
Ubbo	Visser

Department	of	Computer	Science

College	of	Arts	and	Sciences

University	of	Miami

September	2022

CSC752	Autonomous	Robotic	Systems

-	Introduction	into	ROS	(1)	-

OVERVIEW

‣ ROS	architecture	&	philosophy

‣ ROS	master,	nodes,	and	topics

‣ Console	commands

‣ Catkin	workspace	and	build	system

‣ Launch-files	

‣ Gazebo-Simulator

2

WHAT IS ROS?

‣ ROS:	Robot	Operating	System

3

▪ Control
▪ Planning
▪ Perception
▪ Mapping
▪ Manipulation

▪ Process management
▪ Inter-process  

 communication
▪ Device drivers

▪ Simulation
▪ Visualization
▪ Graphical user interface
▪ Data logging

▪ Package organization
▪ Software distribution
▪ Documentation
▪ Tutorials

Source: ros.org

http://ros.org

HISTORY OF ROS

‣ Originally	developed	in	2007	at	
Stanford	(AI	Lab)

‣ Managed	by	Open	Source	
Robotics	Foundation	(OSRF),	est.	
2012

‣ Widespread	use	for	many	robots	
by	Universities	and	companies

‣ Emerging	de-facto	standard	for	
robot	programming

4

Source: ros.org

http://ros.org

ROS PHILOSOPHY

‣ Peer	to	peer

Individual	programs	communicate	over	defined	API	(ROS	messages,	services,	etc.).	

‣ Distributed

Programs	can	be	run	on	multiple	computers	and	communicate	over	the	network.	

‣ Multi-lingual

ROS	modules	can	be	written	in	any	language	for	which	a	client	library	exists	(C++,	Python,	
MATLAB,	Java,	etc.).	

‣ Light-weight

Stand-alone	libraries	are	wrapped	around	with	a	thin	ROS	layer.	

‣ Free	(open	source)

Most	ROS	software	is	open-source	and	free	to	use.	

5

ROS MASTER

‣ Manages	the	communication	
between	processes	(called	
“nodes”	in	ROS	language)

‣ All	nodes	are	registered	with	the	
master	(or	core)	at	startup

6

~$roscore

Start a Master/Core with

Details at  
http://wiki.ros.org/Master

ROS Master/
Core

http://wiki.ros.org/Master

ROS NODES

‣ Executable	program	with	a	single	
purpose

‣ Needs	to	be	compiled,	can	be	
individually	compiled,	executed	
and	also	managed	(e.g.	a	
program	showing	joint	states)

‣ Organized	in	packages

7

~$rosrun package_name node_name

Run node with

Details at  
http://wiki.ros.org/rosnode

~$rosnode list

List active nodes

ROS Master/
Core

Node 1 Node 2

Registration Registration

~$rosnode info node_name
Node information

http://wiki.ros.org/rosnode

ROS TOPICS

‣ Nodes	communicate	via	topics

‣ Publish	or	subscribe	to	topics

‣ Common:	1	publisher,	n	subscribers

‣ A	topic	stands	for	a	flow	or	
stream	of	data,	messages	in	ROS	
language

8

~$rostopic list

List active topics

Details at  
http://wiki.ros.org/rostopic

~$rostopic echo /topic

Subscribe and print the contents of a topic with

~$rostopic info /topic
Show information about a topic with

ROS Master/
Core

Node 1
Publisher

Node 2
Subscriber

Registration Registration

Messages

Topic
SubscribePublish

More nodes subscribed…

http://wiki.ros.org/rostopic

ROS MESSAGES

‣ Data	structure	defines	type	of	
topic

‣ Nested	structure	of	primitive	
data	types	and	arrays

‣ Defined	in	.msg	files

9

~$rostopic type /topic

List type of topic

Details at  
http://wiki.ros.org/Messages

~$rostopic pub /topic type data

Publish a message to a topic

ROS Master/
Core

Node 1
Publisher

Node 2
Subscriber

Registration Registration

Messages

Topic
SubscribePublish

More nodes subscribed…

int number
double depth
string description
…

Message definition

http://wiki.ros.org/Messages

ROS MESSAGES

‣ Pose	Stamped	Example

10

This contains the position of a
point in free space
float64 x
float64 y
float64 z

geometry_msgs/Point Message

sensor_msgs/Image Message

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
Geometry msgs/Pose pose
 geometry_msgs/Point position
 float64 x
 float64 y
 float64 z
 geometry_msgs/Quaternion
orientation

float64 x  
float64 y  
float64 z
float64 w

geometry_msgs/PoseStamped.msg

http://docs.ros.org/api/geometry_msgs/html/msg/Point.html
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html

