UNCERTAINTY

In which we see what an agent should do when not all is
crystal-clear.
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Uncertainty

WUMPUS-World
! Agent
?
D Trap
= | Wind = [ 7
Where are the traps? 'ﬁ' = ?

There are no secure actions, but which one is best?

Uncertainty



Reasoning under Uncertainty
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Causes of Uncertainty

Uncertainty

Incomplete knowledge

Agents unlikely to have complete knowledge
about their environment

Practical uncertainty: not enough data, e.g.
noise

Theoretical uncertainty: no complete theory
exists, e.g. medical diagnosis



Uncertainty and Vagueness

® Example:
Boundaries of spatial m

objects
— uncertain boundaries: not Uncertain knowledge:
known where exactly sonar records of a wall
boundary is
— vague boundary: boundary Clay
is not sharp but localized -

Vague knowledge:
transition between soil types

Uncertainty



Causes of Uncertainty

® Complex knowledge

- A complete formalization in FOL is to
complex to describe

® Qualification problem

- Rules about application area are
incomplete because there are too many
preconditions

Uncertainty



Boundaries of Logics

e Diagnostic Reasoning

Vp Symptom(p, no_sound) —>
® Input: Symptoms Failure(p, switch) V
Failure(p, battery) V . ..

® Technical Diagnosis

® Output: Sources of errors

e Causal Reasoning

® Example Failure(p, switch) v
® Symptom: no sound from radio Failure(p, battery)V =
Vp Symptom(p, no_sound)

® Sources of errors:
On/Off switch, batteries, ...

Uncertainty



Logics and Uncertainty

® Default logic o Fuzzy logic

— Describes the degree of

® Rules are valid until ==
validity of a statement

contradicted

¥p Symptom(p, no_sound) = — rocky(location) = 0.43
Failure(p, switch) i.e.43% rock
¢ Additional knowledge can — Approach for vagueness, not
invalid former derivations uncertainty
— Description of natural

— Non-Monotonicity language

Uncertainty



Probability

® Probabilistic Statement

® “There is a 70% chance of an empty battery if the
portable Bluetooth player does not give a sound.”

® Combined uncertainty
® From two different sources
® “Unknown”: non-existing knowledge

® “|Incomplete™: existing knowledge too complex

Uncertainty



Question

® True or False!?

® Probabilistic Theory has the same ontological
commitment as logics:

® Facts hold or do not hold in the world

Uncertainty



Different Al Logics

® | ogic languages

“Logics”

Characterized through
language elements (logic
constants)

Facts? Obijects!?

Time!? Belief?

Ontological commitment (wrt.

reality, what exists in world)

Epistemological commitment
(what an agent believes about
facts)

Uncertainty

Logic Ontological Epistemological
language commitment commitment
Propositional True/False/

: Facts
logic Unknown
Facts
FOL Objects True/False/
Relations Unknown
Facts
Temporal ) True/False/
: Objects
logic Relations, Times Unknown
Probabilistic Facts Degree of
theory belief 0..1
: Degree of Degree of
Fuzzy-Logic truth belief 0..1




Uncertainty and Decisions

e ActionA, e Which action does the agent

select?
® (o to airport t minutes

— Does not depend only on
before flight

probability, also on preferences

L
® Probabilistic verdicts (= decision theory)

through agent
— Decision theory = Probabilistic

— Ay, is the probability that | get theory + Utility theory
the flight, 1%

— Ay is the probability that | get
the flight, 99%

Uncertainty



Uncertainty and Decisions

function DT-AGENT( percept) returns an action

persistent: belief_state, probabilistic beliefs about the current state of the world
action, the agent’s action

update belief_state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief_state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 13.1 A decision-theoretic agent that selects rational actions.




Probabilistic Theory

® How we seeitin class e Note

— Probabilistic theory as an - I::Obab'l'ty thelorx mlakes
extension of the same onto olglc?l
propositional logic commitment as logic,

namely, that facts either do

— Extension: the truth or do not hold in the world

values are labeled with
probabilities

Probabilistic Theory



Random Variable

® Basic Idea e Variables

— Boolean

— P(X=a) quantifies the
e Range [TRUE,FALSE]

probability that random
variable X takes the value a
— discrete
e Range of finite set of
boolean variables, e.g.
weather [sunny, rainy, cloudy,
snow]

— continuous
e Real values or subsets, e.g.

