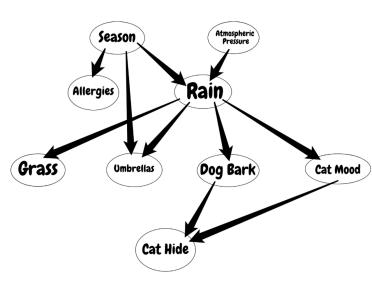
# PROBABILISTIC REASONING SYSTEMS

In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory.

# Outline

- Knowledge in uncertain domains
- Probabilistic Networks
- Semantic of Bayesian Networks
  - Global Semantic
  - Local Semantic
- Efficient representation of conditions distributions
- Exact inference in Bayesian Networks
- Approximate inference in Bayesian Networks
- Summary



# Bayes'-Rule

#### Why is this rule useful?

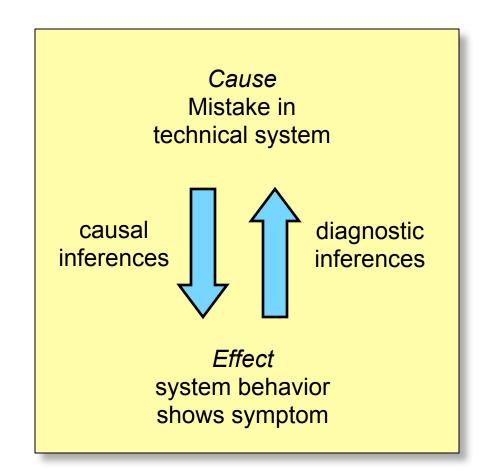
- Causal experiences C: cause, E: effect
- Diagnostic Inference

 $P(C \mid E) = \frac{P(E \mid C) P(C)}{P(E)}$ 

This simple equation underlies

all modern AI systems for

probabilistic inference



# Knowledge in uncertain domains

- Joint probability distribution
  - delivers answers to questions that exists in domain
  - Problem: intractable with large number of variables
  - Specification
     Probabilities difficult for atomic events

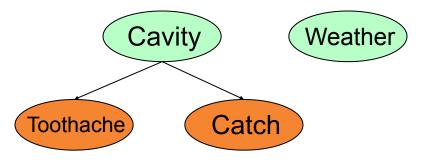
• Complexity

- Independence and conditional dependence reduce complexity
- Bayesian Networks
  - Data structure represents dependencies between variables
  - Specification of joint distribution

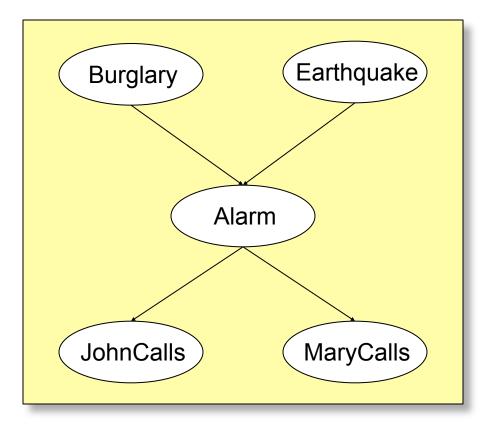
# Syntax

- Graph-theoretical structure
  - Set of variables as nodes (discrete, continuous)
  - Each node corresponds to random variable
  - Directed acyclic graph (DAG), links express causal dependencies between variables

- Conditional probability tables
  - For each node a table for conditional probabilities
  - Table consists of distribution of probabilities given their parents
     P(X<sub>i</sub>|Parents(X<sub>i</sub>))



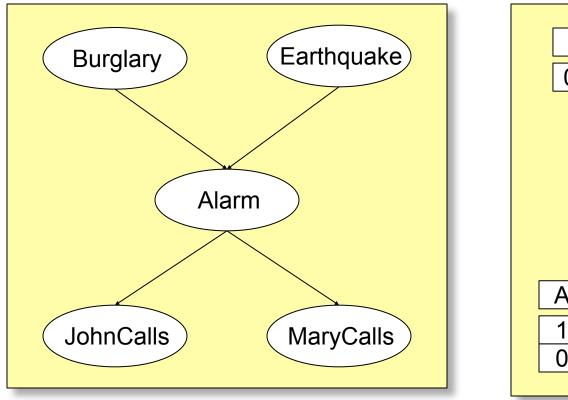
### Simple Bayesian Network

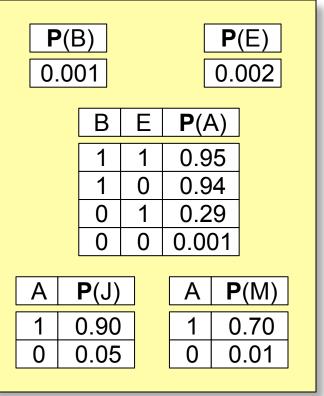


#### Probabilistic Networks

- Example Alarm
  - new burglar alarm fairly reliable at detecting a burglary
  - also responds on occasion to minor earthquake
  - two neighbors, John and Mary have promised to call when they hear the alarm
  - John always calls when he hears alarm, but sometimes confuses the telephone ringing with the alarm and calls then too
  - Mary likes loud music and sometimes misses the alarm altogether
  - Given the evidence of who has or has not called, we would like to estimate the probability of a burglary.

## Simple Bayesian Network





#### conditional distributions

# Semantics of Bayesian Networks

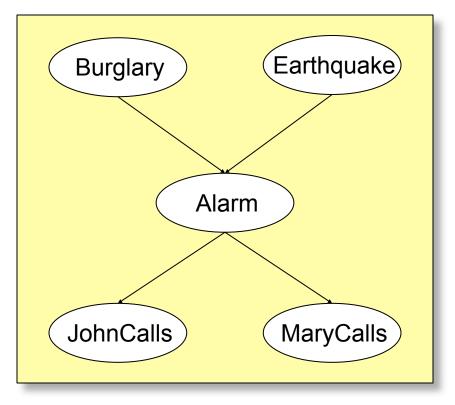
- Two views on semantics
  - 1. Global Semantics: The first is to see the network as a representation of the joint probability distribution
  - 2. Local Semantics: The second is to view it as an encoding of a collection of conditional independence statements

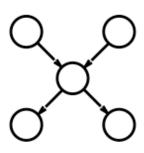
- Views are equivalent
  - first helpful in understanding how to construct networks
  - second helpful in designing inference procedures

# Representing the full joint distribution

- General idea
  - Joint distribution can be expressed as product of local conditional probabilities
  - Every entry in the joint probability distribution can be calculated from the information in the network.
  - Generic entry

