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ABSTRACT

Although socially interactive agents have emerged as a new metaphor
for human-computer interaction, they are, to date, absent from
the Internet. We describe the design choices, implementation, and
challenges in building EEVA, the first fully integrated platform-
independent framework for deploying realistic 3D web-based social
agents: with real-time multimodal perception of, and adaptation to,
user’s verbal and non-verbal social cues, EEVA agents are capable
of communicating rich customizable content to users in real time,
while building and maintaining users’ profiles for long-term interac-
tions. The modularity of the EEVA framework enables it to be used
as a testbed for agents’ social communication model development
of increasing performance and sophistication (e.g. building rapport,
expressing empathy).

We furthermore discuss a case study in which we show how we
used the EEVA framework to 1) create dialog content for a health
agent to deliver an online tailored behaviour change health inter-
vention, and 2) integrate a novel model of nonverbal behavior for
the agent that can be rendered online, in realtime. Our nonverbal
communication model aims at capturing social cues from video
recordings of dyadic clinician-patient interactions, by using a tem-
poral generative adversarial network (GAN) conditioned on the
user’s facial and head signals, along with part of speech tagging of
the dialogue.
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1 MOTIVATION

As human-computer interaction (HCI) has become increasingly
present in daily life contexts involving socio-emotional content (e.g.
medicine, education, entertainment), socially interactive virtual
agents — also known as Embodied Conversational Agents (ECA) or
as Intelligent Virtual Agents (IVA) — have emerged over the past
decade as a new metaphor for HCI to address users’ need for natural
interfaces simulating human-human conversations.

Building an IVA, however, is no easy feat and presents many
interdisciplinary challenges. Whereas having socially appropriate
interactions can be challenging even for humans at times, generat-
ing artificial social behaviors requires a mix of science, psychology
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and art. Indeed, social appropriateness during dialogues, includes
(apart from choosing an appropriate topic), knowing how to use
different channels of communication to establish and maintain rap-
port via verbal and non-verbal cues [28, 72], such as respectful eye
contact [31], motor mimicry and synchoronous postures [6], expres-
sion of facial and other nonverbal social cues that are congruent
with verbal utterances and emotional states, among others. Adding
to the difficulty is that many of these, conscious or unconscious
social cues, are often culturally, personality, and context dependent.

In spite of such complexity, IVA researchers have leveraged
latest progress in affective computing [3, 14, 75] to build agents
with subtle social cues and responses [1, 10, 21, 22, 26, 29, 31, 55, 57,
57, 64, 73, 84]. IVAs are becoming able to establish some rapport
[30, 34], express (some) empathy [37, 45, 56].

This progress in social realism has made it possible for IVAs to
be introduced in a growing number of application domains (e.g.
personal health agents or coaches, intelligent tutors, protagonist
computer game characters), and research has shown the benefits
that IVAs have on acceptance of, and motivation to, use technologies
in these domains [8, 9, 12, 39, 44, 46].

In spite of their success, however, IVA development did not scale
with the now ubiquitous connected devices and latest progress on
3D graphics that can be rendered on internet browsers. Whereas
a few attempts have been made to build web-based 3D ECAs [47,
62, 69], their implementation is still very rudimentary, and none
provide an integrated framework for web-based IVA development,
including social cues modeling and dialog generation.

In this article, we describe the design choices, implementation,
and challenges in building EEVA, the first fully integrated platform-
independent framework for the rapid deployment of realistic 3D so-
cial agents on the web, which includes: 1) realistic 3D WebGL graph-
ics for the ECA itselft (with physiologically realistic FACS-validated
facial expressions, and full body animations), and its *work’ envi-
ronment; 2) realtime perception of users’ social cues; 3) adaptive
non-verbal responses driven by a nonverbal model; 4) speech recog-
nition and synthesis; and 5) configurable dialogue content.

Because software requirements for IVAs have been found context-
and role-dependent [7, 65], to examplify how EEVA can be used for
deploying IVAs on the web, we chose to build our EEVA case study
in a specific context, namely healthcare and medicine, where IVAs
are emerging as having a great potential impact to help the general
population become or stay healthy [33, 59, 71].

In health care, where human personnel are vastly outnumbered
by people who need aid, virtual health agents (also referred to as
virtual health coaches) capable of screening or providing empathic
support to individuals, anytime anywhere, about their lifestyles (e.g.
alcohol, drug or nicotine consumption, exercise or lack of, eating
habits) have not only been found promising by healthcare research,
but also better accepted by users than text-only computer-based
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interventions [45]. Other health-related agents have been emerging
[23, 44, 63, 68], but their lack of availability on the web diminishes
their potential impact.

