
COURSE DESCRIPTION

Dept., Number CSci 525 Course Title Compiler Construction

Semester hours 3 Course Coordinator Stephen V. Rice, Assistant Professor

Current Catalog Description

Introduction to techniques used in current compilers for computer languages; the syntactic
specification of programming languages and an introduction to syntax-directed compiling.

Textbook

Kenneth C. Louden. Compiler Construction: Principles and Practice, PWS Publishing
Company, 1997.

References

Course Outcomes

The primary goal of this course is to introduce the techniques used in programming language
compilation. A secondary goal is to improve the students’ knowledge and skill in computer
programming by developing a large computer program (more than 2,000 lines of source code).
After successfully completing this course, students are able to:

1. represent language tokens using regular expressions and finite automata
2. write a lexical analyzer for a language and generate a lexical analyzer using Flex
3. develop a top-down recursive-descent parser, and generate a bottom-up parser using

Yacc, which parse syntax expressed by a context-free grammar and produce a syntax-tree
representation of the input

4. implement type checking for a block-structured language using a symbol table
5. generate target code for a stack-based runtime environment
6. understand how source programs are mapped to target platforms via the compilation

process, and write better source programs based on this understanding

Relationship between Course Outcomes and Program Outcomes

The course outcomes contribute to the program outcomes as follows: (1) to (j), (2) to (i), (3) to
(i) and (j), (4) and (5) to (i), (6) to (c).

Prerequisites by Topic

CSci 311, Models of Computation, or CSci 450, Organization of Programming Languages

Major Topics Covered in the Course

• Scanning / lexical analysis: hand-coded scanner; generated scanner using Flex; use of
regular expressions and finite automata

• Parsing / syntax analysis: hand-coded recursive-descent parser; generated parser using
Yacc; use of context-free grammars and syntax trees

• Semantic analysis: symbol table; type checking
• Code generation: instruction generation and memory layout; stack-based runtime

environment

Assessment Plan for the Course

This is an elective course offered approximately every two years. An offering typically has four
examinations and a series of programming assignments in which the student incrementally
develops a compiler for a subset of the C programming language. The examinations and
assignments are designed to assess course outcomes (1) to (6).

 How Data in the Course are Used to Assess Program Outcomes (unless adequately covered
already in the assessment discussion under Criterion 4)

Estimate Curriculum Category Content (Semester hours)

Area Core Advanced Area Core Advanced

Algorithms Software design 1

Data structures Concepts of
programming
languages

 2