[0,1]

Probabilistic Theory



Atomic Events

® Complete specification of
the world state about
which the agent is
uncertain.

® Example:

Cavity (c) and toothache (t)

has four atomic events (aE)

Probabilistic Theory

Exclusive: only one statement true,
(c A t)and (c A 1 t) is mutually
exclusive

Exhaustive: at least one of set of all
aE is the case, i.e. disjunction of all aE
is logically equivalent to TRUE

Entailment: from aE we can entail the
truth or falsehood of every
proposition, e.g.

(c A7 t) entails c =TRUE,c = t =

FALSE

Propositions are logically equivalent
to disjunction of all aE that entail the
truth of the proposition. E.g. the
proposition cavity is equivalent to
the disjunction of the aE c A tand ¢

At



Prior Probability

® Probability e P-Distribution

P(Switch_on) = (0.4,0.6)
P(Switch.on =1) = 0.4
P(Switch_on = 0) = 0.6

® also:a priori probability,
unconditional probability

e P(a) =04
P(Weather) = (0.4,0.29,0.3,0.01)
means: probability associated P(Weather = sunny) = 0.4

with the proposition a is the P(Weather = rainy) = 0.29
degree of belief accorded to P(Weather = cloudy) = 0.3
. P(Weather = snowy) = 0.01
it in the absence of any

other information

P(Cavity =true) = 0.1 or P(cavity) = 0.1

Probabilistic Theory



Probability Distribution

® A boolean random
variable A

® For all possible values a
value of truth

® Probability distribution
P(A)

® Denotes probability for all
possible values for
random variable A.

Probabilistic Theory

Value Probability
A P(A)
0 0.3 =P(-A)
1 0.7 =P(A)

Note: similar notation!
P(A) short for P(A=1)
P(A) P-Distribution of A




Joint Probability Distribution

e Joint distribution P(A,B,C)

— Gives probabilities of all
possible value combinations of
random variables

— e.g.:

P(Cavity, Toothache, Weather)
can be represented by a 2x2x4
table with 16 entries

® Multiple boolean random
variables

® Cavity, toothache, catch

® For each possibility a defined
probability

P(—cavity A -toothache A —~catch) = 0.576

toothache —toothache
catch =catch catch —catch
cavity 0.108 0.012 0.072 0.008
—cavity 0.016 0.064 0.144 0.576

Probabilistic Theory




Conditional Probability

® Conditional probability

® Agent has evidence (information)
about former unknown variables

® A priori probabilities no longer
applicable

® Notation: P(A[B), A and B are any
propositions

® This is read as “the probability of
A given that all we know is B.”

® Example.:

P(cavity|toothache) = 0.8

Probabilistic Theory

Product rule

— conditional probabilities can be
defined as unconditional
probabilities:

P(a AD)

P(al) = =5

— which holds for all P(b)>0

— Can also be written as
product rule:

P(a Ab) = P(alb) P(b)
P(a Ab) = P(bla) P(a)

— P(X,Y)=P(X|Y)P(Y)

21



Kolmogorov’s axioms of
probability

® Axiom |
0<P(a) <1
® Axiom 2

P(Tautology) = 1
P(Contradiction) = 0

® Axiom 3
PlaVb) =
P(a) + P(b) — P(a A'D)

Axioms of probability

True

A

ANB

22



Using axioms of probability

Derivation of a variety of useful facts from the basic
axioms. E.g., the familiar rule for negation follows by
substituting —a for b in axiom 3:

|
—

P(aV —a) = P(a) + P(—a) — P(a A —a) (by axiom 3 with b = —a)
P(true) = P(a) + P(—a) — P(false)  (by logical equivalence)
1 = P(a)+ P(—a) (by axiom 2)
(

P(—a) — P(a) by algebra)

Sum of all probabilities is always |.

Axioms of probability



Are these axioms

reasonable!?
® Example
P(aAb)=0.0

— Agent 2 chooses to bet $4 on a,
$3 on b and $2 on =(a v b)

® Theorem

— If Agent | expresses a set of
degrees of belief that violate the
axioms of probability theory
then there is a betting strategy
for Agent 2 that guarantees that
Agent | will lose money on
every bet.