EXAMPLE

‣ Terminal	1:	roscore	(already	running)

‣ Terminal	2:	talker	node

11

~$rosrun roscpp_tutorials talker

Run talker node

EXAMPLE

‣ Terminal	3:	analyse	talker	node

12

~$rosnode list

Active nodes

~$rosnode info /talker

Info about node

~$rostopic info /chatter

Info about topic

EXAMPLE

‣ Terminal	3:	analyse	chatter	topic

13

~$rostopic type /chatter

Type of topic

~$rostopic echo /chatter

Message contents

~$rostopic hz /chatter

Frequency of publishing

EXAMPLE

‣ Terminal	4:	starting	new	listener	node

14

~$rosrun roscpp_tutorials listener

Type of topic

EXAMPLE

‣ Back	to	Terminal	3:	analyse

15

~$rosnode list

New listener node visible

~$rostopic info /chatter

Show the connection of the nodes over the 
chatter topic with

EXAMPLE

‣ Terminal	3:	publish	own	message	in	
terminal

16

~$rostopic pub /chatter std_msgs/
String "data: 'RoboCanes greets
CSC752 students'"

Close talker node in T2, Ctrl-C

Message shows up *once* in T4 (listener)

Publish own message

ROS WORKSPACE ENVIRONMENT

‣ Defines	context	for	the	current	
workspace

‣ Default	workspace	loaded	with

17

~$source /opt/ros/noetic/setup.bash

Overlay your catkin workspace with

~$cd catkin_ws

~$source devel/setup.bash

~$echo $ROS_PACKAGE_PATH

Check your workspace with
Details at
http://wiki.ros.org/kinetic/Installation/Ubuntu 
http://wiki.ros.org/catkin/workspaces

http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/catkin/workspaces

CATKIN BUILD SYSTEM

‣ catkin	is	ROS’	build	system	(similar	to	make	etc.).	catkin	generates	binaries,	
libraries,	and	interfaces

‣ We	recommend	the	command	line	tools	(CLI	tools).	Use	catkin_make	instead	
of	catkin_build.

‣ Navigate	to	your	catkin	workspace,	e.g.:

‣ Build	a	package	with

‣ Update	your	environment	after	a	new	package	is	build

18

~$cd ~/catkin_ws

~$catkin_make [package_name]

~$source devel/setup.bash

Details at
http://wiki.ros.org/catkin/Tutorials 
https://catkin-tools.readthedocs.io/en/latest/

http://wiki.ros.org/catkin/Tutorials
https://catkin-tools.readthedocs.io/en/latest/

CATKIN BUILD SYSTEM

‣ The	catkin	workspace	contains	the	following	spaces

19

The	source	space	contains	
the	source	code.	This	is	
where	you	can	clone,	
create,	and	edit	source	
code	for	the	packages	you	
want	to	build.	

The	build	space	is	where	
CMake	is	invoked	to	build	
the	packages	in	the	source	
space.	Cache	information	
and	other	intermediate	
files	are	kept	here.	

The	development	
(devel)	space	is	where	
built	targets	are	placed	
(prior	to	being	
installed).	

~$catkin clean

Clean entire workspace with

CATKIN BUILD SYSTEM

‣ The	catkin	workspace	setup	can	be	
checked	

‣ Example:	set	build	type	to	Debug/
Release	use

20

~$catkin config

~$catkin build -—cmake-args
-DCMAKE_BUILD_TYPE=Release

Details at
https://catkin-tools.readthedocs.io/en/latest/verbs/catkin_config.html 
https://catkin-tools.readthedocs.io/en/latest/cheat_sheet.html

https://catkin-tools.readthedocs.io/en/latest/verbs/catkin_config.html
https://catkin-tools.readthedocs.io/en/latest/cheat_sheet.html

EXAMPLE

21

‣ In	your	catkin	workspace

‣ Build	packages

‣ Re-source	your	workspace

‣ Launch	node	

~$cd catkin_ws

~$catkin_make

~$source devel/setup.bash

~$roslaunch hsrb_gazebo_launch hsrb_empty_world.launch

ROS LAUNCH

‣ launch	is	used	for	launching	
multiple	nodes.	A	launch	file	also	
acts	like	a	config	file