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$



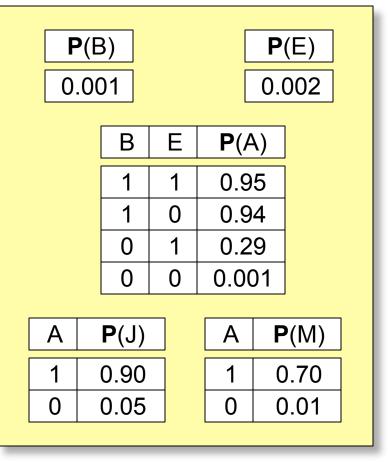


# Representing the full joint distribution

#### • Example

 Alarm has sounded but neither a burglary nor an earthquake has occurred, and both John and Mary call

$$\begin{array}{l} - \ P \ (j \land m \land a \land \neg b \land \neg e) \\ = P \ (j|a) \ P(m|a) \ P(a|\neg b, \neg e) \ P(\neg b) \ P(\neg e) \\ = 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \\ \approx 0.00063 \end{array}$$



# Method for Constructing Bayesian Networks

• Generic Rule

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

- Semantic
   but: not how to construct a network
- Implicitly: conditional independence
   →Help for Knowledge Engineer

- Reformulate the rule
  - Use of conditional probabilities
     → Product rule

 $P(x_1,...,x_n) = P(x_n \mid x_{n-1},...,x_1) P(x_{n-1},...,x_1)$ 

- Repeat process
  - Reduction of conjunctive probabilities to a conditional dependency and a smaller conjunction
  - Final: a big product

$$P(x_1,...,x_n) = P(x_n \mid x_{n-1},...,x_1) P(x_{n-1} \mid x_{n-2},...,x_1) ... P(x_2 \mid x_1) P(x_1) = \prod_{i=1}^n P(x_i \mid x_{i-1},...,x_1)$$
  
Global Semantics

#### Chain rule

$$P(x_1,...,x_n) = P(x_n \mid x_{n-1},...,x_1) P(x_{n-1} \mid x_{n-2},...,x_1) ... P(x_2 \mid x_1) P(x_1) = \prod_{i=1}^n P(x_i \mid x_{i-1},...,x_1)$$

• Compare with  $P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$ reveals that specification is equivalent to

general assertion

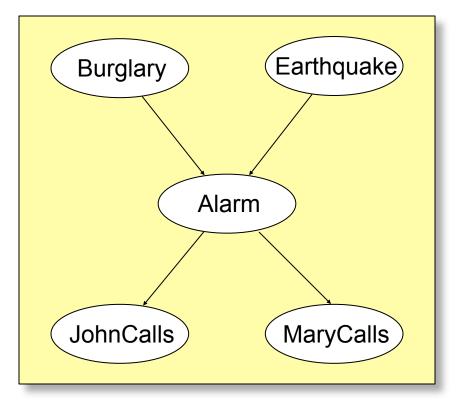
$$\mathbf{P}(X_i|X_{i-1},\ldots,X_i) = \mathbf{P}(X_i|\text{Parents}(X_i))$$

(as long as  $Parents(X_i) \subseteq \{X_{i-1}, \dots, X_i\}$ )

- l.e.:
  - This last condition is satisfied by labeling the nodes in any order that is consistent with the partial order implicit in the graph structure.
  - The Bayesian network is a correct representation of the domain only if each node is conditionally independent of its predecessors in the node ordering, given its parents.

## Construction of Bayesian Networks

- Important while constructing
  - We need to choose parents for each node such that this property holds.
- Intuitive
  - Parents of node X<sub>i</sub> should contain all those nodes in X<sub>1</sub>,...X<sub>i-1</sub> that directly influence Xi
  - Example.:
    - M (is influenced by B or E but not directly)
    - Influenced by A, and J calls are not evident



 $\mathbf{P}(M|J,A,E,B) = \mathbf{P}(M|A)$ 

# **General Procedure**

- 1. Choose the set of relevant variables  $X_i$  that describe the domain.
- 2. Choose an ordering for the variables. (Any ordering works, but some orderings work better than others, as we will see.)
- 3. While there are variables left:
  - a) Pick a variable  $X_i$  and add a node to the network for it.
  - b) Set  $Parents(X_i)$  to some minimal set of nodes already in the net such that the conditional independence property is satisfied.
  - C) Define the conditional distribution  $P(X_i | Parents(X_i))$

## Notes

- Construction method guarantees that the network is acyclic
  - Because each node is connected only to earlier nodes.
- Redundancies
  - No redundant probability values
  - Exception: for one entry in each row of each conditional probability table, if  $(P(x_2|x_1) P(\neg x_2|x_1))$  is redundant
- This means that it is impossible for the knowledge engineer or domain expert to create a Bayesian network that violates the axioms of probability!

# Compactness

- Compactness
  - A Bayesian Network is a complete and not-redundant representation of a domain
  - Can be more compact as a joint distribution
  - This is important in practice
  - Compactness is an example for property that we call in local structure (or sparse coded) in general

- Local Structures (also: sparse)
  - Each sub-component is connected to a limited number of other components
  - Complexity: linear instead of exponential
  - With BN: in most domains one variable is influenced by k others, with n variables 2<sup>k</sup> conditional probabilities, the whole network n2<sup>k</sup>
  - In contrast, the full joint distribution contains 2<sup>n</sup> numbers

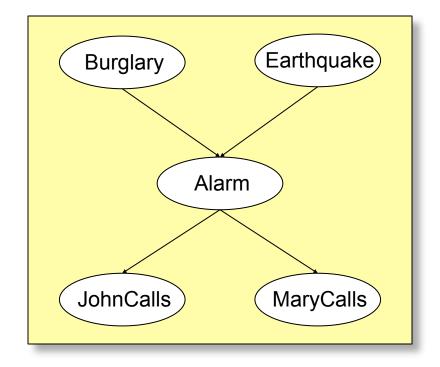
# Node Ordering

- Local structures (example)
  - 30 nodes, each max. 5 parents
  - 960 for BN, > I billion with joint distribution
- Construction
  - Not trivial
  - Variable directly influenced only from a few others
  - Set parent node
     "appropriately" → Network
     topology
  - "Direct influencers" first
  - Thus: correct order important

- Order
  - Add:
    - root first
    - then direct influencers
    - then down to leaves
  - What happens with "wrong" order?