— Proven by Finetti (1931)

Axioms of probability

Agent 1 Agent 2
prop. | belief bet stakes

a 04 a 4106

b 0.3 b 3to7
avb | 0.8 “(avb)|2to8
aab 0.0

Output for Agent 1

a,b a, b -a, b -a,~b
-6 -6 4 4
-7 -7 3
2 2 -8




Probabilistic

® Conditional probabilities

P(A|B) = P(AANB)/P(B)
if P(B) >0

® As product rule

P(A A B) = P(A|B) P(B)
if P(B) >0

P(ANDB)=P(B|A)P(A)
if P(A) >0

Probabilistic Inference

Inference

True

A

AANB

25



Inferences with joint probabilistic
distributions

® |nferences e Probabilities

— Sum is |

— Helps to calculate simple
and complex propositions

— Take atomic events where

® aka “knowledge base” proposition is trg.e.and
then add probabilities

® Calculate posterior
probabilities for given
evidences

toothache —toothache
catch =catch catch —catch
cavity 0.108 0.012 0.072 0.008
—cavity 0.016 0.064 0.144 0.576

Probabilistic Inference 26



Inferences with joint probabilistic

distributions
toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
—cavity 0.016 0.064 0.144 0.576

® For example, there are six atomic events in which cavity v toothache holds:

P(cavity V toothache) = 0.108 + 0.012 4 0.072 + 0.008 + 0.016 + 0.064 = 0.28
® Marginal probability
® Extract the distribution over some subset of variables, z.B. cavity

® P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2

Probabilistic Inference 27



toothache

—toothache

catch

—catch

catch

—catch

cavity

0.108

0.012

0.072

0.008

—caity

0.016

0.064

0.144

0.576

Conditional

Probabilities

® Example |

® Use product rule and take the probability distribution. Here:
probability for having cavity given toothache:

P(cavity A toothache)
P(toothache)

B 0.108 4 0.012 B

~ 0.108+0.012 4 0.016 + 0.064

P(cavity|toothache) =

0.6

e Example 2
— Compute the probability that there is no cavity, given toothache:

P(—cavity N toothache)
P(toothache)

B 0.016 + 0.064 B

~ 0.10840.012 +0.016 + 0.064

Probabilistic Inference 28

P(—cavity|toothache) =

0.4



toothache —toothache

catch —catch catch —catch

cavity 0.108 0.012 0.072 0.008

—cavity 0.016 0.064 0.144 0.576

Normalization

® Constant
® |/P(toothache) always constant, no matter what value exists for Cavity

® |t can be viewed as a normalization constant for the distribution
P(Cavity|toothache), ensuring that it adds up to |

® We will use a to denote such constants

® We can then write the two preceding equations in one

P (Cavity|toothache) = aP(Cavity, toothache)

= a|P(Cavity, toothache, catch) + P(Cavity, toothache, —catch)]
= a[(0.108,0.016) + (0.012, 0.064)]

— (0.12,0.08)

— (0.6, 0.4)

Probabilistic Inference 29



Algorithmic Analysis

® Joint probability e Problem in practice

distribution — We need a lot! of

observations in order to

get valid and reliable table
entries!

— n variables with max. k
values

® (alculation complexity

® Table size O(kn) is
exponential in n

® |n the worst case: O(kn)
calculation steps

Probabilistic Inference 30



Independence

® New variable:Weather
® Joint probability distribution P (T oothache, Catch, Cavity, Weather)

® Weather has 4 values = 32 entries

® Cavity is independent from weather (also marginal or
absolute independency)

P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity) P(W eather)

— Reduction of entries: 8 + 4 instead of 32!

S

® Ingeneral PX|Y)=

Independency 3]



Decomposition of Joint
Distributions

Cavity
Toothache

Weather

decomposes into

Cavity

Toothache Catch

(a)

decomposes into

(b)

Figure 13.5  Two examples of factoring a large joint distribution into smaller distributions,
using absolute independence. (a) Weather and dental problems are independent. (b) Coin

flips are independent.

