PROBABILISTIC
REASONING OVER TIME

In which we try to interpret the present, understand the past, and perhaps
predict the future, even when very little is crystal clear.

Outline

{» Time and uncertainty

& Inference: filtering, prediction, smoothing

%

%
%
%

Hidden Markov models

Dynamic Bayesian networks

Particle filtering

Kalman filters (a brief mention)

Chapter 15, Sections 1-5

2

Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E, = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem

Notation: X, = X, X, 11,..., X1, X,

Chapter 15, Sections 1-5 3

Example and notation

Time slices containing a set of random variables, some observable and some
not.

X;: denote the set of state variables at time ¢, unobservable
F: denote the set of observable evidence variables.

Example: Security guard with umbrella. For each day ¢, the set E; contains
a single evidence variable U; (umbrella) and the set X; contains a single
state variable R; (rain).

The interval between time slices fixed.

Evidence starts arriving at ¢ = 1 Hence, our umbrella world is represented
by state variables R, Ry, Ry, ... and evidence variables U, U,,

a : b denotes the sequence of integers from a to b (inclusive), and X,
denotes the set of variables from X, to Xj,.

Chapter 15, Sections 1-5 4

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X; depends on bounded subset of X.;

First-order Markov process: P (X;| X, 1) = P(X;| X, 1)
Second-order Markov process: P (X, | X, 1) = P(X}| X, o, X; 1)

First—order @ @ 0 @ @
- .
Second-order @'@'VO'Q"@

Sensor Markov assumption: P(E,| X, Eq, 1) = P(E;|X};)

Stationary process: transition model P(X,|X;) and
sensor model P(E,|X;) fixed for all

Chapter 15, Sections 1-5 4

Example

R, _i| P(R;)
1
- f
Rain, _, %
P(U,)
7 09
f 0.2

@brell@ @brella) @brell@

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

Chapter 15, Sections 1-5 5

Get started

How to get started?
The prior probability distribution at time 0, P(X)

With that, we have a specification of the complete joint distribution over all
the variables. For any ¢,

P(Xo, Bia) = P(Xo) 11 P(XXi1)P(E/[X;)

with

Initial state model: P(X)
Transition model: P(X,;| X, ;)
Sensor model: P(E,;|X;).

Chapter 15, Secticos 1-5

Get started

How to get started?
The prior probability distribution at time 0, P(X)

With that, we have a specification of the complete joint distribution over all
the variables. For any ¢,

P(Xo, Bia) = P(Xo) 11 P(XXi1)P(E/[X;)

with

Initial state model: P(X)
Transition model: P(X,;| X, ;)
Sensor model: P(E,;|X;).

Chapter 15, Secticos 1-5

Inference tasks

Filtering: P(X,|e;)
belief state—input to the decision process of a rational agent

Prediction: P (X, |e ;) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P (X, |ey,) for 0 < k < ¢
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(x;.|ej)
speech recognition, decoding with a noisy channel

Chapter 15, Sections 1-5 6

Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1’el:t+1) — f(et+17 P(Xt‘elzt))

P(Xt_|_1‘el;t_|_1) — P(Xt—i—l‘elzta et—i—l)
— &P(eHﬂXHla el:t)P(Xt+1|elrt)
— aP(et+1’Xz&+1)P(XH1‘elit)

|.e., prediction + estimation. Prediction by summing out X;:

P(Xt+1\e1:t+1) — OéP(etH\XtH)thP(XtH\Xu el:t)P(Xt\eu)
— C“P(etﬂ’Xt+1)ZXtP(Xt+1|Xt)P(Xt\e1:t)

fl:t—I—l — FORWARD(fl;t, et_|_1) where fl:t = P(Xt\elzt)
Time and space constant (independent of 7)

Chapter 15, Sections 1-5 7

Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.318 0.383
False 0.500 0.182 0.117

Chapter 15, Sections 1-5 8

Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.318 0.383
False 0.500 0.182 0.117

Chapter 15, Sections 1-5 8

Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.318 0.383
False 0.500 0.182 0.117

Chapter 15, Sections 1-5 8

Smoothing

D —

Divide evidence e1.; into €., €14

P(Xile1:) = P(Xglers, err1:)
= oP(Xj|err)Plery1:4| Xy, err)
= oaP(X}|e1)P(ert1:4| Xk)
= oty X by

Backward message computed by a backwards recursion:

P(er 14| Xk) = 2x,. Pler1.| X, X 1) P(xp01]| X5)

Xk+1
Zle (€t 1:¢ | X4 1) P (X1 | X1
ZXA+1 (ek+1|Xk+1)P(ek+2:t‘Xk+1)P(X/<+1‘Xk)

