Robocanes Goalie Agent: Behavior and
Ball Prediction System

Joseph Masterjohn

Abstract

This report is a collection and analysis of the methods and ideas
implemented for the final project for the class CSC688: Autonomous
Robotic Systems, taught at the University of Miami in th Fall of 2014.
The project was focused around creating a rational agent with the
role of goal keeper within the Robocanes Robocup Simulation League
software. The two main facets of the project were focued on sensing
the ball position and velocity, and creating a model for the agent’s
behavior. Various techniques used for each of these distinct problems
are studied and compared.

1 Ball Prediction

The scenario put forth for the challenge was that of a ” Goal Kick”. That is,
a single stationary striker opponent kicking the ball towards a single goalie
with the intent of scoring a goal. Only two agents exist on the field, the
striker and the goalie. Upon preliminary study of the scenario, one caveat
stood out: in order to successfully position itself so to block the oncoming
goal kick, the goalie agent needed an accurate prediction the position of
the ball on it’s predetermined trajectory when it crossed the goal line. In
order to make this prediction as well as other useful sensory data about the
ball’s action (ETA of ball arrival, velocity of the ball, etc.), the kinematics of
the ball needed to be modeled accurately. The existing Robocanes software
platform already implements a fairly accurate representation of the ball’s
position (BallPos), but does not provide any accurate model of the velocity
of the ball. Thus two methods were attempted with the intent of providing
this information.

1.1 Regression Model

Upon initial analysis of the accuracy of the existing ball position in the
software, it was decided that the first and most elementary approach to
predicting the ball velocity would be to compute a simple linear regression
on the existing ball positions. This, obviously simplified, method operates
under a few assumptions that are not accurate to the realm of the simulator:

e |v| # 0, for v the velocity of the ball

o Vit e R, a/([t,t +dt]) = ¢, ¢ € R (i.e. - constant velocity)

This model does not take into account the complex motion of the ball,
but it does serve as a starting point for an efficient way to model the ball
velocity. In order to do the initial regression, the Thiel-Sen algorithm was
used. This method for calculating the linear trend of a set of points is not as
sensitive to outliers as other methods [1]. The full algorithm for determining
the velocity follows:

function VELOCITYREGRESSION(S = [(z1,Y1,1)s s (Tns Un, tn)])
slopes =)

for all p;,p; €S : p; # p; do

m = % > slope of two unique points in the set
slopes = slopes U m > Include m in the global set
end for
sort(slopes)

M = select M edian(slopes) > M is the median of all of the slopes
intercepts = ()

for all p; € S do

b=y, — Mux;
intercepts = intercepts U b
end for

sort(intercepts)
B = select M edian(intercepts)

v=(1,M+ B)—-(0,B) > Create the velocity vector v from two
> points on the line, x =1 and x =0

vRough = pn, — p; > Rough direction of the velocity

if v x vRough < 0 then > If v isn’t in the right direction
v=—v

end if

v=0x* % > Scale v to the distance between first and last

v=2v/(t, — t;) > Scale v to be accurate to the timestep

return v

end function

The gist of the algorithm:

1. Let the slope of the regression line, M, be the median of all slopes
calculated between unique pairs of points in S

2. Let B be the median of all calculated y-intercepts of all points in S

3. Choose the orientation of the vector defining the line based on the
rough direction of the points, given by the vector between first and
last points.

4. Scale the vector to accurately represent the true speed of the ball,
given the rough distance and accurate timestep

Figure 1, Figure 2, and Figure 3 show a progression of 3 frames with the
predicted ball velocity (computed using the regression model) highlighted in
blue. The predicted goal line intercept is highlighted in yellow, on the goal
line.