# Example ordering

- Let us consider the burglary example again.
- Suppose we decide to add the nodes in the order
  - M, J, A, B, E
  - M, J, E, B, A



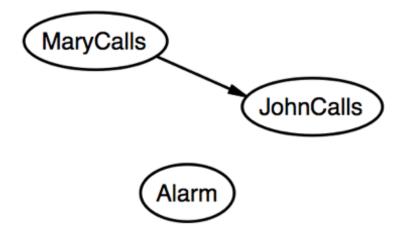
# Example

Suppose we choose the ordering M, J, A, B, E



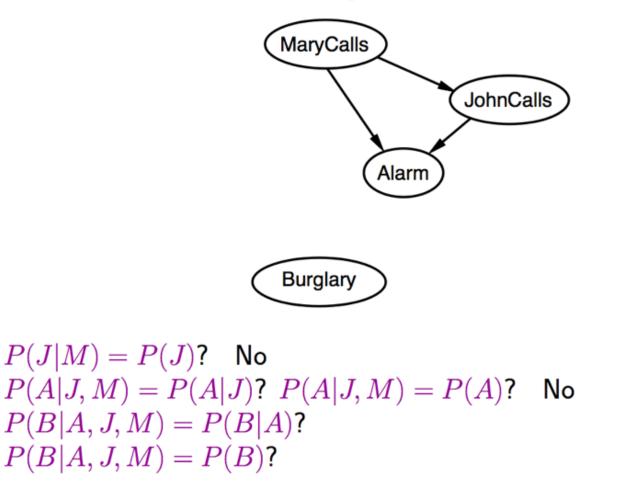
P(J|M) = P(J)?

Suppose we choose the ordering M, J, A, B, E



 $\begin{array}{ll} P(J|M)=P(J) ? & \mathsf{No} \\ P(A|J,M)=P(A|J) ? & P(A|J,M)=P(A) ? \end{array}$ 

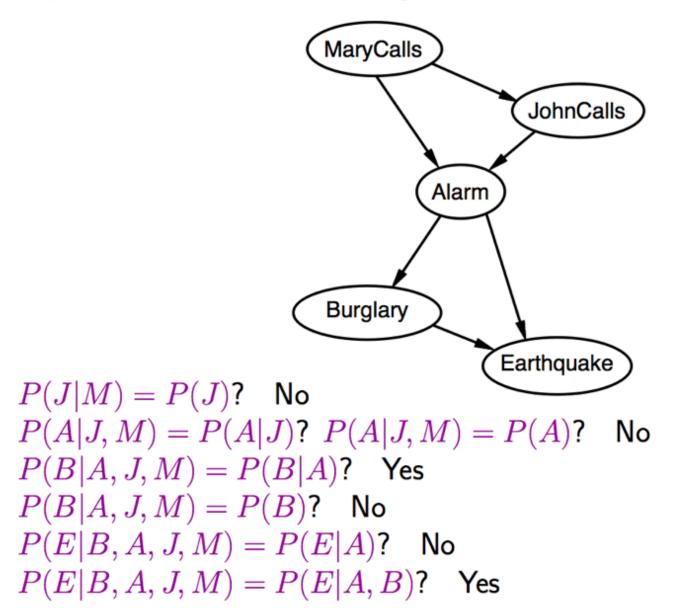
Suppose we choose the ordering M, J, A, B, E



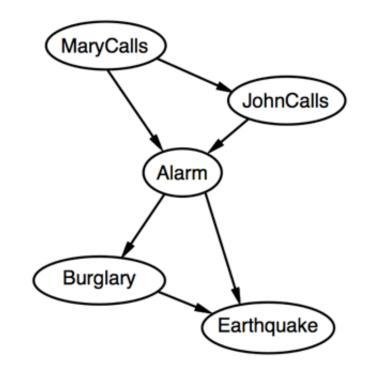
Suppose we choose the ordering M, J, A, B, E



Suppose we choose the ordering M, J, A, B, E

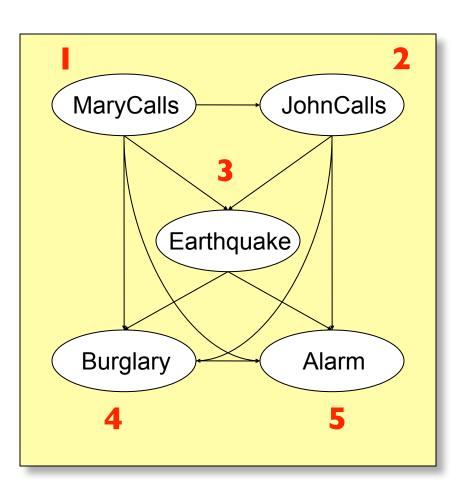


23



Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!) Assessing conditional probabilities is hard in noncausal directions Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

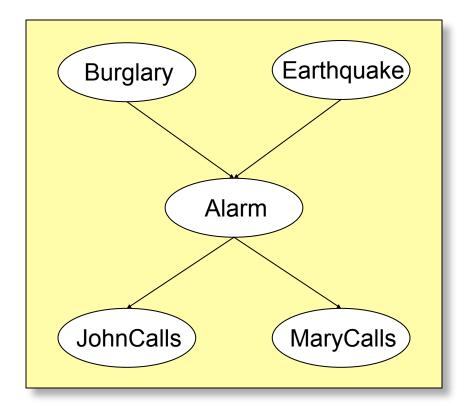
# Example ordering (2)



- Order
   M,J,E,B,A
- Network
  - 31 probabilities
  - like full joint distribution
  - thus: bad choice
- All three networks represent same probability distribution
- Last two versions
  - simply fail to represent all the conditional independence relationships
  - end up specifying a lot of unnecessary numbers instead.

# Conditional independence relations in Bayesian networks

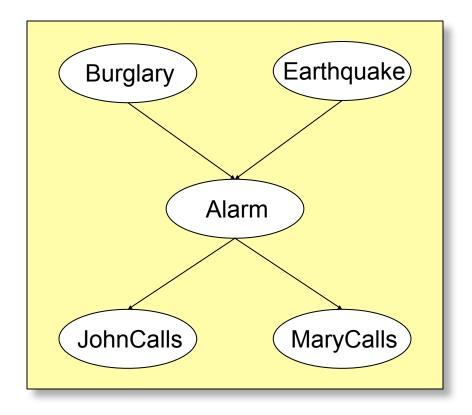
- Before
  - "numerical (global) semantics with probability distribution
  - from this derive conditional independencies
- Idea now
  - opposite direction: topological (local) semantics
  - specifies conditional independencies
  - from this derive numerical semantics



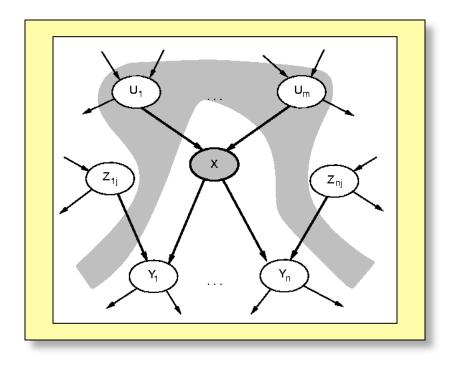
# Conditional independence relations in Bayesian networks