In order to be effective, a health agent needs to be easily acces-
sible (via common communication devices, at any time), usable
(have an easy to use interface), enjoyable (provide a positive user
experience), responsive to user’s emotional behaviors (establish and
maintain rapport) and scalable (accommodate an increasing number
of users without computational overhead). In addition, because the
interpersonal relationship between physician and patient involves
a highly charged affective component patients’ satisfaction, com-
pliance with, and outcome of treatment are usually substantially
related to their physicians’ ability to establish rapport with patients
[24], which, as mentioned, is (at the very least) dependent upon the
ability to decode and encode nonverbal messages of affect [15, 24].

To address these requirements, the EEVA framework (described
in Section 3) makes it possible to deploy multimodal realtime IVA
health agents on the web, multiplying their potential to reach large
population in need of access to care. Furthermore, while we built
EEVA so that its content is customizable for different dialogs (de-
scribed in Section 3.2), our case study (in Section 4) discusses how
EEVA state of the art 3D graphics full-bodied animated charac-
ters, coupled with a nonverbal model of behavior such as the one
we developed (described in Section 4.2), aims to enable the agent
to establish and maintain rapport with its users, similarly to the
physician-patient social relationship.

2 RELATED WORK

As mentioned, IVA research has leveraged latest progress in multi-
modal automatic recognition and synthesis of social and affective
signals [2, 3, 14, 75] to build agents with subtle social cues and re-
sponses, such as facial expressions [1, 22, 55, 57], eye gaze [31, 64],
gestures [73], pitch and intonation [21, 58], dialog management
[84], generation affect-like states [10, 26, 29], among others.

Given their acquired ability to recognize and to synthesize in-
dividual social cues, IVAs models of non-verbal communication
needed to decide how to control and synchronize these cues for
realistic social behavior have been developed. IVAs are becoming
able to establish some rapport [30, 34], express (some) empathy
[37, 45, 56], portray (aspects of) a specific personality [18, 74], or
manage turn-taking [38]. Recent research places focus on the flu-
idity of the experience with IVAs, aiming to obtain agents with
the ability to process unconstrained natural language input (for a
systematic review, see [41]).

Further research is needed to establish the contribution of each
component in an ECA system [59], and one area that has received
little attention in related literature is designing systems that aim for
wide-range accessibility, usability, social responsiveness and scala-
bility for web-based deployment of ECAs that can deliver health
based interventions. Most of the literature regarding ECAs is, how-
ever, focused mainly on the agent itself, and rarely addresses the
technical hurdles that need to be overcome to make them actually
accessible to the end-user. Our article aims at providing implemen-
tation details to the EEVA framework designed to be easily adapted
for reuse.
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One of the most successful attempts aimed at unifying a multi-
modal behavior generation framework for ECAs consists of a three
stage model (SAIBA) representing intent planning, behavior plan-
ning and behavior realization. In short, the SAIBA framework [40]
(inspired by the Behavior Expression Animation Toolkit (BEAT)
system [16]) is a rule-based system that consists of: firstly, inter-
facing between intent planning and behavior planning using a
Function Markup Language (FML) that describes intent (without
any concerns for physical behavior); and secondly, interfacing be-
tween behavior planning and behavior realization using a Behavior
Markup Language (BML), an XML based language, which can be
used to describe behavior blocks with behavior parameters [40].
SAIBA has been used successfully for animating a variety of ECAs
(discussed in [73]). However, some challenges remain for acheiving
social realism with SAIBA, such as knowing whether to maintain a
behavior, knowing what the next behavior should be, or deciding
how to synchronize behaviors with timing constraints [73].

Whereas hand-crafted gestures (such as the ones generated with
SAIBA) are effective at portraying some social realism, Al-based
gesture generation have gained attention because they enable to
model real human behaviours from video data. Approaches using
hidden markov models (HMM) have been successful at learning a
speaker’s head nods from gesture video corpora [42, 43], however
HMMs assume that the future state is only dependent on the last
state, which is not always the case in real data.

Recent machine learning based approaches are also worth ex-
ploring, as we have with Generative Adversarial Networks for de-
veloping our EEVA case study nonverbal model of behavior, based
on a video corpora of real human clinician-patient interactions that
we recorded.

Generative Adversarial Networks (GAN) [27] are a recent unsu-
pervised training paradigm that enables neural networks to approx-
imate and efficiently sample from the distribution of training data.
The core of the approach consists in two networks that compete in
a game against each other, one learning to generate samples while
the other discriminates between generated samples and the real
data.

