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Autonomous robots shall act appropriately in dynamic,
real time, and adversarial environments

One of the biggest challenges in Al and robotics

Numerous examples: rescue scenarios, home
assistance, device assistance (e.g. cars, planes)

Playing soccer with biped robots as a testbed for
development in perception, multi-agent cooperation,
complex motions, ...

Service robots for domestic environments

RoboCup is a landmark project as well as a standard
problem

Task-2 SNWO>TET 00:08:27

Bring Me

RoboCanes@Home, HSR



WIDE RANGE OF RESEARCH CHALLENGES

RoboCanes OIT Challenger and Duckers
University of Miami Osaka Institute of Technology , Ritsumeikan UNIV.

real time sensor fusion

grasping and manipulation

_ context recognition
learning

rF—0ORy bFvL Y UPIANR—ZA / Partner Robot Challenge Real Space

SNWO>TET 00:08:26

Task-2 Bring Me

real time planning

multi-agent systems

. . decision makin
human-robot interaction &

opponent/user modeling
motor control

reactive/proactive behavior

and many more...



Multi-robot cooperation and communication

Manipulation systems

Human-Robot Interaction

Interfaces: VR meets Al & Robotics

Facial recognition on MD criminal justice data
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Task and motion planning

» Creation of high-level commands and collision-free trajectories to
achieve goal

State estimation and perception

» Infer relevant quantities from sensor data (field objects, opponents,
team mates, contacts/collisions, ...)

Communication

» Communication with team mates, determine global geometry (e.g.
ball position), ad-hoc sub-team building (e.g. offside trap, double-
pass)

Object manipulation

» Determine good kick positions given relevant constraints (global
geometry, local geometry, placement of ball)

Trajectory generation and control

» Real-time, reactive generation of control commands to move
bipedal robot safely toward goal




CONTROL (1): DYNAMIC ADAPTIVE WALKING ENGINE

» First bipedal walk, open-loop,
parameter prior optimized, no
changes during runtime

» Becomes unstable due to changes
(e.g. motor temperature)
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Forward/backward walk. Slow acceleration for stability (left), higher acceleration limit less stable (right)



CONTROL (1): DYNAMIC ADAPTIVE WALKING ENGINE

» LIPM-based closed-loop walk

» Adaptation by optimizing parameter
of model in real-time onboard

» Result: new, stable, fast, and energy-
efficient walk

Walking outside
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Forward/backward walk with |15cm/s with new walk. No optimization (left), with optimization (right)

Seekircher & Visser (KI: German Al Journal, 2016)



CONTROL (2): OMINDIRECTIONAL KICK

» Kick trajectory generation, arbitrary direction, no N\
prior input or knowledge of the kick parameters |

» Key idea: Zero Moment Point (ZMP) based

preview controller that minimizes the ZMP error
»

3 Meter Kick (Regular Turf)

» Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) for model optimization.
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Pena, Masterjohn & Visser (RoboCup Symposium 2017)
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Walk-kick frame-work generating a kick trajectory
any direction, no prior input, while walking

guaranteeing reaching a reference trajectory

Uses kick interpolators from dynamic kick engine
and walk trajectories generated from adaptive
walking engine to generate motions

Reliable in terms of the kick directions and
stability of the robot overall (< 1% falling rate)

Experiments verify that the walk-kick trajectories
were consistent with an average absolute bearing
of < 6° within any given direction.

Walk-kick motion where the via point is the
point of contact with the ball.

