Florida Institute of Technology

Department of Computer Sciences

Comprehensive Exam (Spring 2010)
SOFTWARE ENGINEERING

Fridav, March 19, 2010:; 10:00am — 11:30am

Instructions — Read Carefully Before You Start:

o Write your student identification number in the space below.
o This exam consists of 17 pages (including this cover).

o The exam consists of two parts:

* You must answer Questions 1, 2, 3, and 4.

* Answer any one (1) of Questions 5, 6, or 7
=» Circle the one question that you want graded:
5 6 7
(If you leave this blank, Question 5 will be graded.)
a Use a pen to write your answers in the space provided.

o When a question asks you to “describe,” “discuss,” or “explain” something, it
means you must provide a convincing, clear, and reasonable answer; simply
stating a fact without any supporting argument is insufficient.

0 There are multiple parts to some of the questions. Read the questions carefully
and answer all parts to the best of your ability.

o No study aids (notes, books, etc.) are permitted during the exam.

Good luck!

ID Number:




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

Question Worth Grade

1. Process 20
2. Requirements 20
3. Design | 20
4. Construction 20
5. Testing 20
6. Maintenance & Evolution 20
7. Management 20
Total | 100

2 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

1. Process (20%)

Process models are useful instruments to help software engineers manage large-scale
projects. For example, the models can provide guidance in the context of improving
software quality. Three of the software engineering process models commonly discussed
are the waterfall model, the evolutionary model, and the spiral model.

Problem:
(a) Clearly explain each of these process models. Include diagrams of their phases.

(b) Describe 2 relative advantages and 2 relative disadvantages of each model.

(c) Under which circumstances would one choose the waterfall model over the other
models? Clearly explain why. Provide a realistic example to support your answer.

Grading: (a) 9%: 6% explanation and 3% diagrams; (b) 6% (c) 5%
Note: Use the blank sheet of paper on the next page as needed.

Answer:

30f17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

4 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

2. Requirements (20%)

Getting software requirements right is notoriously difficult. One of the main problems is
getting everyone to agree to the same thing. In other words, developing a common
understanding of the problem, from both a user (requirements definition) and an
engineering (requirements specification) perspective. The goal of a requirement
engineering process is to create and maintain a system requirements document. The
overall process included three high-level requirements engineering sub-processes.

Problem:

(a) Describe the three main activities of the requirements engineering process and
their corresponding products.

(b) Describe two techniques for representing requirements specifications. Include
examples of each technique for a hypothetical system.

Grading: (a) 12%: 4% for each clear explanation; (b) 8%: 4% for each technique.
Note: Use the blank sheet of paper on the next page as needed.

Answer:

50f17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

6 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

3. Design (20%)

Design is a key component of the overall software lifecycle. Good design contributes to
the engineering of elegant and bug-free software.

Problem:

(a) During high-level design, once the overall system organization has been chosen,
one needs to make a decision on the approach to be used in decomposing sub-
systems into modules. Sub-systems are composed of modules with defined
interfaces that are used for communication with other subs-systems. A module is
a lower-level artifact than a sub-system that is composed from a number of other
simpler system components. Two common design approaches are object-oriented
decomposition and function-oriented pipelining.

Describe function-oriented pipelining. Clearly identify the advantages and
disadvantages of this approach to sub-system decomposition. Given an example of
function-oriented pipelining for a hypothetical system’s design. Explain why many
legacy systems use this type of design.

(b) Several different notations for describing object-oriented designs were proposed
in the 1980s and 1990s. The Unified Modeling Language (UML) is an integration
of these notations. The UML is a graphical notation technique, not a design
method or a process, that is used to communicate design intent.

Clearly explain this UML diagram. What type of UML diagram is it? Is it correct?

Why or why not?

Bank

1

.

Account
audit():void
Checking Savings MoneyMarket
audit{}:void audit();void audit{):void

Grading: (a) 10%; (b) 10%;
Note: Use the blank sheet of paper on the next page as needed.

7 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

Answer:

8 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

4. Construction (20%)

The uniq program on UNIX removes duplicate lines from sorted data. Suppose, however,
you need to remove duplicate lines from a data file (which might not be sorted), but that
you wish to preserve the line ordering. A good example of this might be a shell history
file. The history file keeps a copy of all the commands you have entered, and it is not
unusual to repeat a command several times in a row, or several times per session.
Occasionally you might wish to compact the history file by removing duplicate entries.
Yet it is desirable to maintain the order of the original commands.