Conditional GAN (CGAN) [52] extends the network architecture
with a conditional vector that influences the generated samples.

Ideally, the two networks each improve on their task and reach
Nash equilibrium, resulting in a generator network that is able to
create samples that are indistinguishable from the real data disbri-
bution. However, GANSs are notorously difficult to train due the the
unstable dynamics of the adversarial training process, which leads
to problems such as mode collapse where the generator becomes
unable to generate the entire diversity of the data distribution.
Nonetheless, much progress has been done since their inception in
both network architecture and training stability, resulting in models
able to generate sharp high resolution images [13, 61], image-to-
image [36] and text-to-image translation [86], video [50] and music
generation [85] among many other possible uses.

While most GANs are designed to generate raw images, we
currently aim to obtain a model able to control a virtual character
through a Facial Action Coding System (FACS) control interface
[25]. The FACS is the accepted standard for detecting and measuring
visibly different facial movements in terms of anatomically based
action units (AU). Our FACS-based approach is feasible because
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we designed and validated the facial expression animations of our
3D graphics characters to faithfully reproduce each of FACS action
units.

To the best of our knowledge, the only results similar to our
approach were proposed by Huang and Khan (2017) [35] and Chu
et al. (2018) [20]. Huang et al. were the first to use facial landmark
predictions (similar to Constrained Local Models (CLM) used by
OpenFace [4]) to condition the generation of static facial expres-
sions in a dyadic interaction context. In contrast, our approach
relies on FACS (which can be estimated from facial landmarks) and
the aim is to generate the behaviour (sequences of head pose, AUs
and eye gaze) of a FACS-enabled virtual character and takes into
account information about the dialogue.

Chu et al. use reinforcement learning (RL) and GAN to train a
model on a large video dataset preprocessed with OpenFace [4] to
generate facial expressions for a virtual character. Our approach
differs from that of Chu et al. mainly in that our aim is to capture the
real time non-verbal behaviour of one person (the counsellor) based
on the interlocutor’s (patient) facial expressions and Part of Speech
(POS) tagging of the dialogue, while Chu et al. do not condition the
generator on the interlocutor and use actual text input. Moreover,
the data used in our approach consists in action unit (AU) detection
for both dialogue participants simultaneously and also includes eye
movement information.

3 EEVA FRAMEWORK

EEVA is a modular framework (shown in Fig. 1) that we developed
with the purpose of being easy to configure and to extend to a wide
range of scenarios. The framework consists of three main compo-
nents, each of which is detailed in the following sub-sections. In
brief: first, the application layer consists in a modular client-side
JavaScript mainframe (Fig. 1.a) which has the role of controlling the
multi-modal user interface on the client side, e.g. WebGL rendering
of the ECA (WebGL has recently become the standard technology
for 3D interactive web applications), audio/video input, graphical
user interface (GUI) interaction and communication with services
such as speech recognition and synthesis. Secondly, the JavaScript
mainframe handles execution of a scenario (such as a health inter-
vention) which is described in the logic layer (Fig. 1.b) — a collection
of state-machines that are created by developers using a visual
programming interface. Finally, the scenario states may be config-
ured to pull various information (e.g. phrases for the ECA to speak,
slides to show) from the data layer (Fig. 1.c) - a database of content
meant to be communicated to the user, created using an additional
authoring tool.

3.1 Application layer

The backbone of the client-side application is a JavaScript frame-
work that manages the creation of a collection of modules and the
communication routes between them. Each module then imple-
ments various functionalities, including:

e obtaining input from the user, such as asking for and ac-
quiring permission to access microphone and camera, pro-
cessing input information (e.g. extracting facial expressions,
analysing users’ responses);

o deciding how to respond to the user (e.g. what verbal ut-
terances should the agent express, and what non-verbal be-
haviours should it portray; and

e responding to the user through a multi-modal 3D embod-
ied ECA, with speech synthesis, non-verbal behaviours and
multimedia content (e.g. text, images and videos).

The result is essentially an interactive web application which can
run on various platforms from desktop, to mobile phone, to au-
tonomous robotic agent, to potential smart watch integrations (Fig.
2) via a compatible! internet browser. In our case study, the user can
also choose between a collection of 3D virtual characters to interact
with — of different gender, races, and appearances, and change the
background view of the 3D office environment. Favourite characters
and office views are remembered and displayed after login during
the next interaction with the system.