1.2 Kalman Filter Model

While the first approach succeeded in giving an estimate of the ball veloc-
ity accurate enough to predict the goal line crossing and ETA, a second

Activities #g®nfig-RVConfigure v sat 1:56 AM
RoboViz

I
RoboCanes 0:14 <Right> 270.5

Figure 1: Frame 1 (Regression)

Activities “ge®nfig-RVConfigure v sat 1:56 AM
RoboViz
I
RoboCanes 0:14 <Right>

Figure 2: Frame 2 (Regression)

Activities #g®nfig-RvVConfigure v sat 1:56 AM

RoboViz

0:14 <Right>

Figure 3: Frame 3 (Regression)

approach was implemented in order to compare a well known and studied
method (Kalman Filtering) with a completely ad-hoc method (Regression).
This decision was made with the additional foresight that the success of the
linear regression model might be dependant on the magnitude of error real-
ized in the simulation. Thus a method robust enough to predict the state
of the ball for a real world environment would then be integral.

The Kalman Filter is a well known and studied method of estimating
un-measureable variables through a series of noisy measurements , observed
over time [2]. The formulation of the Kalman Filter matrices were as follows:

z = [z,y,2',y]

The state vector containing position and velocity

00 O 0

00 O 0
P= 0 0 1000 O

0 0 0 1000

The covariance matrix, initially our measurement of x and y are believed to

be accurate, but we have no confidence in the velocity.

1 0 6t O
01 0 ot
F= 00 1 O
00 0 1

The state transition matrix based on the kinematic equations:
Tit1 = T; + Vig0t
Yitl = Yi + viyot
V(i+1),z2 = Viz
V(i+1),2 — Viy
Here we see an inital simplification that will inevitably affect the accuracy
of this estimation. The velocity is again assumed to be constant between
small time steps, as in the regression model. If we assume deceleration due
to friction is negligible, especially during a hard kick or a kick that spends a

considerable amount of it’s trajectory in the air, this will not create terrible

inaccuracy.

10 0 0
H‘_0100]

Our measurement matrix. We obtain no external information about the
velocity.

R =

[0.95 0
|0 095

Our model of the measurement noise. We assume the measurements are
confident with a 5% error factor.

0.01 O 0 0

0 001 O 0

@= 0 0 001 O
.0

0 0 0 0.01

Our process noise matrix. We assume an error of 1% in each variable.

oS O O
S O = O
O = O O
_ o O O

The 4x4 Identity matrix used in the update of the Kalman Matrices.

The update of the matrices at each timestep follows the standard Kalman
Filter update process:

e 2 = measurement(z,y,z’,y’)
e y=z—Hz

o S=(HPH)Y+R

K = PH'S™!

Tit1 =z + Ky

Py = - KH)P;
The measurement stage.
o x4 = Fuz;
e Piyy =FPF'+Q

The prediction stage.

From this update, the calculation of the velocity is simple:

v =x;([2,3])
v
tn —t;
The velocity is taken directly from the Kalman prediction and then scaled
to the timestep.

v =

The result of the estimated velocity, predicted by the Kalman filter can
be seen in Figure 4, Figure 5, Figure 6, and Figure 7. Again the velocity is
highlighted in blue, and the predicted goal crossing is highlighted in yellow.

Activities #g®nfig-RVConfigure v sat 1:59 AM
RoboViz

(SRR
RoboCanes 0:24 <Right>

Figure 4: Frame 1 (Kalman)

Activities “ge®nfig-RVConfigure v sat 1:59 AM
RoboViz

LI s TR
RoboCanes 0:24 <Right>

Figure 5: Frame 2 (Kalman)

Activities #g®nfig-RVConfigure v sat 1:59 AM

Roboviz
(SRR
RoboCanes 0:24 <Right>

Figure 6: Frame 3 (Kalman)

Activities “ge®nfig-RVConfigure v sat 1:59 AM
RoboViz

LI s TR
RoboCanes 0:24 <Right> 491.2

layOn

Figure 7: Frame 4 (Kalman)

1.3 Results

In order to provide a quantifiable analysis of the two methods used, I com-
puted the accurate frame-by-frame velocity using the groundtruth of the
simulation. Then I calculated a Root Mean Squared Error metric for the
estimated velocity at each frame of a kick. Let v; be the groundtruth ve-
locity at frame i, and let v;; and v, be the estimated velocity from the
Kalman Filter and Regression method respectively. The calculated errors
are as follows:

n

) 1
error(magnitude) = - ¥(|UZ| — |vik])?
1 n
error(angle) = - ZO: |acos(vi * vig) |*

