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Abstract. The RoboCup@Home league requires domestic service robots
to perform complex tasks in dynamic, human-centric environments, where
robust object detection remains a critical challenge. While existing data-
sets focus on general object recognition, they often lack the specificity
and contextual relevance needed to evaluate performance under real-
world RoboCup@Home conditions. To address this gap, we present YCB-
@Home, a carefully curated validation dataset designed to benchmark
object detection models in household settings. The dataset consists of
20,000 RGB-D images featuring 78 common household items, annotated
with bounding boxes and captured under varying lighting, occlusion,
and viewpoint conditions. YCB@Home, unlike generic object detection
datasets, emphasizes task-specific scenarios reflective of RoboCup@Home
challenges. We evaluate the dataset using the most commonly deployed
state-of-the-art object detection model (YOLO11), analyzing performance
gaps in occluded and context-dependent object recognition. Our results
demonstrate that YCB@Home provides a more representative bench-
mark for RoboCup@Home than existing datasets, revealing key limita-
tions in current systems and guiding future improvements for reliable,
context-aware robotics. The dataset can be found at the following link:
https://github.com/Julio-Ojalvo/YCB-Home.git
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1 Introduction

Simulators play a pivotal role in advancing research, development, and testing
of robotic systems [1, 16, 23, 15] in the realm of service robotics. They serve as
invaluable tools for exploring various aspects of robot perception, navigation, and
interaction with the environment and users [18, 10, 3]. Among the key challenges
in robotics is enabling robust perception, where vision-based object detection is
critical for tasks such as manipulation, navigation, and human-robot interaction.

A robotics simulator must provide realistic sensory inputs to effectively sup-
port the development of perception systems [18, 21]. Vision sensors, in particular,
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are essential for enabling robots to interpret their surroundings accurately. How-
ever, collecting and annotating real-world training data for object detection is
often time-consuming, expensive, and limited in variability [5, 9]. Synthetic data
generation offers a promising alternative, allowing for scalable, diverse, and pre-
cisely labeled datasets that can be used to train and evaluate object detection
models [2, 24]. As a small RoboCup team competing in RoboCup@Home, where
objects to be used in tasks are only revealed days prior to the competition, this
is a vital aspect of our data generation method.

NVIDIA Isaac Sim is a powerful simulation platform that leverages high-
fidelity, ray-traced rendering to generate photorealistic scenes [11]. Its capabili-
ties in simulating realistic lighting, textures, and sensor noise make it well-suited
for generating synthetic training data that can help bridge the sim-to-real gap
in vision-based perception [1, 14]. By programmatically controlling scene com-
position, object placement, and environmental conditions, Isaac Sim enables the
creation of large-scale, annotated datasets tailored to specific robotic applica-
tions [4, 25].

Through benchmarking and analysis using synthetic data generated in Isaac
Sim, we demonstrate how simulation can enhance object detection robustness
for real-world home environments. By releasing YCB@Home as an open-source
validation benchmark, we aim to support RoboCup@Home teams in evaluating
and refining their perception systems. We hope this contribution fosters collabo-
ration within the robotics community, accelerating progress toward reliable and
adaptable domestic service robots.

2 Related Work

The use of synthetic data for training and benchmarking robotic vision systems
has gained significant traction due to the scalability and diversity it offers com-
pared to real-world data collection. NVIDIA’s Isaac Sim, a high-fidelity robotics
simulation platform built on Omniverse, has emerged as a powerful tool for gener-
ating synthetic datasets. Isaac Sim enables physically accurate simulations with
domain randomization, which improves the sim-to-real transferability of learned
models [20]. Isaac Sim employs NVIDIA RTX graphics cards to achieve physi-
cally accurate ray-traced illumination. Given our existing inventory of NVIDIA
RTX hardware, this platform was selected over alternative simulation environ-
ments to maximize compatibility and performance.

The YCB Object Set [5] has become a standard benchmark in robotic manip-
ulation and perception research due to its carefully selected household objects
with varied shapes, textures, and physical properties. Prior works have lever-
aged the YCB objects for tasks such as object detection [8], 6D pose estimation
[19], and grasp planning [13]. However, collecting large-scale real-world datasets
with all 78 YCB objects is labor-intensive, motivating the use of synthetic data
generation.

Several studies have explored synthetic dataset generation for robotics using
the YCB objects. For instance, Denninger et al. [6] introduced BlenderProc, a
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Blender-based pipeline for generating photorealistic synthetic data. Similarly,
Tremblay et al. [20] demonstrated that training on synthetic data with domain
randomization can achieve performance comparable to real-world data. More
recently, Isaac Sim has been used to generate large-scale datasets for robotic
grasping [7], benefiting from its GPU-accelerated rendering and physics simula-
tion.

