
COURSE DESCRIPTION

Dept., Number CSci 251 Course Title Programming for Engineering and Sciences

Semester hours 3 Course Coordinator Charles M. Jenkins, Instructor

Current Catalog Description

Algorithm development and structured programming techniques; numerical and graphical
applications related to engineering and scientific problem solving.

Textbook

Chapman, S.J. Fortran 95/2003 for Scientists and Engineers, Third Edition. McGraw–Hill
Higher Education, Boston, Massachusetts, 2008. ISBN 978–0–07–319157–7.

References

Course Outcomes

This course introduces students to computer programming using a general–purpose
programming language. It emphasizes structured problem–solving in an engineering and
scientific context. By the end of this course, students should be able to develop complete,
understandable, maintainable programs. Specifically, students should be able to:

1. Explain the rudiments of a computer’s architecture.
2. State clearly the purpose of a computer program.
3. Define the inputs and outputs of a program.
4. Develop algorithms.
5. Develop a plan for testing a program.
6. Identify and mitigate risks to the successful implementation of a computer program.
7. Identify and eliminate errors in a computer program.
8. Implement algorithms in computer program.

Relationship between Course Outcomes and Program Outcomes

This course is primarily taken by students in Chemical, Civil, Electrical, Geological, and
Mechanical Engineering, as well as students in Forensic Chemistry. It is only rarely taken by
Bachelor of Science in Computer Science students and may be applied to their degree
requirements only under exceptional circumstances with the permission of the Department’s
Undergraduate Committee. The course outcomes contribute to the program outcomes as shown
below:

1. Explain the rudiments of a computer’s architecture. Outcome a
2. State clearly the purpose of a computer program. Outcomes b, c
3. Define the inputs and outputs of a program. Outcomes b, c
4. Develop algorithms. Outcome b, c
5. Develop a plan for testing a program. Outcome c
6. Identify and mitigate risks to the successful implementation of a computer program.

Outcomes c, i, j
7. Identify and eliminate errors in a computer program. Outcome c
8. Implement algorithms in computer program. Outcome c

Prerequisites by Topic

This course has a corequisite of Math 261, Unified Calculus and Analytical Geometry I

Major Topics Covered in the Course

1. The rudiments of a computer’s architecture.
2. A structured approach to solving problems with computer programs.
3. Documenting a programming.
4. Formatting a program.
5. Performing calculations involving the following operations:

a. Arithmetic (e.g., addition, multiplication, modulo division, and absolute value)
b. Logarithmic and exponential
c. Trigonometric (e.g., sine and cosine)
d. Boolean (e.g., AND, OR, and NOT)

6. Executing a sequence of actions
7. Selecting a course of action (“branching”)
8. Repeating a course of action (“iteration”)
9. Declaring and using floating point, integer, and Boolean variables

a. Scalar (single–valued)
b. Array (multi–valued)
c. Constants

10. Reading unformatted input from the keyboard and from files (using file redirection)
11. Writing formatted and unformatted output to the screen and to files (using file

redirection)
12. Designing and coding subprograms to create larger, more complex, well-structured

programs.

Assessment Plan for the Course

To demonstrate their mastery of the course topics, students:

1. Complete five or more homework assignments and two or more graded laboratory
exercises

2. Take four quizzes
3. Complete five or more computer programming assignments of increasing difficulty
4. Take a three–hour practical exam involving the creation of an entire computer program to

solve a problem posed by the instructor

The course is overseen by the School of Engineering’s Engineering Computing curriculum
committee, for which the usual instructor for CSci 251 (or another full-time computer science
faculty member) serves as Chair. The instructor administers a Student Perception of Course
Effectiveness survey in each section of the class. The Engineering Computing committee
recommends appropriate changes to the course in response to the survey results and in response
to the School’s curricular requirements.

 How Data in the Course are Used to Assess Program Outcomes (unless adequately covered
already in the assessment discussion under Criterion 4)

Estimate Curriculum Category Content (Semester hours)

Area Core Advanced Area Core Advanced

Algorithms 1 Software design 1

Data structures Concepts of
programming
languages

1