The error results are summarized in the table below:

Method RMS Mgnitude Error (m/s) | RMS Angle Error (rad)
Regression 0.688517 0.209669
Kalman Filter 0.505363 0.218454

As expected, the Kalman Filter made a slight improvement in the mag-
nitude estimation. Both methods produced an average error of 0.2 radians
in the direction of the velocity. At a distance of 5 meters from the goal line,
this produces a horizontal uncertainty of around 1 meter in each direction.
This uncertainty converges the closer the ball is to the goal line. It is still
questionable whether this amount of uncertainty is tolerable for the agent to
make a decision. Some initial methods to quell this error were to average the
predicted goal crossings across several frames and use that as the estimate
of the goal crossing. This slightly improved the accuracy of the prediction.

2 Robot Behavior

The systematic behavior of the agent can be described by a finite state
machine:

10

Buall Saved

Ball Intercepted No time to intercep

Ball Kicked

This simple observation-action model is the whole basis of the goalie
agent. There were some caveats to determining when the transitions happen,
for instance: When is the ball actually kicked? What is the proper time to
dive for the ball? Some of these behavioral questions had to be answered
analytically, and others with heuristic methods.

The ball velocity module described in the above Section 1 provides a
heuristic model to provide the instantaneous moment of a kick. It does this
by doing a rough calculation of the instantaneous acceleration of the ball.
This in itself is inaccurate for the scenario because at the beginning of every
kick, the ball is teleported to a new location for the beginning of a new
kick. Thus at that precise moment the ball, numerically speaking, has an
infinite velocity. This and other small hitches had to be dealt with each with
conditional logic for their respective corner cases.

In order to determine the correct time to dive for the ball, two pieces of
logic were used. The first was a rough estimate of the duration of the fall.
If the agent needs to dive for the ball, it needs to have enough time to get
to the ground before the ball arrives. This value was experimentally found
by running multiple simulations with different diving motions. The second

11

piece of knowledge used by the agent was the ETA of the ball, provided by
the ball velocity module. This time was compared to the time it would take
for the agent to reach the estimated goal crossing position. If there was
enough time, the agent would continue to walk towards it, if not the agent
would transition to the dive state.

The rest of the transitions were based on the game state of the simulation.
The goalie predicted an optimal position to stand before the ball was kicked.
This positioning proved to be crucial to the agents ball saving abilities. If
the goalie was on the opposite side of the goal when a shot was kicked, he
would typically not have enough time to maneuver to the accurate predicted
position nor have the extension to dive to the position. Thus an accurate
predicted standing position is very beneficial to the agent. The position that
the agent currently predicts is based on inference from visual inspection. At
a certain radius, it is beneficial to stand at the side of the goal opposite to
the striker, as the majority of shots from those positions tended to enter
the goal with that trajectory. Smaller than a certain threshold the optimal
place to stand would be on the same side of the goal as the striker. Each of
these deductions come from intuition, and thus are sub-optimal in terms of
the capability of the agents.

3 Results and Future Work

At the time of this report, the collaborative agent constructed by myself and
Julian Jarret faired the best of all agents in the CSC688 class, saving 25% of
the sample goal kicks in competition and 34% of kicks after slight changes
in the testing system allowed for our Kalman Filter prediction model to
operate in the test environment. The combination of accurate ball veloc-
tiy prediction with predictive goalie positioning proved to be a sufficient
first attempt at improving the existing agent infrastructure for the goalie,
improving the scored-to-saved ratio by ~15%.

Some additional ideas for improvements as well as additional work in-
clude, but are not limited to:

e Statistical Learning Model for predictive goalie positioning

e Creating new save motions (dives, splits, putting hands out, etc.) by
optimizing joint values during kick scenarios

12

References

[1] Sen, Pranab Kumar (1968): ”Estimates of the regression coefficient based
on Kendall’s tau”, Journal of the American Statistical Association 63:
13791389, JSTOR 2285891

[2] Ramsey Faragher Understanding the Basis of the Kalman Filter Via a
Simple and Intuitive Derivation IEEE Signal Processing Magazine [128],
SEPTEMBER 2012

13