3.1.1  Mainframe. The purpose of the framework is to automate
IVA application instantiation given a configuration file containing
the list of modules to be used. Once module files are loaded (through
asynchronous HTTP requests), the configuration compatibility is
checked, for each registered module and resource (discussed in
detail in Section 3.1.2), as to whether a providing module exists for
each required resource (e.g. Speech recognition module requiring
WebRTC audio input). If a match is found, a link is made between
the modules, with a reference to that particular resource. Otherwise,
if the resource is declared optional in the module, the application
continues; if the resource is mandatory (not optional) then the
process stops with an error message. If a configuration is deemed
compatible, each module is initialized and the module execution
order is updated (e.g. audio input would be connected to speech
recognition, the output of which would be sent to other modules).

The framework also provides the ability to unregister a module,
which effectively removes it from the application - at runtime -
which means that modules can be programmatically loaded and
unloaded whenever needed. The runtime of the framework con-
sists in a loop that calls each module in order, which also enables
real time behaviour such as triggering ECA verbal and non-verbal
backchannels during interaction with the user.

Unlike traditional ECAs, EEVA’s design follows common mod-
ularity patterns found in robotics platforms (such as ROS [60]),
enabling to create collections of modules to cover a variety of appli-
cation use-cases, such as using a different browser, various internet
bandwidth limitations, interaction capabilities, among others. For
instance, when using speech recognition, in order to provide the
transcript of the user’s spoken utterances to be used by the IVA
application, based on browser capabilities, a specialized module
can be used to either interface with the Web Speech API [81] or
to use another service such as the Watson Speech to Text [80].
Another example of module switching is the choice of higher or
lower quality graphics for the ECA, based on the available internet
connection or hardware capabilities of the end device (e.g. desktop
vs. smart watch graphics processor). The advantage of this design is
the seamless passing from one module implementation to another,
including at runtime, without affecting the rest of the application.

!Compatibility consists in WebGL capability and WebRTC [82] compliance; most
modern browsers now implement these standards.
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Figure 1: System diagram illustrating main components: the modular JavaScript mainframe (a) which controls the client side
application by interconnecting the character input, output and non-verbal behaviour model (NVBM) with the scenario logic

(b) and dialogue content (c).
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Figure 2: EEVA running on different platforms: desktop (a),
mobile phone (b), autonomous robot (c), smartwatch con-
cept (d).

3.1.2  Modules and Resources. We adopted an object-oriented
approach [78] to implement modules and resources, to ease devel-
opment and handling by the mainframe. The main components
of a module are its name (its class name), the lists of resources it
requires and provides and a “run” method, which are all declared
in an abstract module class from which all modules inherit from.
Resources consists of their name and a container which may store
any data structure (implemented as a JavaScript dictionary). Spe-
cialized modules and resources are obtained by deriving from their
super-classes as in traditional object-oriented programming. The
mainframe also allows a list of optional dependencies to be specified
for each module, such as libraries.

Whereas the list of modules that can be used to build a socially
interactive agent with EEVA will vary based on the application
needs, three main categories of module functionality are necessary
for modelling social interaction, namely input/sensing modules (for
perceiving social cues from the users in real time); social interaction
decision-making modules including the ECA behaviour module,
the ECA non-verbal controller, and the scenario controller; and
output/actuator modules for actually expressing verbal and non-
verbal cues to the user. Other modules such as the ECA behaviour
and the Scenario controller modules are more complex and process
resources from multiple sources, as discussed next.

As discussed in Section 2, to generate credible social behaviour
for the ECA, the ECA behavior module requires a social communi-
cation model based on the user’s social cues (e.g. facial expressions,
gestures, part-of-speech (POS) of utterances, intonation), which will
involve different multimodal signal processing, depending upon the
chosen model. Using the results of social signal processing as input,
a number of existing models (discussed earlier in Section 2) can be
used to decide what congruent verbal and non-verbal behaviours
need to be generated to animate the 3D character. The system can
then synthesize the ECA’s multimodal behaviors that control the
animations of the ECA non-verbal embodiment based on the social
communication model.

However, although a number of systems for real-time social sig-
nals processing are available [75], most of these were not designed
for internet-based interactions, so research is needed for such real
time interpretation of social signals that perform over the Internet.

As discussed in our case study (see Section 4), EEVA framework
can be used as a testbed for testing social interaction models of
increasing sophistication, as these become available.

3.2 Logic Component and Domain Scenario
Authoring Components

One of our aims in building EEVA was not only to provide a testbed
for building and evaluating a diversity of web-based socially inter-
active agents, but also to facilitate their deployment for different
applications using domain-specific various scenarios.