Problem: Construct an elegant and efficient program that implements this enhanced
functionality. Document how your solution works, and the rationale behind your
selection of algorithm(s) and data structure(s). Your program can be in C, C++, or Java.

Input: A text file containing the shell commands. Each line is terminated by the newline
character (*\n’). Assume that the number of characters per line is usually less than 256.
Assume that the number of lines in the input is usually less than 1,000. Assume that there
are no blank lines in the input.

Output: A printout of the compressed history file in this format:
command # count

where command is the shell command, count is the number of times the command
appeared in history file, and the ‘#’ character separates the two (with a single space on
either side of the ‘#’). Line ordering is important — it must be the same as the input.

Example: Given the following history file data as input:

ls

cat foo

date

ls

ls

cd

cd

ls

cd /tmp; 1s

cd csl0/asl

g++ -Wall aZ2g2.cc -o a2q2
echo darn compiler

cd csl0/asl

cd cs10/asl

cd ~/csl0/al

g++ -Wall a2g2.cc -o az2qg2
al2g2

cd

cd

cd

9 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

Your program will produce exactly the following output:

1ls # 4

cat foo # 1

date # 1

cd # 5

cd /tmp; 1ls # 1

cd csl0/asl # 3

g++ -Wall a2g2.cc -o a2qg2 # 2
echo darn compiler # 1

cd ~/csl0/al # 1

a2q2 # 1

Notes:

* Make sure your solution is constructed clearly and idiomatically, so that it adheres
to the commonly accepted definition of good coding style.

* Be sure to properly comment your program; explain how the solution works and
why you selected particular algorithm(s) and data structure(s).

* Provide citations to references you may have used in constructing your solution.

* Input to the program will come from standard input. Output must be to standard
output. Do not prompt for input, nor produce spurious output.

Grading: Correctness: 15%; Documentation: 5%; Style: 5%
Note: Use the blank sheet of paper on the next page as needed.

Answer:

10 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

11 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

5. Testing (20%)

Black-box testing treats the system as a “black box” whose behavior is primarily
determined by studying the inputs and the related outputs. A key problem for a tester is to
select inputs that have a high probability of revealing the most amount of defects. Testers
use their experience and domain knowledge of the system, along with a systematic
approach to test data selection, to choose inputs to test the system.

Problem:

(a) Explain why it is practically impossible to exhaustively perform 100% testing of a
program. Give an example.

(b) Explain equivalence partitioning to select test input data. Use your example from
(a) to illustrate the use of this technique.

(c) What values are chosen for each partition in equivalence classes? Why?

(d) Compare and contrast verification and validation.
Grading: (a) 5%; (b) 8%: 5% explanation, 3% example; (c) 3%,; (d) 4%.
Note: Use the blank sheet of paper on the next page as needed.

Answer:

12 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

13 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

6. Maintenance & Evolution (20%)

Maintenance is the act of modifying a program after system deployment. Following good
software practice doesn’t negate the need for maintenance—just its severity. In fact,
maintenance is the most common form of software evolution.

Problem:

(a) Describe the three most common types of software maintenance. Be sure to
provide examples of each type of maintenance using realistic scenarios.

(b) Discuss how software maintenance differs from software construction.

(c) Lehman’s third law is the most interesting and perhaps most contentious law of
evolution. It basically states that “Program evolution is a self-regulating process.” -
Explain what this law means. Provide an example for a hypothetical system.

Grading: (a) 12%: 4% for each description; (b) 4%; (c) 4%.

Note: Use the blank sheet of paper on the next page as needed.

Answer:

14 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

15 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

7. Management (20%)

Estimating the cost and effort required for a particular task in a software project is an
important management activity.

Problem:

(a) Describe two classes of productivity measures that are commonly used to aid cost
and effort estimation. Note that in this context a class refers to a generic category
of productivity measure, not to a specific type.

(b) Give specific examples of each class of productivity measure that are commonly
used in practice. For each example, describe one reason why it is a good measure
of estimating productivity and one reason why it is not a good measure.

Grading: (a) 10%: 5% for each class description; (b) 10%: 3% for each example (6%)
and 1% for each reason (4%).

Note: Use the blank sheet of paper on the next page as needed.

Answer:

16 of 17




Florida Tech Comprehensive Exam (Spring 2010) — Software Engineering

17 of 17