Independency
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Bayes’-Rule

® Fundamental idea
® Get around joint distributions

® Calculate directly with conditional probabilities

® Recall the two forms of the product rule

PlaVb) = Pla|b) P(b) for P(b) >0

P(aVb) = P(bla) P(a) for P(a) >0
Pl) = G P(Y]X) = T

® Known as Bayes’-Rule

Bayes’ Rule

33



Bayes’-Rule

Why is this rule useful?

® Causal experiences
C: cause, E: effect

® Diagnostic Inference

P(E|C)P(C)
P(E)

P(C|E) =

This simple equation underlies
all modern Al systems for

probabilistic inference!

Bayes’ Rule

BIZARRO.COM Facebook com/ BizarreComics Vicl 8 King featvas
e —— @ 2020 BAZARRD SY0mos

ﬁ’w ¢ar alarm
’;qi'g‘-».*wf';i"‘ui“_. goegd oft ‘AQP. :Akaar‘d
‘ timing belt.

Cause
Mistake in
technical system

causal diagnostic
inferences inferences

Effect
system behavior
shows symptom

34



Technical Diagnosis

® Example
® C = power_switch_off, E = no_sound_heard
® Bayes’-Rule:

E|C)P(C)

pclp) = 2 e

® Knowledge from causal experience
P(E|C) = 0.98
P(C) =0.01 (mostly on)
P(E)=0.2 (often defect)

Bayes’ Rule

35



Technical Diagnosis

® Conditional probability

E|C)P(C)  0.98%0.01

= 0.04
P(E) 0.2 0049

pcip) = 2

® Other independent probabilities
P(C) = 0.2 (more often switched off)

P(E|C)P(C)  0.98%0.2

PICIE) = P(E) 02

® Depends highly on a priori probability P(C)!

Bayes’ Rule
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Combining evidences

® So far e Conditional Independence

— Toothache and Catch are not really

® an evidence of the form independent

P(Ef fect|Cause
(Effect ) — Probe goes into tooth that has

® What if there is more than cavity and catches the tooth
one evidence? — They are not directly dependent:
P(Cavity|toothache A catch) but related but via cavity

® Possible with joint
distributions, but what if we
have large problems?

P (toothache N catch|Cavity) = P(toothache|Cavity) P(catch|Cavity)

e Here also: significant reduction of algorithmic complexity O(n) instead O(2n)

Bayes’ Rule 37



Bayes’ Rule and
Conditional Independence

P (Cavity|toothache N catch)
= aP(toothache A catch|Cavity) P(Cavity)
= aP(toothache|Cavity) P(catch|Cavity) P(Cavity)

This is an example of a naive Bayes model:

P(Cause|E ffecty, ..., E ffect,) = P(Cause) H P(FE ffect;|Cause)

S S

The total number of parameters is linear in n.

Bayes’ Rule
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Notes

e Conditional independence e Dentist domain

— shows that a single cause can

® allows “large” systems that have a number of effects

rely on probabilities -
— theses are conditional

® analogue to independence independent (given cause)
— this pattern is often seen

® Decomposition e Joint Probability Distribution

e _.of large probabilistic
application areas important

in Al
P(Cause, E ffecty, ..., E ffect,) = P(Cause) H P(FE ffect;|Cause)

e These distributions are also called naive Bayes’ Models (also Bayes’
classifier)

Bayes’ Rule
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VWumpus World
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Boolean variable for each square P, We also have Boolean variables B;; which are true
which is true iff square [7, j] actually iff square [7, j] is breezy; we include these variables only
contains a pit for the observed squares—in this case,[1, 1], [1, 2],

and (2, 1].
Wumpus World
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Specifying the Probability Model

The full joint distribution is: P(Pi1,...,P44,B11,B12,B21)

Apply the product rule: ~ P(B1,1, Bi2, B21| Py, o, Paa) P(Pry, . Pya)
to get P(E ffect|Cause)

First term: value is | if pits are adjacent to breezes, 0 otherwise
Second term: priors, pits are placed randomly, probability 0.2 per
square

4.4
P(Py,...Ppa) = || P(Py;)=02"x08'"%"
17=1,1

for n pits.