With EEVA, building scenarios to be interpreted by the applica-
tion component consists in defining the structure of a state machine
(SM) (note that SM should not to be confused with finite state au-
tomata, we use a more expressive system as discussed next). The
main reasons for this approach for scenario representation are the
expressive power and the relative ease of use for a non-expert
whom we aid by providing a graphical authoring tool (Fig.3 dis-
cussed later). Implementation and conversion into executable code
is discussed in the following.

3.2.1 Structure. While we discussed that most modules have the
purpose of obtaining user data and giving feedback through various
means (e.g. ECA animation, text, voice synthesis), the Scenario
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controller handles the way the actual dialogue between the ECA
and the user should progress.

The Scenario controller module is essentially an execution envi-
ronment for a SM with support for external inputs (such as user’ re-
sponses to prompts), and events (interruption or special commands
by the user, or various errors that could occur such as internet
connection loss). The controller is able to run a single SM, however,
a SM can contain sub-parts (embedded state machines) depending
on the application and can thus be used to describe scenarios with
arbitrary complexity.

The basic building blocks of each SM consist of states and tran-
sitions. To be expressive and modular, this implementation also
considers entire SMs as states, enables guards to be set on transi-
tions, allows individual states to execute custom JavaScript code,
and provides a global memory that makes it possible to count, save,
and load information throughout the runtime of the SM.

The simplest state is the empty state, which conceptually defines
a checkpoint in the scenario, and can serve as a starting point for
decisions (such as forks). States allow instructions to be executed
before and after execution (similar to entry/exit actions in UML state
machines), which can be used for example to load various content
from the database, or to modify global memory. Encapsulation is
built in by design through the ability to call an existing SM as a
single state inside a higher level SM, and allowing parameters to
be passed to customize it for a particular purpose. Once execution
reaches a state which has a sub-SM implementation, the higher level
flow halts until the lower level SM finishes its execution (reaches its
final state). This way lower level functionality can be encapsulated
and reused throughout multiple scenarios.

Transitions define the connections between states and may allow
free passage, or contain a guard that routes execution based on a
logical condition or an external event (see example in the case study
section). Conditional guards have access to the global memory and
can thus be used to implement complex decisions based on the
current state of the system. Event guards activate when a particular
signal is sent from the mainframe itself, such as speech recognition
in moments when the user’s turn is to listen (user interruption),
and can trigger special case behaviour of the system to resolve the
interruption, such as the user requesting the agent to repeat or back
up on question.

The system also allows the state of the entire hierarchy of SMs to
be saved to the database, so that users can resume interacting with
the ECA in a later session at the stage in the scenario where they
stoped. The execution integrity is conserved by saving the current
state at each level in the hierarchy, as well as the global memory,
and retrieving the information whenever the application is reloaded
by the user, given the user is registered within the system.

3.2.2  Authoring & code generation. While a fair level of under-
standing of the system is necessary to develop scenarios for interac-
tions with the social agent, scenario developers should not require
in-depth programming skills to create sequences of interactions
between the ECA and its end-users. At the same time, declaring
the structure of SMs in pure JavaScript quickly becomes tedious, re-
dundant and difficult to follow even for experienced programmers.

Once created with the authoring tool (see example in case study
section), the collection of SMs that make up the scenarios are saved

in JSON format to the database, and can be modified or extended at a
later time. In order to play the scenario within the actual application,
a file is dynamically generated by the system which contains the
translation of the JSON SMs into pure JavaScript code that can be
executed on the client-side. Data storage is described in more detail
in the following subsection.

3.3 Datalayer

As mentioned, one of our design goals is to allow the content of the
interaction with the social agent to be manipulated based on the
needs of the domain application. Therefore the system requires a
flexible data layer that can support virtually any type of interaction.
Non-relational (NoSQL) databases (such as MongoDB which is used
in the current implementation) offer the ability to store content
with variable structure, while maintaining resource efficiency and
scalability to large numbers of online users (for an overview see
(17]).

Data storage in MongoDB is performed in the JavaScript Object
Notation (JSON) format (in fact, a binary encoding of JSON is used
internally for efficiency purposes), and allows the application to
request rich content in an object-oriented way. For instance, a entire
SM, user profiles, or interaction episodes can be saved as complete
entities in the database, making their retrieval computationally
efficient and easily interpretable for data analysis.