Pena & Visser (RoboCup Symposium 2018)



CONTROL (3): WALK-KICK ENGINE

250 — 1.25 250 — 1.25 250 —1.25 250 — 1.25
Bearing mean: Bearing mean: Bearing mean: Bearing mean:
0.7 -27.3° 4.0° 5.7’
200 11.0 200 1 11.0 200 11.0 200 11.0
o
@ @ @ @
5150- 0.75 € 5150- 10.75 € 5150- 10.75 € g150- 0.75 €
c e 2 g2 ® £ 2 =
= yoliin Eolii B = Ballspeed mean: el
() o O I. o O [ O) . (0]
g Range mean: ‘ @ ® () :l%;_ % .. (a%J_ g o :I%J_ g ’ @ 059mss :I%{
100 2L8cm 05 =100} PS 8 Ballspeed mean: | {05 = 100} o 105 = & 100 05 =
‘ ® o0 o m 0.37 m/s m & _ ° @ Range mean: ‘ @
@ T ange mean: 99 2 cm
‘ ® .' o0 ® Range mean: 90.5cm [ Ballspeed mean:
50 | Ballspeed mean: [ 0.25 50 | & @ §0.0 cm 0.25 50 0.34 m/s 0.25 50 | 0.25
0.55 m/s C IR A
0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 O 1 1 1 1 1 1 1 O
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
Bearing in degrees Bearing in degrees Bearing in degrees Bearing in degrees
250 —1.25 el i . Le° 250 1 — 1.25
Bearing mean: T R R _o' _e’ ‘ Bearing mean:
-5.0° - , : : 0.8"
Left Front Diagonal Left Front Right Front  Right Front Diagonal
200 11.00 Tl : L 200 11.0
@ .e° @
€150 0.75 € .° €150 10.75 E
c £ 2 £
8 ° g Left Sid S E :
c Ba”speed mean: O)r e o oo coocscsoae e t I e ) > o> o o o oo T E EEE R Right ide reo o co oo oeoeoe O lol
(3} (2] (4] . . (2]
@ 100 } 0.48 m/ 0.50 = o 100 -Range mean: Ballspeed mean: 05 =
e 8 77.1 cm ® ©045mis 8
® ® .. ® ®
| Range mean: Lo’ ’ . Sy I ® [
50 63.2 cm 0.25 .- "0 NAOv4 . ... 50 () 0.25
. - rd " \‘ LY o .
L@ | | | o Left Back Diagonal Left Back Right Back  Right Back Diagonal ol | | | | | | 0
60 -40 20 0 20 40 60 Lot . R Tl 60 -40 20 0 20 40 60
Bearing in degrees e’ K4 e Se Bearing in degrees
250 —1.25 250 1.25 250 — 1.25 250 — 1.25
Bearing mean: Beazing mean. Bearing mean: Bearing mean:
0.9° ® &° 3.7° 10.6°
200 1 11.0 200 1 o ® 1.0 200 1 11.0 200 11.0
9 ® Range mean:. ®
) Range mean: P w 1964 cm @ Y N
£ 150 k € €150 [143.5¢cm g E150 g€ £ 150 S
2 Range mean: Ballspeed mean: e 2 * e 2 ® e 2 ‘g S k=
£ S £ S £ S £ ) 5
S a3 0.57 m/s a8 0.61 m/s & & ' &
100 = T 100 ® < o 100 5 T 100 ° T
m o m ' m Range mean: m
1065 cm .. ®

-20 0 20 40 0 20 40 -40 -20 0 20 40 0 20 40
Bearing in degrees Bearing in degrees Bearing in degrees Bearing in degrees



Pena & Visser (RoboCup Symposium 2018)



COMMUNICATION (1): DTMF BROADCASTING

» Multi-agent broadcasting based on fixed length DTMF
messages
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COMMUNICATION (1): DTMF BROADCASTING

» Multi-agent broadcasting based on fixed length DTMF messages

Poore et al. 2015 (FLAIRS)



COMMUNICATION (2): WHISTLE DETECTION

» Based on Logistic Regression with L2-norm Regularization
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COMMUNICATION (2): WHISTLE DETECTION

» Based on Logistic Regression with L2-norm Regularization
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Poore et al. 2014 (RoboCup Symposium)



COMMUNICATION (2): WHISTLE DETECTION

Poore et al. 2014 (RoboCup Symposium)



COMMUNICATION/CONTROL (3): SPOKEN DIALOG/HRI
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Fully autonomous
Full body control

Abeyruwan et al. 2014 (AAAI Symposium)




» Task and motion planning

» Creation of high-level commands and collision-free trajectories
to achieve goal

» State estimation and perception

» Infer relevant quantities from sensor data (objects, drawers,
manipulators, contacts/collisions, ...)