‣ Written	in	XML	as	.launch	files

‣ Also	starts	a	roscore	if	not	
running

22

~$roslaunch file_name.launch

Browse to folder and start launch file

~$roslaunch package_name file_name.launch

Start launch file from package

Details at
http://wiki.ros.org/roslaunch 

roslaunch roscpp_tutorials talker_listener.launch

http://wiki.ros.org/roslaunch

ROS LAUNCH FILE STRUCTURE

‣ launch:	Root	element	of	the	launch	file

‣ node:	Each	<node>	tag	specifies	a	node	to	be	launched

‣ name:	Name	of	the	node	(free	to	choose)

‣ pkg:	Package	containing	the	node

‣ type:	Type	of	the	node,	there	must	be	a	corresponding	executable	with	the	same	name	

‣ output:	Specifies	where	to	output	log	messages	(screen:	console,	log:	log	file)	 

23

Details at
http://wiki.ros.org/roslaunch/XML 
http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

talker_listener.launch

http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

ROS LAUNCH ARGS

‣ Create	re-usable	launch	files	with	<arg>	tag

‣ Use	arguments	in	launch	file	

‣ When	launching,	arguments	can	be	set

24

<arg name="arg_name" default="default_value"/>

$(arg arg_name)

roslaunch launch_file.launch arg_name:=value

Details at
http://wiki.ros.org/roslaunch/XML/arg 

http://wiki.ros.org/roslaunch/XML/arg

ROS LAUNCH NESTED LAUNCH FILES

‣ Use	<include>	tag	for	large	projects

‣ Find	the	system	path	to	other	packages	

‣ Pass	arguments	to	included	file

25

<include file="package_name"/> 

$(find package_name)

<arg name="arg_name" value="value"/>

Details at
http://wiki.ros.org/roslaunch/XML/include 

http://wiki.ros.org/roslaunch/XML/include

GAZEBO SIMULATOR

‣ Simulate	3D	rigid-body	dynamics	

‣ Simulate	a	variety	of	sensors	
including	noise	

‣ 3D	visualization	and	user	
interaction	

‣ Includes	a	database	of	many	
robots	and	environments	
(Gazebo	worlds)	

‣ Provides	a	ROS	interface	

‣ Extensible	with	plugins	

26

~$rosrun gazebo_ros gazebo

FURTHER REFERENCES

‣ ROS	Wiki

‣ http://wiki.ros.org/	

‣ Installation

‣ http://wiki.ros.org/ROS/Installation

‣ Tutorials

‣ http://wiki.ros.org/ROS/Tutorials

‣ Packages

‣ https://www.ros.org/browse/
list.php

27

‣ ROS	Cheat	Sheet

‣ https://www.clearpathrobotics.com/ros-
robot-operating-system-cheat-sheet/	

‣ https://kapeli.com/cheat_sheets/
ROS.docset/Contents/Resources/
Documents/index	

‣ ROS	Best	Practices

‣ https://github.com/leggedrobotics/
ros_best_practices/wiki

‣ ROS	Package	Templates

‣ https://github.com/leggedrobotics/
ros_best_practices/tree/master/
ros_package_template

http://wiki.ros.org/
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Tutorials
https://www.ros.org/browse/list.php
https://www.ros.org/browse/list.php
https://www.clearpathrobotics.com/ros-robot-operating-system-cheat-sheet/
https://www.clearpathrobotics.com/ros-robot-operating-system-cheat-sheet/
https://kapeli.com/cheat_sheets/ROS.docset/Contents/Resources/Documents/index
https://kapeli.com/cheat_sheets/ROS.docset/Contents/Resources/Documents/index
https://kapeli.com/cheat_sheets/ROS.docset/Contents/Resources/Documents/index
https://github.com/leggedrobotics/ros_best_practices/wiki
https://github.com/leggedrobotics/ros_best_practices/wiki
https://github.com/leggedrobotics/ros_best_practices/tree/master/ros_package_template
https://github.com/leggedrobotics/ros_best_practices/tree/master/ros_package_template
https://github.com/leggedrobotics/ros_best_practices/tree/master/ros_package_template

ACKNOWLEDGEMENT

Material	is	based	on	ROS	Wiki	and	ETH	Zürich	ROS	Introduction	(https://rsl.ethz.ch/)

28

https://rsl.ethz.ch/