Chapter 15, Sections 1-5 11

Smoothing example

0.500 0.627
0.500 0.373
True 0.500 0.d18 O.JSS f .
False 0.500 0.182 0.117 orwar
O.JSS 0.8’83
0.117 0.117 smoothed
0.690 1.000
_
0.410 1.000 backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

Chapter 15, Sections 1-5 10

Smoothing example

0.500 0.627
0.500 0.373
True 0.500 0.d18 O.JSS f .
False 0.500 0.182 0.117 orwar
O.JSS 0.8’83
0.117 0.117 smoothed
0.690 1.000
_
0.410 1.000 backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

Chapter 15, Sections 1-5 10

Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x; 4
= most likely path to some x; plus one more step

}g?a%({t P(X17 ey Xt Xt—{—l’elilH—l)
= P(er1|Xii1) max (P(Xm\xt) e PX, e X, Xt\eu))

ldentical to filtering, except f.; replaced by

M.y = XII-I}?%{—l P(X17 vy Xt 1, Xt‘el:t>7

l.e., my.,(7) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

My = P<et+1 Xt+1) H%%X (P<Xt+1’Xt>m1:t>

Chapter 15, Sections 1-5

11

Viterbi example

Rain 5

Rain Rain 5 Rain 4 Rain 4

state [| |
space
paths

. false false false false
umbrella false
most
likely

paths

Chapter 15, Sections 1-5

12

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1,...,¢
prior, the prior distribution on the initial state, P(Xj)
local variables: fv, a vector of forward messages for steps O, . .., 1
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,...,17

fv|0] < prior
for:= 1totdo
fv|i] <— FORWARD (fv|i — 1], ev|i])
for : = t downto 1 do
sv|i| < NORMALIZE(fv]i| X b)
b < BACKWARD(b, ev|i|)
return sv

Figure 154 The forward—backward algorithm for smoothing: computing posterior prob-

abilities of a sequence of states given a sequence of observations. The FORWARD and
BACKWARD operators are defined by Equations (15.5) and (15.9), respectively.

Hidden Markov models

X is a single, discrete variable (usually E; is too)

Domain of X, is {1,...,5}

Transition matrix T, = P(X,=j| X, 1 =1), eg, (0'7 OB)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(e;|.X; =1)
0.9 0)

e.g., with U =true, O, = (0 0.9

Forward and backward messages as column vectors:

fl:t+1 — @Ot+1TTf1:t
bii1: = TO1bgt04

Forward-backward algorithm needs time O(S5%t) and space O(St)

Chapter 15, Sections 1-5 13

Hidden Markov models

X is a single, discrete variable (usually E; is too)

Domain of X, is {1,...,5}

Transition matrix T, = P(X,=j| X, 1 =1), eg, (0'7 OB)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(e;|.X; =1)
0.9 0)

e.g., with U =true, O, = (0 0.9

Forward and backward messages as column vectors:

fl:t+1 — @Ot+1TTf1:t
bii1: = TO1bgt04

Forward-backward algorithm needs time O(S5%t) and space O(St)

Chapter 15, Sections 1-5 13

Hidden Markov models

X is a single, discrete variable (usually E; is too)

Domain of X, is {1,...,5}

Transition matrix T, = P(X,=j| X, 1 =1), eg, (0'7 OB)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(e;|.X; =1)
0.9 0)

e.g., with U =true, O, = (0 0.9

Forward and backward messages as column vectors:

fl:t+1 — @Ot+1TTf1:t
bii1: = TO1bgt04

Forward-backward algorithm needs time O(S5%t) and space O(St)

Chapter 15, Sections 1-5 13

function FIXED-LAG-SMOOTHING(e;, hmm , d) returns a distribution over X;_ 4
inputs: e;, the current evidence for time step ¢
hmm, a hidden Markov model with S x S transition matrix T
d, the length of the lag for smoothing
persistent: ¢, the current time, initially 1
f, the forward message P(X;|ey.;), initially Amm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
e+_4.¢+» double-ended list of evidence from ¢ — d to ¢, initially empty
local variables: O;_ ;. O;, diagonal matrices containing the sensor model information

add e; to the end of e;_ 4.+
O, «+ diagonal matrix containing P(e;|X;)
if ¢ > d then
f — FORWARD(f, ¢;)
remove e;_ 41 from the beginning of e;_ 4.+
O, _, < diagonal matrix containing P(e;_ 4| X 4)
B~ O, T 'BTO;
else B — BTO;
t—t+1
if t > d then return NORMALIZE(f x B1) else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented
as an online algorithm that outputs the new smoothed estimate given the observation for a

new time step. Notice that the final output NORMALIZE(f x B1) is just af x b, by Equa-
tion (15.14).