- General idea
  - A node is conditionally independent of its nondescendants given its parents
  - A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents that is, given its Markov blanket
- Examples
   J is independent of B and E given A, i.e.
   P(J|A,B,E) = P(J|A)

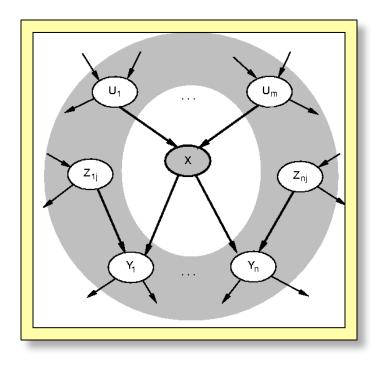
B is independent of J and M given A and E, i.e. P(B|A,E,J,M) = P(B|A,E)



# Conditional independence relations in Bayesian networks



 Node X is conditionally independent of its non-descendants (e.g., the Zij s) given its parents (the Uij s)



 A node X is conditionally independent of all other nodes in the network given its Markov blanket.

Local Semantics

# Compact conditional distributions

CPT grows exponentially with number of parents CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case: X = f(Parents(X)) for some function f

#### 

E.g., numerical relationships among continuous variables

 $\frac{\partial Level}{\partial t} = \text{ inflow + precipitation - outflow - evaporation}$ 

# Compact conditional distributions

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents  $U_1 \dots U_k$  include all causes (can add leak node)
- 2) Independent failure probability  $q_i$  for each cause alone

 $\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$ 

| Cold | Flu | Malaria | P(Fever) | $P(\neg Fever)$                     |
|------|-----|---------|----------|-------------------------------------|
| F    | F   | F       | 0.0      | 1.0                                 |
| F    | F   | Т       | 0.9      | 0.1                                 |
| F    | Т   | F       | 0.8      | 0.2                                 |
| F    | Т   | Т       | 0.98     | $0.02 = 0.2 \times 0.1$             |
| Т    | F   | F       | 0.4      | 0.6                                 |
| Т    | F   | Т       | 0.94     | $0.06 = 0.6 \times 0.1$             |
| Т    | Т   | F       | 0.88     | $0.12 = 0.6 \times 0.2$             |
| Т    | Т   | Т       | 0.988    | $0.012 = 0.6 \times 0.2 \times 0.1$ |

Number of parameters linear in number of parents

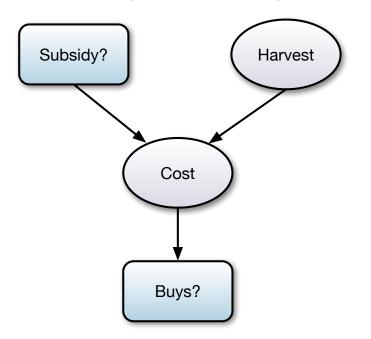
 $P(\neg fever|cold, \neg flu, \neg malaria) = 0.6$ 

 $P(\neg fever | \neg cold, flu, \neg malaria) = 0.2$ 

 $P(\neg fever | \neg cold, \neg flu, malaria) = 0.1$ 

# Bayesian nets with continuous variables

Discrete (*Subsidy*? and *Buys*?); continuous (*Harvest* and *Cost*)



Option 1: discretization—possibly large errors, large CPTs Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)

2) Discrete variable, continuous parents (e.g., Buys?)

### Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

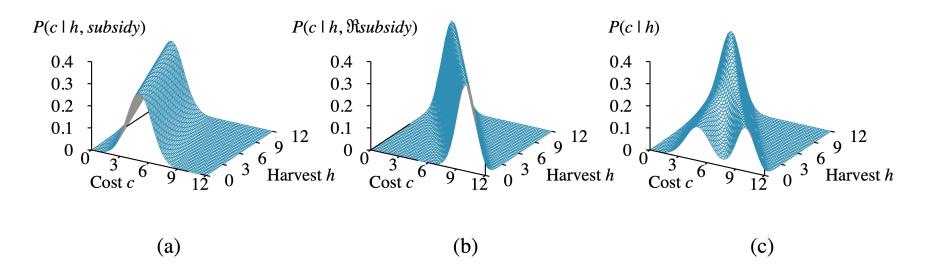
Most common is the linear Gaussian model, e.g.,:

$$\begin{aligned} P(Cost = c | Harvest = h, Subsidy? = true \\ &= N(a_t h + b_t, \sigma_t^2)(c) \\ &= \frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2\right) \end{aligned}$$

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works OK if the **likely** range of *Harvest* is narrow

# Continuous child variables



All-continuous network with LG distributions

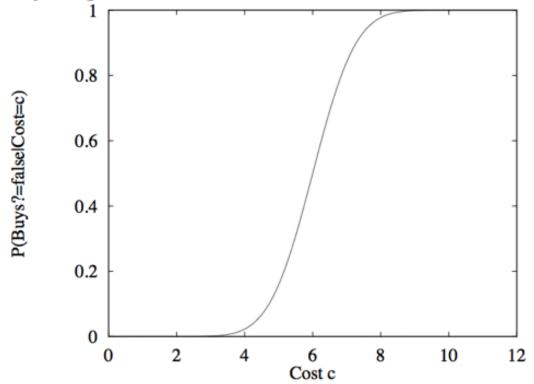
 $\Rightarrow$  full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Efficient Representation of conditional distributions

# Discrete variable w/ continuous parents

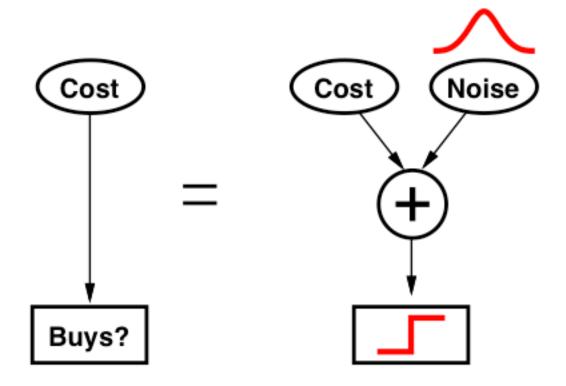
Probability of *Buys*? given *Cost* should be a "soft" threshold:



Probit distribution uses integral of Gaussian:  $\Phi(x) = \int_{-\infty}^{x} N(0, 1)(x) dx$   $P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma)$ 