The data layer is designed as a list of scenarios, each containing
a set of content elements. A content element can be one of the im-
plemented generic types, including question/answer single-choice
(radio button) and multiple-choice (check box), text area, tabular
input, simple feedback or HTML content. It is important to note
that this does not prevent the creation of new generic types, such
as flexible ones for free speech dialog (see more details in future
work section). Each type is interpretable in a generic way by the
ECA system and can be used to author a wide range of dialogue
interactions including direct questions, requests to fill forms, follow
slides, or simply discussing various topics. The entire hierarchy
of scenario folders and content elements is also saved as JSON
documents in the database.

These design choices make it possible to link the logic and data
layers together by referencing complete content documents in the
SMs that are designed to process them. For example, a generic form
state machine (see Fig. 3) can implement the rules to communicate
an entire form to the user, and, depending on which form reference
is passed as parameter, it can be reused in various moments during
a scenario.

4 CASE STUDY: SOCIALLY INTERACTIVE
HEALTH AGENT

In this section, we discuss how the EEVA framework can be used to
develop a web-based ECA capable of delivering behaviour change
health interventions. Using the mainframe discussed in Section 3,
we selected a collection of modules necessary to design the health
agent.

The functionalities of the main modules used in the current
version of EEVA are listed in Table 1. Most modules have simple
functions to retrieve or display information from and to the user or
call functions from libraries (3'9party or in-house) or services. For
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example, we use the ClmTrackr JavaScript library [76] to perform
facial expression recognition. Clmtrackr operates entirely on the
client-side, which has the advantage of never requiring the user’s
webcam feed to ever exit the device, and thus maximizing privacy
and trust — sine qua non basic ingredients when aiming to build
rapport between the ECA and the user.

Table 1: Listing of most significant modules used in EEVA
for our Health Agent.

Module function description
Input/Sensing modules
User camera interface using WebRTC API
Facial expression recognition using [67, 76]

User microphone interface using WebRTC API
Speech recognition using Google Chrome API
Speech recognition using IBM Watson API
Interface with CoreNLP [49]

GUI for direct user input (text, buttons)

GUI controller (toggle on-screen information)
Social Interaction Decision-making modules
Vocal command interpretation
ECA’s non-verbal model (gesture and facial animations)
Scenario controller (state machine execution)
Output/Actuator modules
Speech synthesis using Windows SAPI
3D scene rendering for Oculus Rift
User camera display (with recognition overlay)
WebGL EEVA 3D ethnically diverse characters (Fig. 2)
Lightweight 3D scene rendering (low-end devices, Fig. 2.b,d)

4.1 Structure and Authoring

The current case study consists in delivering a brief motivational in-
terviewing (BMI) intervention for at-risk behaviors such as alcohol
consumption, over eating, smoking, lack of exercise. As detailed in
[51], the content of any BMI is clearly structured into a sequence of
four steps, in addition to an initial greeting and a closing statement
(with potential referral of resources for healthy lifestyles) [51]: 1)
screening the person’s lifestyle with a series of questionnaires; 2)
providing normative feedback about the person’s lifestyle; 3) if
the person is found to have lifestyle patterns placing them at risk
(as determined in steps 1-2), assessing what level or readiness to
change the at-risk behaviour(s) the person is experiencing (from
not at all, to unsure, to ready); and 4) collaborating with the person
to create a behaviour change plan that is aligned with the level of
readiness determined in step 3.

Each step has a number of questions that prompt the user to
input one answer, multiple choices, or typed or spoken natural
language. The system output consists in the feedback given by the
virtual character, along with visual content such as text, images
and videos.

In our current health agent case study example, the scenarios
determine the content and flow of the intervention (e.g. what ques-
tions and answers about lifestyle patterns are sought from the
individual), so that the social agent can deliver the designed health
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intervention. Figure 3 shows a sample of the authoring tool for
designing scenarios for the health agent intervention, with which
content designers can author a particular interaction by specifying
the steps of the procedure without necessity of in-depth program-
ming skills.
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Figure 3: Designing the DCU health intevention using the
state machine authoring tool. States, transitions and guards
can be created with the help of a graphical user interface
(GUI uses [77]). Generic SMs (black contour box) can be
reused within higher level scenarios.

Figure 4 illustrates the system’s data layer, a set of tools created to
facilitate the creation of content for diverse use cases. The interface
allows the content creator to input multimedia (visual and audio
content) relevant to a particular scenario that is to be executed by
the virtual character.

Scenario selection Edit dialog content List of Element Types

Question/Answer

List of folders: Questonaie

FIDCU <add> <remove>

>Questionnare <edit><delete>

>Audit _L.