» Object grasping and placement (pick-and-place)

» Determine good grasps for objects given relevant constraints
(gripper opening, local geometry, placement)

» Trajectory generation and control

» Real-time, reactive generation of control commands to move
robot (or parts) safely toward goal
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STATE ESTIMATION AND PERCEPTION
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» Task and motion planning

» Creation of high-level commands and collision-free trajectories
to achieve goal

» State estimation and perception

» Infer relevant quantities from sensor data (human faces,
human poses, emotions, NLP, race, ethnicity, ...)

» Communication

» Building rapport, interact socially, show affect, infer cultural
differences, speech recognition, text2speech, people
recognition

» Trajectory generation and control

» Real-time, reactive generation of control commands to move
robot (or parts) safely toward goal (people tracking, cleanup,

go-get)



» Rapport as result of a combination of socio-cultural-
emotional complex processes, e.g. unconscious:

» mutual attentiveness (mutual gaze, mutual
interest, focus during interaction)

» positivity (e.g., head nods, smiles, friendliness,
and warmth)

» unconscious coordination (e.g., postural
mirroring, synchronized movements, balance, and
harmony)

» Focus here on coordination/mirroring of
» head movements and

» facial emotions




COMMUNICATION: BUILDING RAPPORT

3D ECA on HSR

ROS node DLib
Face Detection,
Landmarks
Detection

ROS node FER
Emotion Detection

ROS node
emotion_mirror

ROS node
head_mimic
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Rapport Agent
FACController







STATE ESTIMATION AND PERCEPTION: HUMAN POSES

» Tracking and predicting humans in
§1{t:r)

3D space o = {x,%,...} “c"......" ~~~~~~

§o:t
» Novel probabilistic framework in

which multiple models can be
fused into a circular probability-
map to forecast human poses

» ITP: Inverse Trajectory Planning 0 : T T




STATE ESTIMATION AND PERCEPTION: HUMAN POSES

» Circular probability-maps for
the social force model

» ITP allows interaction between
two people or two probability-
maps




STATE ESTIMATION AND PERCEPTION:

» Lidar-based model for 2D obstacles

» OctoMap model for 3D obstacles

» Social force model for other humans

HUMAN POSES
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STATE ESTIMATION AND PERCEPTION: HUMAN POSES

[
o
N
1

w
| |

N - o b
1 1 1 1

|
w
1

|
CoM Traj. on x-axis (m)

|
NN
L

CoM Traj. on x-axis (m)
|
CoM Traj. on x-axis (m)

|
w

-15  -10 5 0 5 4 -2 0o 2 4 6 4 -3 =2 -1 0 1
CoM Traj. on y-axis (m) CoM Traj. on y-axis (m) CoM Traj. on y-axis (m)




German Al Journal, 2020)

Pena & Visser (KI
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Implement a human-robot interface that is intuitive
and does not require a computer

Geriatric (not robotics) expert uses magic leap to
map the environment and label important features
(bed, bathroom, sink, chair, TV, fridge, emergency
path, etc.)

Localization and navigation with no calibration
process

The interface is implemented in Unity Engine

ROS# is a ROS (Robot Operating System) bridge for
Unity

Unity application communicates with ROS

the bumper.
:onthoﬂoorwh"‘”“m

robot




The meshing feature of Magic Leap is used to create a 2D
map

A virtual camera in the Unity scene is placed on top of the
scene generating a birds-eye view of the environment

The image of the virtual camera is rendered in a texture

The texture is used by the map server script in Unity to
generate a occupancy grid map used by the navigation
stack of the robot

Along with the 2D costmap, the robot sends the
transformation from Unity to ROS obtained from Magic
Leap’s global frame

n-Robot Interface

igate and place robot in the

d classify the environment

gundam walk in your

: NAVIGATION

ontroller where




Magic Leap Human=Robot Interface

Robot Modes:

* Navigation: Navigate and place robot in the
environment

* Map: Walk aroundand map the environment
* Floor: Place virtualplane on actual floor

* Object: Label and ¢lassify the environment

* Gundam: Make gundam walk in your
environment!

