSH session.

The default monitor connection sends a scene graph to the monitor (e.g. RoboViz).

This scene graph is readable text and contains geometric information e.g. about sep-

arate body parts of the robots. Therefore, connecting a monitor such as RoboViz to

SimSpark needs a fast network connection. Also, parsing and processing the received

scene graph information in RoboViz needs significant CPU time.

The simplemonitor uses an own protocol. It receives very simple packets from

SimSpark that only contain robot and ball positions. This could only be realized by

adding a module to SimSpark that opens a port, accepts connections and sends all

positions in the correct format. It sends all positions only five times per second.

(much slower than realtime)
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An 11 vs 11 game running in real-time produces approximately 1.7 MB/s data

sent through the monitor port of SimSpark to RoboViz. On an Intel i7-620m dual-

core CPU, RoboViz uses about 85% CPU time (of one core) to parse the data of a

full game and render the field and the robots. If the simulation is running on the

same machine, RoboViz slows down the simulation.

Simplemonitor uses less then 1% CPU and receives 4 kB/s from SimSpark to show

a full 11 vs 11 game.

Since the simplemonitor uses ncurses, it can directly be started in an SSH session

to quickly check whether a simulation is running correctly or even to watch a full

game. However, less bandwidth would be used by running simplemonitor locally and

connecting to the server (”simplemonitor serverIP”) or by tunneling the simplemoni-

tor port from a remote server through SSH (”ssh -L3201:127.0.0.1:3201 serverIP” and

”simplemonitor”).

Installation instructions for the simplemonitor SimSpark patch can be found in

trunk/utils/SimpleMonitor/INSTALL. Module in SimSpark has to be initialized in

rcssserver3d.rb, which might be in /.simspark and not updated when applying the

patch.

A.6.4 SimSpark Groundtruth

SimSpark can provide groundtruth to agents through options of the

RestrictedVisionPerceptor. However, this only sends the own position of

an agent and the ball position to each robot. It does not include other robots or
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torso angles.

The RoboCanes SimSpark groundtruth is a plugin for SimSpark that adds all

groundtruth information to the server messages. It the positions of all robots, the

ball and own torso angles to every agent. Therefore, this can be used to evaluate the

errors in the perception and modeling, such as the torso angle estimation or robot

perception.

Installation instructions for the groundtruth pluging can be found in

trunk/utils/simsparkGroundtruth/INSTALL. The plugin consists of one class that

is added in the simspark sources in rcssserver3d/plugin/soccer/. The patch adds

entries for these files to CMake, adds the plugin to the SimSpark framework and ac-

tivates the groundtruth in nao hetero.rsg. If the plugin works correctly, the server

message contains the groundtruth information as shown in figure A.6.42. These values

are parsed by the RoboCanes agent and written to the groundtruth representation.

Figure A.6.42: The server message received by the RoboCanes agent (printed by
“./robocanes -v”). The groundtruth information is in the parentheses starting with
GT.

The groundtruth is only sent if the team name is “RoboCanes” to avoid causing
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problems when playing against other teams that would not be able to parse the

RoboCanes groundtruth.

A.6.5 Webots Extensions

Webots simulates a NAO robot that runs NaoQi, such that the agent used on the

physical robots can directly connect to Webots as if it was running on the robot.

This means that an agent for Webots needs to use completely different modules for

the communication with the simulator. However, the framework and most available

representations are the same. An experimental setup for an optimization or learning

task in SimSpark can directly be used in Webots.

The only missing components are the groundtruth information and a beam com-

mand. These can be added to Webots using the RoboCanes supervisor controller

for Webots. The directory trunk/utils/webots contains an example Webots world

with an SPL soccer field and a NAO that starts the RCSupervisor from the controller

directory.

The supervisor controller reads out the position and torso angles of the NAO.

Those values are sent as a UDP multicast with TTL 0 (only within localhost), since

the agent has to run on the same host to connect to the shared memory of librobocanes

running in the NAOqi of the simulated NAO.

The agent module that receives this information has to be activated with

“GroundtruthReceiver Groundtruth” in the module configuration of the agent. The

same packets could also be sent by other groundtruth systems, e.g. an additional
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robot detection for the physical robots using a high resolution camera over or next

to the field.

A.6.6 MPI Tunnel

The MPI tunnel is a tool that forwards TCP connections through MPI. This al-

low programs with a server-client architecture that uses TCP sockets to run on

a cluster and communicate through MPI. Figure A.6.43 shows the communication

between different processes using the MPI tunnel. For the TCP server and client

the tunnel is completely transparent. When a client connects to the MPI tun-

nel, the tunnel create a new connection to the server. All data sent by the client

or server is forwarded. If the connection is closed on one side, the MPI tunnel

closes the connection on the other side. The MPI tunnel is implemented in the

Cluster node Cluster nodeCluster node

MPITunnel

Server

MPITunnel MPITunnel

Client Client

localhost
port X

localhost
port X

server at
port X

TCPTCP

TCP

MPI MPI

TCP

Figure A.6.43: The MPI tunnel forwards TCP connections from clients to the server.
The clients can use localhost as server address. The tunnel is completely transparent.
For the clients and server the connection seems to be a direct TCP connection (dashed
arrows).

file utils/OptimizationServerFiles/mpitunnel.cpp and has to be compiled us-

ing mpic++. Starting the client with “mpirun ./mpitunnel ./server ”./client localhost”
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12345” will execute “./server” on the first node, “./client localhost” an every other

node and forward connections to port 12345 through MPI.

A.6.7 Parallel Optimization

The directory src/tools/ contains a base class used for different parameter opti-

mizations in the agent. There are implementations of CMA-ES, PSO and xNES

using the same parameter optimization interface, such that optimizations can easily

switch between different algorithms. For parallel optimization an optimization client

can be used in the agent. This client uses the same interface, but connects to a server

that runs the actual optimization and distributes parameter sets to the clients. The

clients evaluate the parameters and send the fitness value to the server.

The optimization server and several scripts for running an optimization

on a MPI cluster using the server and MPI tunnel can be found in

utils/OptimizationServerFiles.
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