The University of Mississippi
Department of Computer and Information Science
Data Structures and Algorithms Comprehensive Exam
Spring 2005

Instructions: Answer any FIVE of the following nine questions. The questions are
equally weighted. You have three hours to complete the exam.

1. We can specify an abstract data type (ADT) by giving three types of information
about the ADT:

e the sets (i.e., types or domains) involved
e the signatures (syntax) of the operations (i.e., functions)

e the semantics of the operations

Consider a Table (or dictionary) abstract data type (ADT) that provides a data
structure in which the entries consist of key-value pairs. In such a structure, the key
of a pair uniquely identifies the pair within the data structure and can be used to
access the value.

Give a specification. Use constructive, design-by-contract techniques (i.e.,
preconditions, postconditions, and perhaps invariants) to specify the semantics. The
Table ADT will have at least the following operations:

e create a new table
e insert a new key-value pair into the table

e delete a key-value pair from the table

return the value paired with a key in the table
e determine whether a key has a value in the table

e determine whether the table is empty

Suppose you wish to implement the Table using an array (or arrays) in memory.

Describe the design of the internal state of the ADT’s implementation. Give an
implementation (representation) invariant that specifies the relationship
between the ADT’s abstract value and the values of its implementing variables.

2. Suppose that you work in the information technology department of large
supermarket chain with stores at many locations around the country. The company
has a loyalty program in which frequent customers get discounts and other special
offers. To obtain these benefits, customers must submit their loyalty program
membership cards whenever they make purchases. The membership card includes an
id number that is unique across the chain.

The company maintains information about all customers in a large sequential file
(not in a database) at its central data processing facility. (Let’s call this the master
file.) Each local store collects information about its local customers and uploads that
information once per day to the centralized data processing facility so that the the
master file can be updated. (Let’s call these transaction files.) The transaction files
include information about addition of customers, deletion of customers, and change
in information about customers as well as information about the customer’s
purchases for that day.

Suppose you are given the task of designing the programs to do the updates of the
master file.

(a) How would you order the master file? How would you organize the transaction
files?

(b) Outline an efficient algorithm for updating the master file using the daily
transaction files.

3. Discrete mathematics. Answer any THREE of the following four parts of this
problem.

(a) A binary relation is a subset of the Cartesian product of two sets, that is, it is a
set of ordered pairs. We are often interested in whether relations have the
properties of being reflexive, symmetric, and transitive. If a relation has all
three properties, then it is said to be an equivalence relation. Identify each of
the following as being a reflexive, symmetric, transitive, or equivalence relation.

i. {(a,b) :a/b <bja} where a and b are nonzero real numbers.

ii. {(a,b):|a| = |b|} where a and b are real numbers.

iii. {(a,b):a*+ b* =1} where a and b are real numbers.
(b) Prove or disprove that 2" + 1 is prime for all non-negative integers n.

(c) A computer network consists of six computers. Each computer is directly
connected to at least one of the other computers. Show that there are at least
two computers in the network that are directly connected to the same number of
other computers.

se mathematical induction to prove that 1 4+ 2 + 2 +2° + ..2" = —
d) U h ical inducti hat 1 +2+2% 423 A |

4. Consider a simplified expression tree (an example is shown below). The tree is a
binary tree where each internal node contains a character representing a
mathematical operator (+, -, *, /). The leaves contain integers.

(2

&

(a) Using the syntax of your choice, show a possible declaration for the structure of
the tree.

(b) Explain the tradeoffs you considered, and why you chose the structure you did.

(c) Write a function (method) to accept the root of an expression tree and return its
value. Note that in the example above, the expression represented is (3+4)*12,
which evaluates to 84.

5. This question deals with the problem of finding the largest item in a list of n items.

(a) Write an iterative algorithm to solve the problem. Analyze your algorithm and
show the results in order notation.

(b) Write a recursive algorithm to solve the problem. Analyze your algorithm and
show the results in order notation.

(c) What is the lower bound for this problem? Explain your answer fully.
6. Choosing data structures.

(a) A sparse array is one in which most entries are zero. Assume that we want to
store a sparse n x n x n array of real numbers such that the operations insert
and delete are efficient-these operations insert or delete an element in a given
position (7, 7, k) in the array. Deleting an element thus means making it zero.
Explain which space-efficient data structure you would use if you knew that
approximately all but n of the n® possible elements are zero at any time. We
would like to get on the average about O(1) execution times for insert and
delete, just as if we would with an ordinary array.

(b) For each of the questions, choose the best of the listed data structures and

explain why your choice is best. Where several operations are listed, you should
assume that the operations occur with about equal frequency.

i. Operations are: Insert, DeleteMax, and DeleteMin.
Choose data structure: balanced tree or sorted doubly-linked list
ii. Operations are: Insert and FindMin
Choose data structure: sorted linked list or sorted array
iii. You have a dictionary that contains at most 10 words.
Choose data structure: balanced tree or unordered array

iv. You have a large set of integers with operations Insert, FindMax,
DeleteMax.