Navigation Mode: N
Point with the cont H

ik

Magic L.eap Human-Robot Interface

The interface communicates through ROS




Recent events have highlighted large-scale systemic
(race, gender, skin tone, etc.) disparities in U.S. criminal
justice.

Propose an experimental methodology based on
ethical Al principles to generate binary racial categories
using mugshots

Data: ~“200K defendants from Miami-Dade County Clerk
of Records

Ground truth: 2 sources

Dataset (N=14,177 random images) labeled by official court

records single rater N.Y. Teen Blames Apple’s Facial Recognition for
, , , Wrongful Arrest, Files $1B Lawsuit
Dataset (N=14,018 random images) is formed using ous m:

consensus-driven racial categorization by multiple raters




» First study showed 90%+ accuracy for » DL library fastai using 7 state-of-the-

race (black/white), < 75% accuracy art computer vision architectures
for ethnicity (black/white/black (DenseNet161, ResNet50,
hispanic/white hispanic) with SOA InceptionV4, SE-ResNet50, SE-
FRT (U-Link project) ResNeXt50 32x4d, AlexNet, and

» Results show that data preprocessing VGG19_bn)

is crucial » Trained with different preprocessing
steps using our 2 sources, test on
remaining images

» Highest accuracy is 97.75% (SE-
ResNet50 with OpenFace
preprocessing)

» Lowest accuracy is 1.28%
(InceptionV4 with MTCNN
preprocessing)

Dass et al. (CRV, 2020)



(¢) “Best” Black mugshot by MTCNN preprocessed
court trained SE-ResNet50 model.

(e) “Best” Black mugshot by OpenFace preprocessed

court trained InceptionV4 model.
S ———————

1.white 0.774 1.white 0.774
A
3
i\g

(b) “Worst” Black mugshot by OpenFace preprocessed
court trained DenseNet161 model.

1.white 1.000 1.white 1.000

(f) “Worst” Black mugshot by OpenFace preprocessed

court trained InceptionV4 model.
N R EEEEEEEEEEEEEEEEECmIImmm
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Method

Data generation (multiple “ground
truths” to tackle labeling bias)

Data preprocessing (face segmen-
tation, aligning, cropping, pose,
illumination, ...)

DLM architectures (7 SOA methods
with 6 experimental combinations) to
tackle algorithmic bias

Training setup to avoid representation
bias

Testing (model inference and
interpretability) to tackle historical and
evaluation bias; self-auditing (using 42

Table 4: A comparison of validation accuracies during the training process from seven deep learning-based vision models.

original OpenFace MTCNN

Model
Courts Students Courts Students Courts Students
AlexNet 92.50% 94.00% 97.25% 92.25% 92.75% 93.00%
DenseNetl161 97.00% 93.00% 97.00% 92.25% 96.50% 94.00%
InceptionV4 93.25% 90.25% 90.75% 90.50% 90.75% 91.75%
ResNet50 96.50% 92.50% 97.00% 91.50% 95.25% 93.25%
SE-ResNet50 95.00% 92.75% 97.75% 92.50% 96.75% 93.25%
SE-ResNeXt50 96.75% 91.75% 97.75% 90.00% 96.75% 94.25%
VGGI19 96.00% 89.75% 97.00% 92.25% 96.75% 94.75%

fine-tuned models for 12 test scenarios:

252 in total)




Task and motion planning

State estimation and perception
Communication

Object grasping and placement

Trajectory generation and control
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» Contact
»  Web: https://www.cs.miami.edu/~visser

» Email: visser@cs.miami.edu
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