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

filo = a0 T fiy
Ot_Jrllflzt+1 — OéTTfl:t
Oé/<TT)_1Ot_+11f1;t+1 — f1:15

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 14

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fili01 = a0 T iy
Ot_Jrllflzt+1 — OéTTfl:t
Oé/<TT)_1Ot_+11f1;t+1 — f1:15

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 15

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fl.01 = aOp T iy
Ot_Jrllflzt+1 — OéTTfl:t
O/<TT)_1O;L11f1:t+1 — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 16

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fl.01 = aOp T iy
Ot_Jrllflzt+1 — OéTTfl:t
O/<TT)_1O;L11f1:t+1 — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 17

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fl.01 = aOp T iy
Ot_Jrllflzt+1 — OéTTfl:t
O/<TT)_1O;L11f1:t+1 — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5

18

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fili01 = a0 T iy
Ot_Jrllflzt+1 — OéTTfl:t
Oé/<TT)_1Ot_+11f1;t+1 — f1:15

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 19

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fl.01 = aOp T iy
Ot_Jrllflzt+1 — OéTTfl:t
O/<TT)_1O;L11f1:t+1 — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 20

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

filo = a0 T fiy
Ot_Jrllflzt+1 — OéTTfl:t
Oé/<TT)_1Ot_+11f1;t+1 — f1:15

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 21

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

filo = a0 T fiy
Ot_Jrllflzt+1 — OéTTfl:t
Oé/<TT)_1Ot_+11f1;t+1 — f1:15

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 22

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fili01 = a0 T iy
Ot_Jrllflzt+1 — OéTTfl:t
Oé/<TT)_1Ot_+11f1;t+1 — f1:15

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 23

(a) Possible locations of robot after E1 = NSW

(b) Possible locations of robot After E1 = NSW,E>= NS

olelol=|-|TlO | [Tl
P
o -

(b) Posterior distribution over robot location after E{= NSW,E>= NS

Figure 15.7 Posterior distribution over robot location: (a) one observation £7 = NSW;
(b) after a second observation £ = N S. The size of each disk corresponds to the probability
that the robot 1s at that location. The sensor error rate 1s € = 0.2.

olelol=|-|TlO | [Tl
P
o -

(b) Posterior distribution over robot location after E{= NSW,E>= NS

Figure 15.7 Posterior distribution over robot location: (a) one observation £7 = NSW;
(b) after a second observation £ = N S. The size of each disk corresponds to the probability
that the robot 1s at that location. The sensor error rate 1s € = 0.2.

[Localization error

9 +— N
W K5 W N

o

n — a1 W

-

0 5 10 15 20 25 30 35 40
Number of observations

(a)

Path accuracy

0.9 -
0.8 1
0.7 1
0.6 -
0.5 1
04 1
0.3 1
0.2 1

0.1

0

5

10 15 20 25 30 35 40
Number of observations

(b)

Figure 15.8 Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability ¢; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.

Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X Y. Z X YV Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15, Sections 1-5 24

Updating Gaussian distributions

Prediction step: if P(X;|e;,) is Gaussian, then prediction
P(X;iile) = /gtP(Xm!Xt)P(Xt!eu) dx;

is Gaussian. If P(X,.|e;,) is Gaussian, then the updated distribution
P(Xyi1lers1) = aP (e | X 1) P(Xii]er)

is Gaussian

Hence P(X;|e;;) is multivariate Gaussian N (p,, 2;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as ¢ — oo

Chapter 15, Sections 1-5 25

Simple 1-D example

Gaussian random walk on X-axis, s.d. o,, sensor s.d. o.

Hit+r1 =

(02 + 0241 + 02) (07 +03)0>

Z

P(X)

2 2 2
O't—l—O'x—l—O'Z

0.45
04
0.35
0.3
0.25
0.2
0.15
0.1
0.05

O' f—
t+1 9 9 2
O3 -+ o -+ o;

L P(x1121=2.5) |

X position

Chapter 15, Sections 1-5

26

General Kalman update

Transition and sensor models:

P(xp1]xi) = N(Fxq, X)(Xe41)
P(z|x;) = N(Hx, X)(z¢)

F' is the matrix for the transition; 2., the transition noise covariance
H is the matrix for the sensors; 2. the sensor noise covariance

Filter computes the following update:

po = Fu,+Ki(z01 — HF)
Y1 = I-Ki)(FEF' +3,)

where K; 1 =(FS,F' + S, H (HFS,F' +S,)H + %)