While synthetic datasets have been used to train object recognition models
for RoboCup@Home [12], existing efforts typically focus on limited subsets of
objects or generic household items. Vaz et al. [22] provide a concise dataset for
RoboCup@Home, but their process differs greatly from ours. Their solution re-
lies heavily on their ODUTF method to generate images of new objects. The
primary focus of our method is to have a quick and portable way to generate
data on a previously unseen object, given the structure of the RoboCup@Home
competition. The use of a large hardware device to capture object images is a
restraint we cannot afford to have for our competitions. Our work introduces
a comprehensive synthetic dataset covering all 78 YCB objects, specifically de-
signed to serve as both a training resource and - more critically - a rigorous
validation benchmark for RoboCup@Home tasks. This dataset enables teams
to quantitatively evaluate perception systems against the full spectrum of YCB
objects encountered in competition scenarios.

3 Methodology

(a) (b)

(c) (d)

Fig. 1. Figure (a) illustrates the office environment in the dataset, (b) is the warehouse
environment, (c) is the home environment, and (d) is the RoboCanes lab digital twin
environment.
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3.1 Scene Configuration

All 78 objects in the YCB dataset are represented across 20,000 images ren-
dered in Isaac Sim. Four different environments, as seen in Figure 1, are used to
generate the data to include variability surrounding the YCB objects. These en-
vironments were chosen out of their similarity either visually or semantically to
the RoboCup@Home setting. Each environment has its own background colors
and textures, lighting conditions, and varying degrees and types of clutter. We
generate 5,000 images inside each of the environments for an even distribution
across all so as not to overfit to any particular one. Additionally, the process to
generate data within each environment is identical.

Anywhere from 5 to 15 objects of the 78 are randomly selected for each scene,
and 22 different camera poses are used relative to the objects. The 5 to 15 objects
range for each scene configuration was chosen to closely follow a configuration
likely to be seen in RoboCup@Home competition. The 22 camera poses were
chose to both simulate realistic visuals from competition and to show features
on objects from a variety of distances and angles. The 22 camera poses include:
four at just above object level facing the objects from cardinal directions to
have up close images capturing features in detail, four elevated views replicat-
ing this arrangement but from a farther distance to include instances of objects
with more abstract feature presentations, and 14 poses simulating a robotic ap-
proach trajectory. This configuration ensures comprehensive coverage from fixed
perspectives while capturing dynamic viewpoint transitions. Shahinfar et. al [17]
suggests to produce 150 to 500 images per object for an effective object detection
dataset. With 78 objects, 250 images per object, and an average of 10 objects per
image, that comes out to 3,900 total images. To account for all the variability,
we produce slightly more than this recommended amount for each environment.
Using this configuration, 20,000 unique images are created to represent a robust
set of annotated images within the context of the RoboCup@Home competition.

3.2 Domain Randomization

The four major parameters randomized in this dataset are 1) object poses, 2)
camera poses, 3) lighting conditions, and 4) the environment in which objects
are captured. Our goal is to provide enough specificity to effectively be used for
RoboCup@Home tasks but be robust enough within that context to account for
any changes in lighting, object placement, occlusion, and competition venues.
We structure our domain randomization parameters to achieve this goal.

The object poses are randomly positioned in a circular arrangement atop
a chosen plane. Those planes are a) a coffee table in the RoboCanes lab envi-
ronment, b) a kitchen counter in the home environment, c) a desk in the office
environment, and d) a shelf in the warehouse environment. The objects are cho-
sen at random and randomly rotated within this circular arrangement to create
varying levels of clutter and occlusion in every scene. The camera poses were
chosen to represent different angles of view and distances to the objects. Of the
22 total camera poses, 8 circle around the plane of objects at different heights,
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and 14 are along the path of an HSR (Human Support Robot) approaching the
table as it would in a RoboCup@Home task. Those camera poses are cycled
through, with a new set of objects for each pose, until all 5,000 images are taken
per environment.

The environments themselves provide a different background for the objects
but also their own lighting conditions. The office and RoboCanes lab’s main light
sources are differently shaped rectangular light arrays on the ceilings of different
heights. The home’s light source is a disk-shaped light above the object plane,
and the warehouse uses sunlight coming through a window at an angle. These
lighting conditions provide different specularity and shadows to every scene to
allow for more robustness to lighting conditions in the training dataset. The
ray-tracing capabilities of Isaac Sim provides a realistic set of lighting conditions
for our data. Examples of images produced with these conditions can be seen in
Figure 2.

(a)

(b)

(c)

(d)

Fig. 2. Row (a) shows the images taken from 4 different camera poses of the 22 in the
RoboCanes lab environment. Row (b) is the home, Row (c) is the office, and Row (d)
is the warehouse.
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3.3 Annotation Automation

Isaac Sim’s replicator module is used to generate all of the annotations for the
data. Toyota provides an implementation of the HSR in Isaac Sim, and the
camera (ASUS Xtion RGBD) located on robot’s head is used in our work. This
implementation was also used to capture some of the camera poses present in
our data. We do this to further simulate the RoboCup@Home setting. An Isaac
Sim object detection writer from the replicator module is attached to the render
product of this camera. The writer then produces four files for every frame of
the camera. These are the png image file of the render product in that moment,
an npy matrix file with the annotations of the objects represented as USDs, and
two json files for the prim paths of the USDs and their label names. The data
must then be converted into a format suitable for our training process.