### Discrete variable w/ continuous parents

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

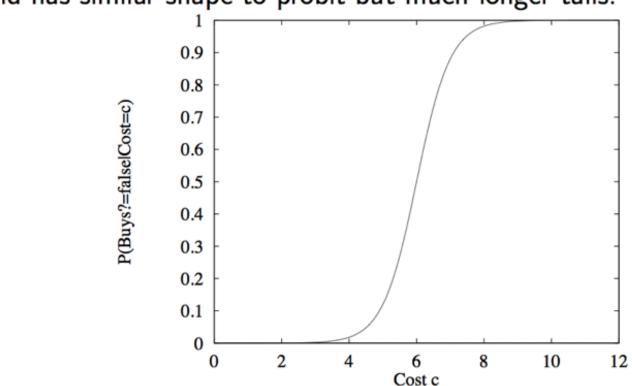


#### Discrete variable w/ continuous parents

Sigmoid (or logit) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c+\mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:



#### Inference tasks

- Simple queries: compute posterior marginal  $P(X_i | \mathbf{E} = \mathbf{e})$ e.g., P(NoGas | Gauge = empty, Lights = on, Starts = false)
- Conjunctive queries:  $\mathbf{P}(X_i, X_j | \mathbf{E} = \mathbf{e}) = \mathbf{P}(X_i | \mathbf{E} = \mathbf{e})\mathbf{P}(X_j | X_i, \mathbf{E} = \mathbf{e})$
- Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)
- Value of information: which evidence to seek next?
- Sensitivity analysis: which probability values are most critical?
- Explanation: why do I need a new starter motor?

#### Enumeration algorithm

```
function ENUMERATION-ASK(X, e, bn) returns a distribution over X
   inputs: X, the query variable
              e, observed values for variables E
              bn, a Bayesian network with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y}
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        extend e with value x_i for X
        \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(\text{VARS}[bn], \mathbf{e})
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY? (vars) then return 1.0
   Y \leftarrow \text{FIRST}(vars)
```

**if** Y has value y in **e** 

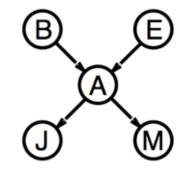
then return  $P(y | Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)$ else return  $\Sigma_y P(y | Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e_y)$ where  $e_y$  is e extended with Y = y

#### Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

 $\mathbf{P}(B, j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{P}(B, j, m, e, a)$ 

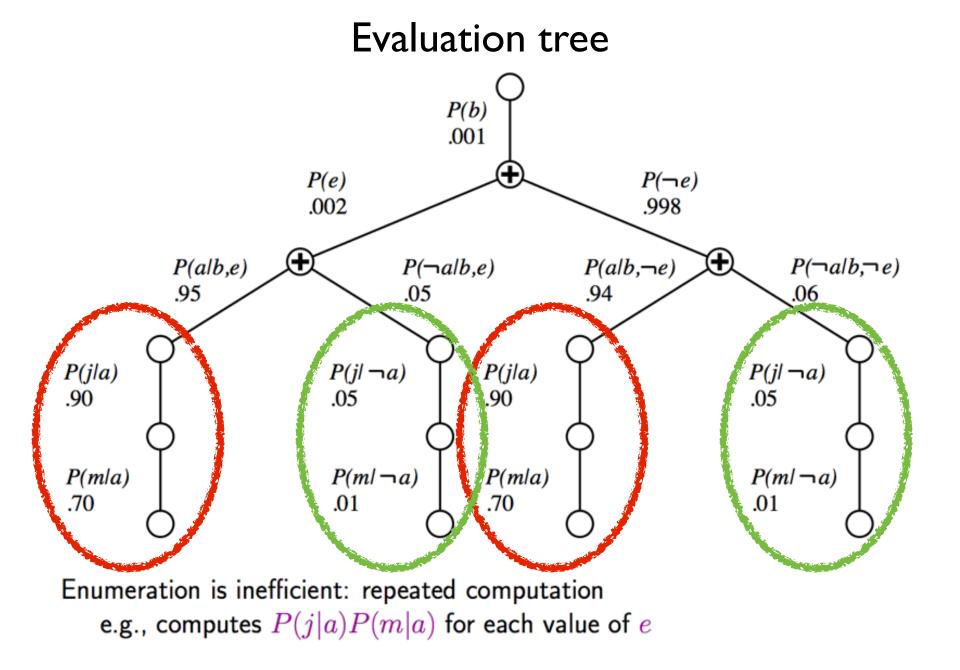


Rewrite full joint entries using product of CPT entries:

$$P(b|j,m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$$

Recursive depth-first enumeration: O(n) space,  $O(d^n)$  time

 $\mathbf{P}(B|j,m) = \alpha \langle 0.00059224, 0.0014919 \rangle \approx \langle 0.284, 0.716 \rangle$ 



#### Inference by variable elimination

$$\mathbf{P}(B \mid j, m) = \alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_1(B)} \sum_{e} \underbrace{P(e)}_{\mathbf{f}_2(E)} \sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{\mathbf{f}_3(A, B, E)} \underbrace{P(j \mid a)}_{\mathbf{f}_4(A)} \underbrace{P(m \mid a)}_{\mathbf{f}_5(A)}$$

$$\mathbf{f}_4(A) = \begin{pmatrix} P(j \mid a) \\ P(j \mid \neg a) \end{pmatrix} = \begin{pmatrix} 0.90 \\ 0.05 \end{pmatrix} \qquad \mathbf{f}_5(A) = \begin{pmatrix} P(m \mid a) \\ P(m \mid \neg a) \end{pmatrix} = \begin{pmatrix} 0.70 \\ 0.01 \end{pmatrix}$$

$$\mathbf{P}(B \mid j, m) = \alpha \, \mathbf{f}_1(B) \times \sum_e \mathbf{f}_2(E) \times \sum_a \mathbf{f}_3(A, B, E) \times \mathbf{f}_4(A) \times \mathbf{f}_5(A)$$

#### Inference by variable elimination

$$\mathbf{f}_{6}(B,E) = \sum_{a} \mathbf{f}_{3}(A,B,E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)$$
  
=  $(\mathbf{f}_{3}(a,B,E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)) + (\mathbf{f}_{3}(\neg a,B,E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a))$ 

$$\mathbf{P}(B \mid j, m) = \alpha \, \mathbf{f}_1(B) \times \sum_{e} \mathbf{f}_2(E) \times \mathbf{f}_6(B, E)$$

$$\mathbf{f}_{7}(B) = \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E)$$
$$= \mathbf{f}_{2}(e) \times \mathbf{f}_{6}(B, e) + \mathbf{f}_{2}(\neg e) \times \mathbf{f}_{6}(B, \neg e)$$