Choose data structure: unordered array or hasing with linear probing

7. Polynomial Reduction.

(a)
(b)

Define polynomial reduction.

What are two common uses for polynomial reductions. Give examples.

8. Minimum Spanning Tree.

Define minimum spanning tree.
Explain how Prim’s MST algorithm works.

Apply Prim’s algorithm to the graph below. Show clearly the data structure at
each stage.

Explain how Krushal’s MST algorithm works.

Apply Kruskal’s algorithm to the graph below. Show clearly the data structure
at each stage.

What happens if the algorithms receive an unconnected graph?

9. Java data structure programming. This problem refers to the attached Java program
ListTest. The classes List, Nil, and Cons represent a simple recursive list structure
(similar to that found in the language Lisp).

Six functions are defined on this data structure. Note that some have recursive
implementations. Most are straightforward. Function map returns a new list that is
like the original list except that a single-argument function has been applied to every
element.

What are the inheritance relationships among the classes List, Nil, and Cons.
Which of the classes List, Nil, and Cons can be instantiated?

The program uses polymorphism. Describe how the appropriate implementation
of the map method is located at at runtime and executed.

Class ListTransducer implements the builtin Java Iterator interface. (That
is, its design reflects the Iterator design pattern.) What are the purposes and
characteristics of an iterator on a data structure?

Give the implementations of a new method length() in List, Nil, and Cons.
This method should count the elements in the list and return the count as an
int.

Show the output produced by the lines marked /* 1 */ through /* 8 */ in the
attached program.

ATTACHMENT — Return with Examination
import java.util.x*;

public class ListTest
{ public static void main(String[] args)
{ List nillist = new Nil(Q);
/* 1 */ System.out.println("nillist: " + nillist);
List twolist = new Cons("one", new Cons("two", nilList));

/* 2 */ System.out.println("twolist: " + twolList);
/* 3 */ System.out.println("contains \"one\"? " + twolList.contains("one"));
/* 4 %/ System.out.println("contains \"two\"? " + twolList.contains("two"));
/* 5 */ System.out.println("contains \"six\"? " + twolist.contains("six"));

ListTransducer tr = new ListTransducer

(twoList,new NotEqualSelector("two"),new MapToUpper());

for(int i = 1; tr.hasNext(); i++)
/*x 6 *x/ System.out.println("transducer: " + i + " " + tr.next());

List onelist = twolist.remove("two");
/* 7 */ System.out.println("remove \"two\": " + onelList);

Converter m = new MapToUpper();
/* 8 */ System.out.println("map to uppercase: " + twoList.map(m));

abstract class List

{ public static final List NIL = new Nil();
abstract public List remove (Object e); // remove all occurrences
abstract public boolean isEmpty(); // has no elements?
abstract public boolean contains(Object e); // is argument in list?
public List map(Converter m) { return this; } // return converted list
abstract public Object getHead(); // head element
abstract public List getTail(); // tail list

class Nil extends List // an empty list

{ public List remove (Object e) { return this; } // return self
public boolean isEmpty() { return true; }
public boolean contains(Object e) { return false; }
public Object getHead() { return null; } // head element
public List getTail() { return this; } // tail list
public String toString() { return ".NIL."; }

class Cons

{

extends List // nonempty list

public Cons(Object h, List t) { head = h; tail = t; }

public List remove(Object e)

{ if (head.equals(e)) // by default, use built-in equality test
{ return tail.remove(e); }
else
{ return new Cons(head,tail.remove(e)); }

}

public List map (Converter m)

{ return new Cons(m.convert(head),tail.map(m)); }

public
public

boolean isEmpty() { return false; }
boolean contains(Object e)

{ return (head.equals(e) || tail.contains(e)); }

public
public
public

Object getHead() { return head; }
List getTail() { return tail; }
String toString() { return (head + " " + tail); }

private Object head; // first element
private List tail; // rest of list

interface Converter
abstract public Object convert(Object e);

{
b

class NullConverter implements Converter
public Object convert(Object e) { return e; }

{
+

class MapToUpper implements Converter
public Object convert(Object o)
{ if (o instanceof String)

{

{ String s = (String) o;
return s.toUpperCase();

}

else

{ return o; }

interface Selector
{ abstract public boolean selects(Object e);
}

class NullSelector implements Selector
{ public boolean selects(Object e) { return true; }
}

class NotEqualSelector implements Selector

{ public NotEqualSelector(Object c) { check = c; }
public boolean selects(Object e) { return !check.equals(e); }
private Object check;

class ListTransducer implements Iterator
{ public ListTransducer(List 1, Selector s, Converter c)
{ Dbase =1; sel = s; conv = c; }

public void remove() { }
public boolean hasNext()
{ advance();

return (!'base.isEmpty());

public Object next()
{ advance();
if (!base.isEmpty())
{ Object nxt = conv.convert(base.getHead());
base = base.getTail();
return nxt;
}
else
{ return List.NIL; }

private void advance() // advance base to first element selected
{ while (!base.isEmpty() && !sel.selects(base.getHead()))
{ base = base.getTail(); }
}
private List base;
private Converter conv;
private Selector sel;