Is the Kalman gain matrix

>.; and K, are independent of observation sequence, so compute offline

Chapter 15, Sections 1-5

27

2-D tracking example: filtering

12

11

10

2D filtering

—8— true

* observed
X filtered

10 12 14 16 18 20 22 24 26

Chapter 15, Sections 1-5

28

2-D tracking example: smoothing

12

11

10

2D smoothing

—a— true
* observed
i e smoothed
| | | | | | | | J
8 10 12 14 16 18 20 22 24 26

Chapter 15, Sections 1-5

29

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = 1,
Fails if systems is locally unsmooth

Chapter 15, Sections 1-5 30

Dynamic Bayesian networks

X, E; contain arbitrarily many variables in a replicated Bayes net

P(Ry)

P(Ry)

Chapter 15, Sections 1-5

31

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/; D\

e @ N % /

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2° = 160 parameters, HMM has 22 x 22V ~ 1(0!*

99

Chapter 15, Sections 1-5 32

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;

real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

E(Battery)

- E(Batteryl.. 5555000000 3

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr B34

"

0 ®-B-&B BB R 5 KKK KKK KKKk

P(BMBrokenl.. 5555005555

15 20 25 30

Time step

Chapter 15, Sections 1-5

P(BMBrokenI 5555000000])

N

33

Exact inference in DBNs

Naive method:

Rain, Rain |

T
f

'mbrella |

unroll the network and run any exact algorithm

0 0 0 0
;c 0- } 07 } 07 ; 0- ;p 0- ' ' Ty '
03 | umm— 03| omm— 03 | mm— 03 03 03 - 03 -
. - . . . - . - e CEE R TS mmdmom .
ain Rain Rain, Rain, Rain, Rainsy - o * " Rain, " i 2 e
~ A

el Nemzlo
R | P00) 13N RECH 130 R Ry] P00 30 KLY T '-”‘UI)J' Ry "P(U.)J'
T 00 T 00 T 00 T 00 T 00 ~ :' 8% ~ :' 55
f 0.2 f 02 f 02 f 0.2 f 0.2 f 02 f 02
............
e

mbrella ‘mbrella, 'mbrella mbrella , 'mbrella s e Umbrel?a.() M 2 U mbrel?zl.7 s)
~

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice 7 + 1, “sum out” slice 7 using variable elimination

Largest factor is O(d" '), update cost O(d""?)
(cf. HMM update cost O(d*"))

Chapter 15, Sections 1-5 34

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
= fraction “agreeing’ falls exponentially with ¢
= number of samples reqwred grows exponentlally with ¢

A R A

s oy
[LW(160) "

* LW(1000) =% |
LW(I@OOO) x

E-Bﬁ

0O 5 10 15 20 25 30 35 40 45 50
Time step

Chapter 15, Sections 1-5

35

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for €,

Rain, Rain, Rain, Rain,

C XX

false | ® o0 YY)
@ o0 O10) o000
(a) Propagate (b) Weight (¢c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chapter 15, Sections 1-5

36

Particle filtering contd.

Assume consistent at time ©: N (x;|e ;) /N = P(x;|e;.)
Propagate forward: populations of x; .| are
N(thLl‘el:t) — thP(XtH’Xt)N(Xt‘el:t)
Weight samples by their likelihood for e, ;:
W(xti1lerti1) = Pler|xer1) N(Xey1]e1)

Resample to obtain populations proportional to 11:
N(xir1ler1)/N = aW(xigiler1) = aP(e|Xi1) N (Xig1]er)
- @P(etﬂ’Xt+1)ZXtP(Xt+1’Xt)N(Xt’elzt)
= o' P(e1[Xp11) 205, P (X1 [%1) P(x] €14)

- P(Xt+1\e1:t+1>

Chapter 15, Sections 1-5 37

Particle filtering performance

Approximation error of particle filtering remains bounded over time,

at least empirically—theoretical analysis is difficult

1 T T T T Tl *;,Lqﬁ_\;%ﬁ@-a-w*
LW(25) —— peoss™ %
LW(100) o
LW(1000) = i .
08 7 LW(10000) = 7 y A
// l’ ><
. ER/SOF(25) -+~ ; ol
= 4 / LI
o ?,\+/ l"
o 0.6 B / BBD X]
A :
'S AT o h
’ :
e ; ./ N
// @ 3
. 04 X -
> =
DR X
0.2 B y - __><'X X >< % X |
ol A/* oo ; XXX X X
F B K XX
p /#4 e B__x"v 8
4 ﬁ.,é/@jé%ézggéﬁﬁ*&ﬁ AAADANLDAp pLBDADN fAEADNDDD A DDA D NA A
skl x X | | | | L I 1 I