 $\mathbf{P}(B \mid j, m) = \alpha \, \mathbf{f}_1(B) \times \mathbf{f}_7(B)$ 

#### Variable elimination: Basic operations

Pointwise product of factors  $f_1$  and  $f_2$ :  $f_1(x_1, \ldots, x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l)$   $= f(x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_l)$  $E.g., f_1(a, b) \times f_2(b, c) = f(a, b, c)$ 

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

$$\sum_{x} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_{x} f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$$
assuming  $f_1, \ldots, f_i$  do not depend on  $X$ 

#### Variable elimination: Basic operations

Pointwise product of factors  $f_1$  and  $f_2$ :  $f_1(x_1, \ldots, x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l)$   $= f(x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_l)$  $E.g., f_1(a, b) \times f_2(b, c) = f(a, b, c)$ 

| A                                                                                                                                   | B | $\mathbf{f}_1(A,B)$ | B | C | $\mathbf{f}_2(B,C)$ | A | В | C | $\mathbf{f}_3(A, B, C)$ |
|-------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|---|---|---------------------|---|---|---|-------------------------|
| Т                                                                                                                                   | Т | .3                  | Т | Т | .2                  | Т | Т | Т | $.3 \times .2 = .06$    |
| T                                                                                                                                   | F | .7                  | Т | F | .8                  | T | Т | F | $.3 \times .8 = .24$    |
| F                                                                                                                                   | Т | .9                  | F | Т | .6                  | T | F | Т | $.7 \times .6 = .42$    |
| F                                                                                                                                   | F | .1                  | F | F | .4                  | T | F | F | $.7 \times .4 = .28$    |
|                                                                                                                                     |   |                     |   |   |                     | F | Т | Т | $.9 \times .2 = .18$    |
|                                                                                                                                     |   |                     |   |   |                     | F | Т | F | $.9 \times .8 = .72$    |
|                                                                                                                                     |   |                     |   |   |                     | F | F | Т | $.1 \times .6 = .06$    |
|                                                                                                                                     |   |                     |   |   |                     | F | F | F | $.1 \times .4 = .04$    |
| <b>Figure 14.10</b> Illustrating pointwise multiplication: $\mathbf{f}_1(A, B) \times \mathbf{f}_2(B, C) = \mathbf{f}_3(A, B, C)$ . |   |                     |   |   |                     |   |   |   |                         |

#### Variable elimination: Basic operations

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

$$\sum_{x} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_{x} f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$$
  
assuming  $f_1, \dots, f_i$  do not depend on  $X$   $X = variable$  to be summed out

$$\mathbf{f}(B,C) = \sum_{a} \mathbf{f}_{3}(A,B,C) = \mathbf{f}_{3}(a,B,C) + \mathbf{f}_{3}(\neg a,B,C)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix} + \begin{pmatrix} .18 & .72 \\ .06 & .04 \end{pmatrix} = \begin{pmatrix} .24 & .96 \\ .48 & .32 \end{pmatrix}.$$

| A | В                                                                                                                                   | $\mathbf{f}_1(A,B)$ | B | C | $\mathbf{f}_2(B,C)$ | A | В | C | $\mathbf{f}_3(A, B, C)$ |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|---|---------------------|---|---|---|-------------------------|--|
| Т | Т                                                                                                                                   | .3                  | Т | Т | .2                  | Т | Т | Т | $.3 \times .2 = .06$    |  |
| Т | F                                                                                                                                   | .7                  | Т | F | .8                  | Т | Т | F | $.3 \times .8 = .24$    |  |
| F | Т                                                                                                                                   | .9                  | F | Т | .6                  | Т | F | Т | $.7 \times .6 = .42$    |  |
| F | F                                                                                                                                   | .1                  | F | F | .4                  | Т | F | F | $.7\times.4{=}.28$      |  |
|   |                                                                                                                                     |                     |   |   |                     | F | Т | Т | $.9 \times .2 = .18$    |  |
|   |                                                                                                                                     |                     |   |   |                     | F | Т | F | $.9 \times .8 = .72$    |  |
|   |                                                                                                                                     |                     |   |   |                     | F | F | Т | $.1 \times .6 = .06$    |  |
|   |                                                                                                                                     |                     |   |   |                     | F | F | F | $.1\times.4{=}.04$      |  |
| F | <b>Figure 14.10</b> Illustrating pointwise multiplication: $\mathbf{f}_1(A, B) \times \mathbf{f}_2(B, C) = \mathbf{f}_3(A, B, C)$ . |                     |   |   |                     |   |   |   |                         |  |

45

#### Variable elimination algorithm

```
function ELIMINATION-ASK(X, e, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \dots, X_n)

factors \leftarrow []

for each var in ORDER(bn.VARS) do

factors \leftarrow [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors \leftarrow SUM-OUT(var, factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))
```

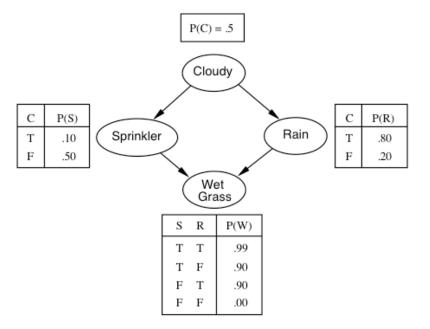
#### Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are  $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference  $\Rightarrow$  NP-hard
- equivalent to counting 3SAT models  $\Rightarrow$  #P-complete

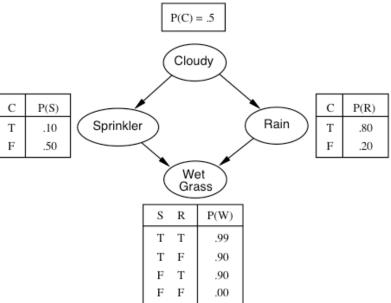


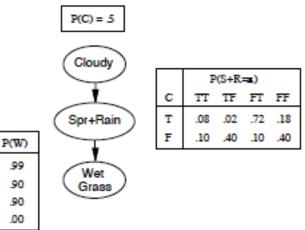
# Clustering algorithms

- Variable elimination algorithm is simple and efficient for answering individual queries
- For computation of posterior probabilities for all the variables in a network it can be less efficient:  $O(n^2)$
- Using clustering algorithms (also known as join tree algorithms), this can be reduced to O(n).
- The basic idea of clustering is to join individual nodes of the network to form cluster nodes in such a way that the resulting network is a polytree.