[+] Substance Abuse
[+] Eating Disorders
[+] ... <add>

Function List
« createFolder) + updateList) - addElement)

+ createsurvey() + refreshlist)  +  removeElement(
- editsurvey| + reorderList)

: gelﬂegugeyé) Function List

+ deleteFolder| Function List

+ deleteQuestion()
+ delete Answer()

Function List

— TextArea
. Scenario & content
database

Checked Boxes

Figure 4: Structure of content authoring graphical user in-
terface (GUI) to create dialogues and other scenario con-
stituents using predefined generic element types.
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Figure 5: Behaviour model diagram. The generator (G) takes a sequence of Gaussian noise (zero mean, unit standard deviation)
concatenated with the condition vector sequence as input and produces a behaviour sequence (head orientation, facial AUs
and eye gaze). The discriminator (D) classifies between generated and real counsellor behaviour sequences, each concatenated
with the same condition vector sequence. We used Dropout (p=0.5) [70] after each hidden layer and Spectral Normalization

[53] on the last layer of D.

The EEVA framework also enables the creation and retrieval of
user models that can be used to tailor and personalize the interaction
with the ECA. As previously discussed, the user’s answers to the
various questionnaires are saved to provide personalized feedback —
in our case, normative feedback about their [un/]Jhealthy life-style.
The user model consists in storing the user’s answers to the agents’
utterances, along with a set of scores that are calculated based on
these results. These scores are used to select the branching of the
scenarios. Figure 3 shows how conditional guards are taken into
account during transitions between states to select the interaction
path.

4.2 Non-Verbal Behaviour Model

To complete our approach, in this section we discuss the implemen-
tation of the character’s non-verbal model. We based our approach
on video recordings of dyadic real clinician-patient counseling ses-
sions, in order to replicate, as closely as possible, the nonverbal
behaviors of a real counselor.

4.2.1 Dataset creation. We organized and recorded sessions of
behavioural change interventions between a certified clinical psy-
chologist and student volunteers, on the topic of alcohol consump-
tion. Synchronized video/audio recordings were captured of both
interlocutors with faces clearly visible.

$ § 9 8 9.8 8 8
PP P PP PP PN

Figure 6: Time-synchronized video frame sequence from the
dataset. Sampling rate: 15FPS.

Twenty-four minutes of the sesssion (Fig. 6) were semi-automatically

tagged with POS information. For words spanning multiple frames,

the corresponding POS was repeated. The videos of both counsellor
and patient were processed with OpenFace 2.0 [4, 5, 83] to extract
head orientation, gaze direction and AUs 1, 2, 4, 5, 6, 7, 9, 10, 12,
14, 15, 17, 20, 23, 25, 26 and 45, at a frequency of 15 frames per
second. Counsellor and patient POS were converted to one-hot vec-
tors, patient AUs were normalized to [0, 1], and were concatenated
together to form the Condition vector. Counsellor AUs were nor-
malized in the same manner and used as real samples training the
GAN. No additional preprocessing was performed. The resulting
dataset was split into ~ 6 continuous minutes for validation and
the rest for training.

4.2.2  Temporal Conditional GAN. We trained a temporal gener-
ative adversarial network conditioned on dialogue parts of speech
and on the patient’s social cues, that generates AUs, head orienta-
tion and eye gaze for the counsellor (Fig. 5). Both generator (G) and
discriminator (D) consist of 2 LSTM [32] layers with hidden size of
128, and a dense layer. We used the hyperbolic tangent and sigmoid
for the output of G and D respectively, and we found that adding
a LeakyReLU in addition to the tanh output (similar to rectified-
tanh [11]) of each LSTM layer was critical to obtaining realistic
behaviour (leak rate 0.01 was used). Our experiments with using
only tanh (standard LSTM), only (Leaky)ReLU [48, 54] and even
using the same approach but with larger leak rates (0.2), all resulted
in the inability to correctly capture some correlations in the data
such as opening the mouth only when speaking (based on POS
information), and frequent uncanny effects were observed.

Sequence length affects how much past information the model
takes into account to generate the current behaviour frame. Given
that AU detection was performed at 15 FPS, setting the sequence
length to 15 results in a model with a memory of roughly one
second. We tested with lengths of 8, 16, 32 and 64; smaller lengths
resulted purely reactive (and somewhat repetitive) behaviour, while
larger lengths tend to produce more dynamic and fluent patterns.
However, we noted that longer sequences make the model much
harder to train as becomes easier for D to detect inconsistencies,
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resulting in partial (intricate gestures that take longer than they
should) or total mode collapse (generator becomes stuck in an
usually uncanny configuration). A memory length of ~2 seconds
(sequence of 32 frames) was found to be an acceptable trade-off.