20 25 30 35 50

Time step

b2
0 5 10 15 40 45

Chapter 15, Sections 1-5

38

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;| X, 1)
— sensor model P (E;|X})

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n’) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15, Sections 1-5 39

Island algorithm

|dea: run forward-backward storing f;, b, at only £ — 1 points
Call recursively (depth-first) on / subtasks

5 L6888 68
i@%'@i‘i

O(k|f] log, t) space, O(klog, 1) more time

Online fixed-lag smoothing

I— —d+1

sToruwed

Obvious method runs forward—backward for « steps each time
Recursively compute 1., .1, by 0,0 from £, 4, b,y 7?

Forward message OK, backward message not directly obtainable

Online fixed-lag smoothing contd.

Define B, = [1" TO,, so

L=
b/—(/+1:/ — B/—(/+1:/]-
b/—(/+2:/+1 — B/—(/+2:/+l]-

Now we can get a recursive update for B:
-1 -1
B/—(/+2:/+1 — O/—(/+1T B/—(/+1:/TO/+1

Hence update cost is constant, independent of lag d

Approximate inference in DBNs

Particle filtering (Gordon, 1994; Kanazawa, Koller, and Russell, 1995; Blake
and Isard, 1996)

-actored approximation (Boyen and Koller, 1999)

_oopy propagation (Pearl, 1988; Yedidia, Freeman, and Weiss, 2000)

Variational approximation (Ghahramani and Jordan, 1997)

Decayed MCMC (unpublished)

Evidence reversal

Better to propose new samples conditioned on the new evidence
Minimizes the variance of the posterior estimates (Kong & Liu, 1996)

D ‘@ D N D e D e D>
w Umbrella Umbrella Umbrella @

0.2 1 I 1 I 1 I 1 1 1
LW/ER 25 ——
PF25 -~
PF/ER 25 %
o 0.5 F PF/ER 1000 & -
£
L
2
=
z 0.1
-8
<
chn
Z
0.05
0 (

O 5 10 15 20 25 30 35 40 45 50

Time step

Example: DBN for speech recognition

end-of-word observation O P(OBS[2)=1
P(OBS Inot2) =0

phoneme © >(1) > >(2) >(2) deterministic, fixed

index @/ C/ C/ @/

transition stochastic, learned
R A 3/ V

phoneme () (0 deterministic , fixed

r/‘\\ !/"\\\ \\ “)

\/ VoV / N

observation

iculator I
articulato S stochastic, learned

stochastic, learned

Also easy to add variables for, e.g., gender, accent, speed.
Zweig and Russell (1998) show up to 40% error reduction over HMMs

Vectors, Matrices, and Linear Algebra

Vector as ordered sequence of values, e.g. x = (3,4), y = (0, 2)

Fundamental operations:
— Vector Addition: x 4+ y is elementwise sum: X + y =(3+0,4+42)=(3, 6)
— Scalar multiplication: 5x = (5 x 3,5 x 4)=(15, 20)

Length of x: |x| = /(3% + 42)
Dot product x -y = Z-’I?';?/i =3X04+4X2=28
A A Az Ay

Matrix, e.g. 3x4 | Aoy Aso Ass Asy
A:i,l A:;,z A;;,;; A3,4

Sum (A + B);; = A, ; + B, undefined if sizes are different.

Vectors, Matrices, and Linear Algebra

Multiplication by scalar: (cA); ; = cA; ;.

Matrix multiplication: AB: A has to be of size a X b and B of size b X c,
result is matrix of size a X c.

(AB),x =) A, ;Bj;

J

Dot product can be expressed as a transpose and a matrix multiplication:
x-y=x'y.

Identity matrix I has elements I, ; = 1 when 7 = j and 0 otherwise.
Transpose matrix: turning rows into columns and vice versa.

Inverse matrix: A !, square matrix such that AA~! =1.

Vectors, Matrices, and Linear Algebra

Matrices to solve linear equations in O(n?) time. Example:
2X +y-z =8

3x -y + 2z = —11
2X+y+ 2z = -3

We can represent this system as a matrix equation A x = b, where

2 1 —1 x 3
A=[-3-1 2], x=1[y], b=|-11
2 1 2 2 —3

To solve, multiply both sides by A ~*:

A 'Ax = A'b which simplified is x = A~ 'b
2

Then invert A and multiply by b we get x = | 3

—1