# Clustering algorithms

- Multiply connected network can be converted into a polytree by combining Sprinkler and Rain node into cluster node called Sprinkler+Rain.
- Two Boolean nodes replaced by a mega-node that takes on four possible values: *TT,TF, FT, FF*. The mega-node has only one parent, the Boolean variable *Cloudy*, so there are two conditioning cases.





S+R T T

ΤF

FΤ

FF

#### APPROXIMATE INFERENCE IN BAYESIAN NETWORKS

- Randomized sampling algorithms, also called Monte Carlo algorithms
- Provide approximate answers whose accuracy depends on the number of samples generated
- Monte Carlo algorithms are used in many branches of science to estimate quantities that are difficult to calculate exactly.
- Here: sampling applied to the computation of posterior probabilities
- Two families of algorithms: direct sampling and Markov chain sampling

- Generation of samples from a known probability distribution
- Example

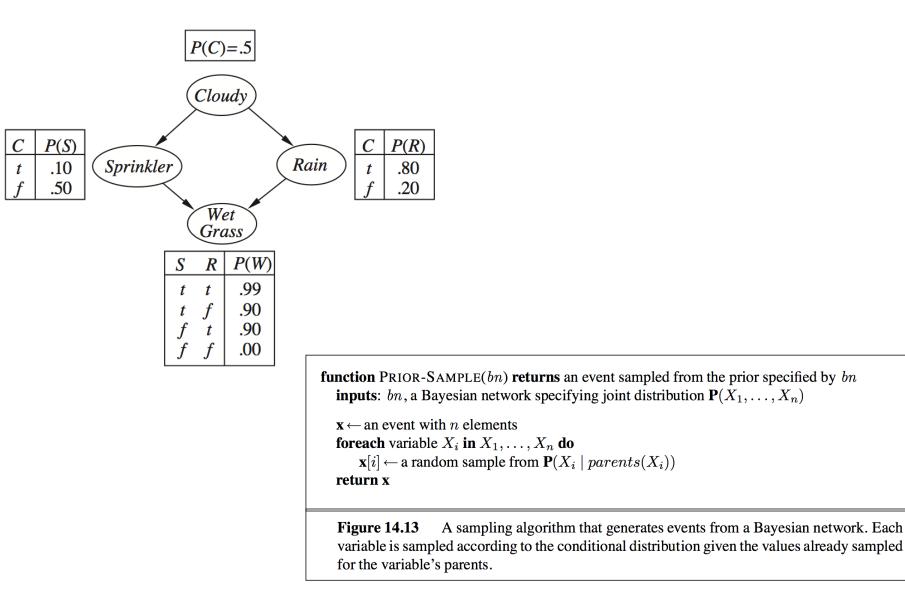
 $\mathbf{P}(\text{Coin}) = \langle 0.5, 0.5 \rangle$ 

• Sampling from this distribution is exactly like flipping the coin: with probability 0.5 it will return heads , and with probability 0.5 it will return tails.

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn inputs: bn, a Bayesian network specifying joint distribution  $\mathbf{P}(X_1, \ldots, X_n)$ 

```
\mathbf{x} \leftarrow an event with n elements
foreach variable X_i in X_1, \ldots, X_n do
\mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
return \mathbf{x}
```

**Figure 14.13** A sampling algorithm that generates events from a Bayesian network. Each variable is sampled according to the conditional distribution given the values already sampled for the variable's parents.



• PRIOR-SAMPLE generates samples from the prior joint distribution specified by the network

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Each sampling step depends only on the parent values

$$S_{PS}(x_1 \dots x_n) = P(x_1 \dots x_n) .$$

#### Computing answers

- Answers are computed by counting the actual samples generated
- Say, *N* total samples and *N*<sub>PS</sub>(*x*<sub>1</sub>,..., *x*<sub>n</sub>) number of times the event *x*<sub>1</sub>,...*x*<sub>n</sub> occurs in the samples

$$\lim_{N\to\infty}\frac{N_{PS}(x_1,\ldots,x_n)}{N}=S_{PS}(x_1,\ldots,x_n)=P(x_1,\ldots,x_n).$$

#### Computing answers

 $\lim_{N\to\infty}\frac{N_{PS}(x_1,\ldots,x_n)}{N}=S_{PS}(x_1,\ldots,x_n)=P(x_1,\ldots,x_n).$ 

• For example, consider the event produced earlier: [*true,false,true,true*]. The sampling probability for this event is

 $S_{PS}(true, false, true, true) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324$ .

• Hence, in the limit of large *N*, we expect 32.4% of the samples to be of this event.

```
function REJECTION-SAMPLING(X, \mathbf{e}, bn, N) returns an estimate of \mathbf{P}(X|\mathbf{e})
inputs: X, the query variable
\mathbf{e}, observed values for variables \mathbf{E}
bn, a Bayesian network
N, the total number of samples to be generated
local variables: \mathbf{N}, a vector of counts for each value of X, initially zero
for j = 1 to N do
\mathbf{x} \leftarrow PRIOR-SAMPLE(bn)
if \mathbf{x} is consistent with \mathbf{e} then
\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1 where x is the value of X in \mathbf{x}
return NORMALIZE(\mathbf{N})
```

**Figure 14.14** The rejection-sampling algorithm for answering queries given evidence in a Bayesian network.

 Let P(X|e) be the estimated distribution. Then from the definition just given

$$\hat{\mathbf{P}}(X \mid \mathbf{e}) = \alpha \, \mathbf{N}_{PS}(X, \mathbf{e}) = \frac{\mathbf{N}_{PS}(X, \mathbf{e})}{N_{PS}(\mathbf{e})}$$

$$\hat{\mathbf{P}}(X \mid \mathbf{e}) \approx \frac{\mathbf{P}(X, \mathbf{e})}{P(\mathbf{e})} = \mathbf{P}(X \mid \mathbf{e}) .$$

• Rejection sampling produces a consistent estimate of the true probability.

- Estimate *P*(*Rain* | *Sprinkler = true*), using 100 samples. Of the 100 that we generate, suppose that 73 have *Sprinkler = false* and are rejected, while 27 have *Sprinkler = true*.
- Of the 27, 8 have Rain = true and 19 have Rain = false.
- Thus,

 $\mathbf{P}(Rain | Sprinkler = true) \approx NORMALIZE( < 8,19 > ) = < 0.296,0.704 >$ 



How often does it rain the day after we have observed aurora borealis? Ignoring all those days with no aurora borealis...

### Likelihood weighting

- Likelihood weighting avoids the inefficiency of rejection sampling
- It generates only events that are consistent with the evidence **e**.
- It is a particular instance of the general statistical technique of importance sampling, tailored for inference in Bayesian networks.
- Let's see how it works...