For stabilizing training we added uniform noise to the generated
and real input of D with decay over time: n; = ng * 0.9999‘, where
nog = 0.1 and i is the iteration number. The model was trained for
40000 iterations with a batch size of 256; training was less stable
with lower sizes. In D we used Dropout (p = 0.5) [70] after each
hidden layer and Spectral Normalization [53] on the last layer. We
also used soft noisy labels [66] for training D: label flip with 10%
probability, uniform noise between [0, 1] for “real” and [0.9, 1] for
“fake”. A learning rate of 0.0001 and 0.5 momentum (similar to [61])
was used for the Adam optimizer for both G and D .

4.2.3  Qualitative Evaluation. The only post-processing consisted
in ignoring negative values from the tanh activation for AUs, and
head movement smoothing modelled as leaky integration over each
coordinate: x; « 0.8x;_1 + 0.2x;. We ran the trained model on the
validation sequence of length 5000 ( sim6 minutes) and empirically
evaluated the model focusing on the following factors: acceptance
(reasonable or clearly uncanny), gesture diversity (varied or mode
collapse) and ability to synchronize mouth movements with speech
based on POS (indicator that different modes can be captured). The
model presented above satisfies, to a certain degree, all factors that
we selected for.
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Figure 7: Synchronized sequence of real (counsellor) and
generated (character) and non-verbal behaviour. Interval se-
lected to contain change between speaker and listener roles.
Sampling rate of 3FPS for visibility.

Figure 7 illustrates a sample of the generated behaviour. A video
demonstration? of the result is also provided to allow the reader to
judge the quality of the obtained behaviour.

4.24 Limitations. While the resulting behaviour is arguably
acceptable, i.e. the model is able to capture the different modes
for speaker and listener behaviour and produces gestures that are
similar to the training data in both style and timing, we notice the
following limitations of the behaviour model. First, due to the lack
of information of what word is to be spoken (only POS information
available), lip syncing is not realistic. However, in reality, mouth

2Temporary anonymous link to demonstration video: https:/drive.google.com/open?id=
14iNKEEJCMoUZ075t2YzHziBHaj2GoId9
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movements would be generated directly from the visemes produced
by the text to speech engine. Secondly, the amount of data used
to train the model is small relative to other state-of-the-art GANS,
partly because of the semi-automatic way that was used to tag POS
and that the aim was to capture the behaviour of a single person (in
contrast to data from multiple people as used in other approaches).
Model performance when trained on more data was not explored
in this paper. Finally, quantitative evaluation of GANs is still an
open problem in the field and recent improvements in this direction
focus primarily on image data, such as the Inception Score [66].
We limited our work to a qualitative evaluation which focused on
acceptable (in contrast to uncanny) character behaviour, which
remains to be improved.

5 FUTURE WORK ADDING EMPATHIC CUES

Future work will involve carrying out evaluations of the resulting
nonverbal model of behavior by end-users of the health agent sys-
tem, in terms of the realism of the IVA behaviors, as well as the
end-users’ perceived sense of rapport with the IVA delivering the
health intervention.

The nonverbal behavior model was trained with Keras [19] which
provides an easy way to deploy it using Tensorflow.js [79] library
directly in a client-side environment, to be integrated with the
EEVA mainframe. One of the advantages of this approach lies in
the fact that the end-users’ facial images would not need to exit the
user’s personal device for the system to function, thereby removing
any potential privacy concerns about sharing identifiable facial
images over the network.

6 CONCLUSIONS

This article described a recipe to build a complete system for devel-
oping and deploying ECAs with accessibility, responsiveness and
scalability in mind. These constraints were met through a modular,
platform agnostic architecture designed to be easily adaptable to
various technologies, run in real time and allow end users to access
its functionality with only a compatible internet browser — a com-
mon built-in feature of most modern devices. We also discussed
a data-driven neural model able to capture the multimodal com-
municative signals from a human health counsellor, based on only
video data annotated with POS, that is able to express acceptable
conversational behaviors. While the main use case discussed herein
stems from healthcare, since avoiding programme interruption and
relapse depends on achieving the aforementioned challenges, the
approach can be easily adapted for other purposes including more
natural human-robot interaction, interactive storytelling, virtual
training environments or e-learning.

>
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