Wumpus World 42



Observations and Query

We know the following facts:
b= ﬁbl,l A\ bl,g A\ bg,l

known = —p1 1 A —p12 A P21

Query:
P (P 3|known,b)

2,4

3,4

s

____________

\
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THER
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\ J :
2 T, VNN I
B Vaml | \q\ |
! \\ I \\\ :
OK : \\ \\\\\ |
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Defining Unkown = P; ;s other than P; 3 and Known

For inference by enumeration we have

P (P, 3|known,b) = « Z P (P, 3, unknown, known, b)

unknown

Grows exponentially with the number of squares!

Wumpus World
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Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

1,§____I_2.4____IS.4.___J.4_4___\

[

\

\\ |

\ |

A |

N\
SN ]
s OTHER

:QUERY\ N l

\ II \\ |

1,e ==\ '

RN | \Q\ I

| Nl NN '

| N N I

N NN |

| W\

4 « FRINGE "~ I—
| KNOWN N\ AN ,
[ N VN
I \\\ | \\ :
| \ \

Defining Unknown = Fringe U Other
P (b| P, 3 Known, Unknown) = P (b| Py 3, Known, Fringe)

Manipulate query into a form where we can use this!

Wumpus World
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Using conditional independence (2)

P (P, 3lknown,b) = o Z P (P, 3, unknown, known,b)
unknown

=« Z P (b| Py 3, known, unknown) P(P; 3, known, unknown)

unknown

= Z Z P (b|known, P, 3, fringe, other) P(Py 3, known, fringe, other)

fringe other

=3¢ Z Z P (b|known, P, 3, fringe) P(P; 3, known, fringe, other)

fringe other

= Z P (b|known, P, 3, fringe) Z P (P, 3, known, fringe, other)
fringe other
=« Z P (b|known, P, 3, fringe) Z P (P, 3) P(known) P(fringe) P(other)
fringe other
= aP(known)P(P; 3) Z P (blknown, Py 3, fringe) P( fringe) Z P(other)
fringe other
= Oé/P(Pl,g) Z P (blknown, Py 3, fringe) P( fringe)
fringe

Wumpus World 45



Using conditional independence (3)
) _ b) .
.0 .0 . @0 . @

1,1 21 3,1 1,1 21 3,1 T,1 2,1 3,1 T,1 2,1 3,1 1,1 21 3,1
B B B B B
OK OK OK OK OK OK OK OK OK OK

0.2x0.2=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x0.8=0.16

P (P 5|known,b) = a (0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16))
~ (0.31,0.69)

P (Ps 2|known,b) ~ (0.86,0.14)

Wumpus World



Summary

® Probability is a rigorous formalism for uncertain knowledge.

Uncertainty arises because of both laziness and ignorance. It is inescapable
in complex, dynamic, or inaccessible worlds.

Uncertainty means that many of the simplifications that are possible with
deductive inference are no longer valid.

Probabilities express the agent’s inability to reach a definite decision
regarding the truth of a sentence, and summarize the agent’s beliefs.

Basic probability statements include prior probabilities and
conditional probabilities over simple and complex propositions.

The full joint distribution specifies the probability of each complete
assignment of values to random variables. It is usually too large to create or
use in its explicit form.
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Summary (2)

The axioms of probability constrain the possible assignments of
probabilities onto propositions. An agent that violates the axioms will
behave irrationally in some circumstances.

When the full joint distribution is available, it can be used to answer
queries simply by adding up entries for the atomic events corresponding to
the query propositions.

Absolute independence between subsets of random variables may
allow the full joint to be factored into smaller joint distributions. This may
greatly reduce complexity but seldom occurs in practice.

Bayes’ rule allows unknown probabilities to be computed from known
conditional probabilities, usually in the causal direction. Applying Bayes’ rule
with many pieces of evidence may in general run into the same scaling
problems as the full joint distribution.
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Summary (3)

Conditional independence brought about by direct causal
relationships in the domain may allow the full joint to be factored into
smaller, conditional distributions. The naive Bayes model assumes
conditional independence of all effect variables given a single cause variable,
and grows linearly with the number of effects.

A wumpus-world agent can calculate probabilities for unobserved aspects
of the world and use them to make better decisions than a purely logical
agent.
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