#### Likelihood weighting

function LIKELIHOOD-WEIGHTING(X,  $\mathbf{e}, bn, N$ ) returns an estimate of  $\mathbf{P}(X|\mathbf{e})$ 

**inputs**: *X*, the query variable

e, observed values for variables E

bn, a Bayesian network specifying joint distribution  $\mathbf{P}(X_1, \ldots, X_n)$ 

N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do  $\mathbf{x}, w \leftarrow \text{WEIGHTED-SAMPLE}(bn, \mathbf{e})$   $\mathbf{W}[x] \leftarrow \mathbf{W}[x] + w$  where x is the value of X in  $\mathbf{x}$ return NORMALIZE( $\mathbf{W}$ )

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

 $w \leftarrow 1$ ;  $\mathbf{x} \leftarrow$  an event with n elements initialized from  $\mathbf{e}$ foreach variable  $X_i$  in  $X_1, \ldots, X_n$  do if  $X_i$  is an evidence variable with value  $x_i$  in  $\mathbf{e}$ then  $w \leftarrow w \times P(X_i = x_i \mid parents(X_i))$ else  $\mathbf{x}[i] \leftarrow$  a random sample from  $\mathbf{P}(X_i \mid parents(X_i))$ return  $\mathbf{x}, w$ 

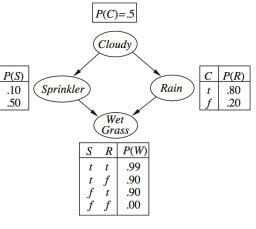
Approximate inference in BN

#### Approximate inference in BN

#### Likelihood weighting

For the evidence P(Rain | Cloudy = true , WetGrass = true )

- Cloudy is an evidence variable with value true. Therefore, we set
   w ← w×P(Cloudy=true) = 0.5.
- Sprinkler is not an evidence variable, so sample from *P*(*Sprinkler I Cloudy = true*) = (0.1,0.9); suppose this returns *false*.
- Similarly, sample from *P*(*RainlCloudy=true*) = (0.8,0.2); suppose this returns *true*.
- WetGrass is an evidence variable with value true. Therefore, we set
   w ← w × P(WetGrass=true | Sprinkler=false, Rain=true) = 0.5 x 0.9 = 0.45



С

#### Likelihood weighting

 The weight for a given sample x is the product of the likelihoods for each evidence variable given its parents

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i \mid parents(E_i))$$

 Multiplying the last two equations we see that the weighted probability of a sample has the particularly convenient form

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i)) \prod_{i=1}^{m} P(e_i | parents(E_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

Approximate inference in BN

#### Likelihood weighting

 For any particular value x of X, the estimated posterior probability can be calculated as follows:

$$\hat{P}(x \mid \mathbf{e}) = \alpha \sum_{\mathbf{y}} N_{WS}(x, \mathbf{y}, \mathbf{e}) w(x, \mathbf{y}, \mathbf{e}) \quad \text{from Likelihood-Weighting}$$

$$\approx \alpha' \sum_{\mathbf{y}} S_{WS}(x, \mathbf{y}, \mathbf{e}) w(x, \mathbf{y}, \mathbf{e}) \quad \text{for large } N$$

$$= \alpha' \sum_{\mathbf{y}} P(x, \mathbf{y}, \mathbf{e}) \quad \text{by Equation (14.9)}$$

$$= \alpha' P(x, \mathbf{e}) = P(x \mid \mathbf{e}) .$$

Hence, likelihood weighting returns consistent estimates.

Approximate inference in BN

#### Inference by Markov chain simulation

- Markov chain Monte Carlo (MCMC) algorithms work quite differently from rejection sampling and likelihood weighting.
- MCMC state change similar to SA
- Gibbs sampling well suited for BN
- Starts with an arbitrary state and generates a next state by randomly sampling a value for one of the nonevidence variables *X<sub>i</sub>*.
- Sampling for X<sub>i</sub> is done conditioned on the current values of the variables in the Markov blanket of X<sub>i</sub>.

# Inference by Markov chain simulation

- P(C) = .5Cloudy  $C \mid P(R)$ P(S)Sprinkler Rain .10 t .80 .50 .20 Wet Grass P(W)R.99 .90 .90 t .00
- **P**(*Rain* | *Sprinkler=true*, *WetGrass=true*)
- Initial state is [true, true, false, true]
- Cloudy:
  - P(Cloudy|Sprinkler=true,Rain=false). Suppose the result is Cloudy = false.
  - Then the new current state is [false, true, false, true].
- Rain:
  - Given the current values of its Markov blanket
     variables: P(Rain | Cloudy = false, Sprinkler = true,
     WetGrass = true). Suppose this yields Rain = true.
  - The new current state is [false, true, true, true].

#### Inference by Markov chain simulation

```
function GIBBS-ASK(X, \mathbf{e}, bn, N) returns an estimate of \mathbf{P}(X|\mathbf{e})
local variables: N, a vector of counts for each value of X, initially zero
Z, the nonevidence variables in bn
\mathbf{x}, the current state of the network, initially copied from \mathbf{e}
initialize \mathbf{x} with random values for the variables in Z
for j = 1 to N do
for each Z_i in Z do
set the value of Z_i in \mathbf{x} by sampling from \mathbf{P}(Z_i|mb(Z_i))
\mathbf{N}[x] \leftarrow \mathbf{N}[x] + 1 where x is the value of X in \mathbf{x}
return NORMALIZE(\mathbf{N})
```

**Figure 14.16** The Gibbs sampling algorithm for approximate inference in Bayesian networks; this version cycles through the variables, but choosing variables at random also works.

#### Summary

This chapter has described **Bayesian networks**, a welldeveloped representation for uncertain knowledge. Bayesian networks play a role roughly analogous to that of propositional logic for definite knowledge.

- A Bayesian network is a directed acyclic graph whose nodes correspond to random variables; each node has a conditional distribution for the node given its parents.
- Bayesian networks provide a concise way to represent
   conditional independence relationships in the domain.
- A Bayesian network specifies a full joint distribution; each joint entry is defined as the product of the corresponding entries in the local conditional distributions. A Bayesian network is often exponentially smaller than the full joint distribution.

### Summary (2)

- Inference in Bayesian networks means computing the probability distribution of a set of query variables, given a set of evidence variables. Exact inference algorithms, such as variable
   elimination, evaluate sums of products of conditional probabilities as efficiently as possible.
- In polytrees (singly connected networks), exact inference takes time linear in the size of the network. In the general case, the problem is intractable.
- Stochastic approximation techniques such as **likelihood weighting** and **Markov chain Monte Carlo** can give reasonable estimates of the true posterior probabilities in a network and can cope with much larger networks than can exact algorithms.