The annotations are originally in the form of an npy file containing a ma-
trix in which each row is an object in the scene. The first column contains an
integer value representing the label, while the subsequent four columns spec-
ify the pixel coordinates of the bounding box, corresponding to the minimum
x-coordinate, minimum y-coordinate, maximum x-coordinate, and maximum y-
coordinate, respectively. To train using ultralytic’s YOLO11 object detection
model, the annotations are transformed to a txt file with the same name as its
corresponding png, and the bounding box is defined by the center point x and
y coordinates, followed by the width and height of the box. These numbers are
also normalized form 0 to 1 rather than the raw pixel values. The prim path files
are ignored, and the label name files are used to generate the yaml file defining
file paths to the data as well as a dictionary mapping integer labels present in
the txt annotations to string labels of those objects. This allows for more human
readable annotations to ensure they are correct as well as to visualize the final
output as can be seen in Figure 3.

4 Results and Analysis

To assess the effectiveness of YCB@Home as a task-specific benchmark, we
trained a YOLO11 model exclusively on our synthetic dataset and evaluated its
performance on two distinct test sets: a hand-annotated validation dataset repli-
cating RoboCup@Home competition scenarios, and the YCB-Video (YCBV)
dataset, a general-purpose benchmark for object detection in unstructured en-
vironments. The training started with the large YOLO11 weights pretrained on
COCO and ran for 200 epochs with default values for all other training param-
eters.

The model achieved a mean Average Precision (mAP@0.5) of 75.3% on the
hand annotated test set, with precision and recall scores of 78.7% and 73.7%,
respectively. In contrast, performance dropped noticeably on YCBV, with sig-
nificantly lower accuracy and detection rates. This substantial performance gap
suggests a meaningful distributional mismatch between generic benchmarks and
task-specific RoboCup@Home environments.
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(a)

(b)

(c)

(d)

Fig. 3. Rows (a), (b), (c), and (d) are the RoboCanes lab, home, office, and warehouse
environments respectively, as shown in Figure 2 but with the automated annotations
drawn on.

Qualitatively, the model excelled in cluttered, contextually grounded scenes,
accurately localizing occluded objects critical to domestic tasks. An example
of this can be seen in Figure 4, where we can see the predictions on heavily
cluttered scenes. We can also see examples of occluded objects in the yellow
bowl labeled "j_cups" in the bottom left and top two images, as well as the
banana in the bottom right image. The yellow bowl is mislabeled in one of the
images as a softball, however, the bonding box around the bowl is accurate in all
instances. This success reflects YCB@Home’s design, which emphasizes domain
randomization tailored to competition workflows.

The performance disparity arises from fundamental differences in dataset
construction. YCB@Home’s domain randomization (e.g., venue lighting, camera
poses simulating HSR navigation) bridges the sim-to-real gap, whereas YCBV’s
variability is much narrower and less structured. These results affirm that task-
specific synthetic datasets are indispensable for evaluating perception systems
in domain-constrained robotics applications.
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Fig. 4. Validation batch prediction demonstrating performance on cluttered scenes.

5 Conclusion

This work introduces YCB@Home, a synthetic dataset designed to benchmark
or train object detection models in RoboCup@Home scenarios. Our experiments
demonstrate that models trained on YCB@Home excel in task-specific valida-
tion but struggle with generic benchmarks like YCBV, exposing a critical dis-
tributional gap between domain-focused and general-purpose datasets. Our key
contributions are:

– YCB@Home provides a rigorous validation tool for diagnosing model weak-
nesses and performance in context-aware object detection, directly address-
ing RoboCup@Home’s unique challenges; and

– The dataset’s design, prioritizing task relevant scene configurations, environ-
mental randomization, and realistic partial occlusion, narrows the sim-to-real
gap for domestic service robotics.

In our future work, we plan to explore hybrid training strategies combining
YCB@Home with real-world data to enhance generalization without sacrificing
task specificity. We also hope to extend the dataset to include more variability
in its lighting conditions, background colors and textures, camera poses, camera
noise and blur, and distractor objects. In Figure 4, we can see examples of objects
that tend to be misclassified, such as the chain and the strawberry. In the future,
we plan to address this by tailoring the distribution of object instances in the
dataset to skew more heavily towards objects the models struggle to detect, as
opposed to an even distribution across all classes. By addressing these directions,
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we aim to advance the development of robust, context-aware vision systems for
domestic robotics, ultimately improving their reliability in competition and real-
world settings.
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