
PROBABILISTIC 
REASONING SYSTEMS

In which we explain how to build reasoning systems that use network 
models to reason with uncertainty according to the laws of probability 
theory. 
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Bayes’-Rule
Why is this rule useful?

• Causal experiences 
C: cause, E: effect

• Diagnostic Inference

This simple equation underlies

all modern AI systems for 

probabilistic inference

causal 
inferences

diagnostic  
inferences

Cause 
Mistake in 

technical system

Effect 
system behavior 
shows symptom

Bayes’ Rule
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Knowledge in uncertain domains

• Joint probability distribution
– delivers answers to questions 

that exists in domain
– Problem: intractable with large 

number of variables
– Specification  

Probabilities difficult for atomic 
events

• Complexity
– Independence and conditional 

dependence reduce complexity

• Bayesian Networks
– Data structure represents 

dependencies between 
variables

– Specification of joint 
distribution

Knowledge in uncertain domains
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Syntax

• Graph-theoretical structure
– Set of variables as nodes 

(discrete, continuous)
– Each node corresponds to 

random variable
– Directed acyclic graph (DAG), 

links express causal 
dependencies between variables

• Conditional probability tables
– For each node a table for 

conditional probabilities
– Table consists of distribution of 

probabilities given their parents 
P(Xi|Parents(Xi))

Probabilistic Networks

Cavity

Toothache Catch

Weather
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Simple Bayesian Network • Example Alarm
– new burglar alarm fairly 

reliable at detecting a 
burglary

– also responds on occasion to 
minor earthquake

– two neighbors, John and Mary 
have promised to call  when 
they hear the alarm

– John always calls when he 
hears alarm, but sometimes 
confuses the telephone 
ringing with the alarm and 
calls then too

– Mary likes loud music and 
sometimes misses the alarm 
altogether

– Given the evidence of who 
has or has not called, we 
would like to estimate the 
probability of a burglary.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

Probabilistic Networks
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Simple Bayesian Network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B E P(A)
1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

A P(J)
1 0.90
0 0.05

A P(M)
1 0.70
0 0.01

P(E)
0.002

P(B)
0.001

 conditional distributions

Probabilistic Networks
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Semantics of Bayesian Networks

• Two views on semantics
1.Global Semantics: The first 

is to see the network as a 
representation of the joint 
probability distribution

2.Local Semantics: The 
second is to view it as an 
encoding of a collection of 
conditional independence 
statements

• Views are equivalent
– first helpful in 

understanding how to 
construct networks

– second helpful in designing 
inference procedures

Semantics of Bayesian Networks



9

Representing the full joint distribution

• General idea
– Joint distribution can be expressed 

as product of local conditional 
probabilities

– Every entry in the joint probability 
distribution can be calculated from 
the information in the network.

– Generic entry

Burglary Earthquake

JohnCalls MaryCalls

Alarm

Global Semantics
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• Example
– Alarm has sounded but neither a 

burglary nor an earthquake has 
occurred,  and both John and Mary 
call

B E P(A)

1 1 0.95
1 0 0.94
0 1 0.29
0 0 0.001

A P(J)

1 0.90
0 0.05

A P(M)

1 0.70
0 0.01

P(E)

0.002

P(B)

0.001

Global Semantics

Representing the full joint distribution

– P (j ∧ m ∧ a ∧ ¬b ∧ ¬e) 
= P (j|a) P(m|a) P(a|¬b,¬e) P(¬b) P(¬e)  
= 0.9 × 0.7 × 0.001 × 0.999 × 0.998 
≈ 0.00063 
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Method for Constructing Bayesian Networks

• Generic Rule 

– Semantic 
but: not how to construct a 
network 

– Implicitly: conditional 
independence  
Help for Knowledge 
Engineer

• Reformulate the rule 
– Use of conditional 

probabilities  
 Product rule

• Repeat process 
– Reduction of conjunctive 

probabilities to a conditional 
dependency and a smaller 
conjunction 

– Final: a big product

Global Semantics
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Chain rule

• Compare with  
 
 
reveals that specification is equivalent to 
general assertion

 
P(Xi|Xi-1,…,x1) = P(Xi|Parents(Xi)) 

(as long as Parents(Xi) ⊆ {Xi-1,…,X1})

• I.e.:
– This last condition is satisfied 

by labeling the nodes in any 
order that is consistent with 
the partial order implicit in the 
graph structure.

– The Bayesian network is a 
correct representation of the 
domain only if each node is 
conditionally independent of its 
predecessors in the node 
ordering, given its parents.

Global Semantics
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Construction of Bayesian Networks

• Important while constructing
– We need to choose parents for each 

node such that this property holds.

• Intuitive

– Parents of node Xi should contain all 
those nodes in X1,…Xi-1 that 
directly influence Xi

– Example.:
• M (is influenced by B or E but not 

directly)

• Influenced by A, and J calls are not 
evident

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(M|J,A,E,B) = P(M|A)

Global Semantics
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General Procedure

1. Choose the set of relevant variables Xi  that describe the 
domain. 

2. Choose an ordering for the variables.  
(Any ordering works, but some orderings work better than others, as we will 
see.)

3. While there are variables left:
a) Pick a variable Xi and add a node to the network for it.
b) Set Parents(Xi) to some minimal set of nodes already in the net such that 

the conditional independence property is satisfied.
c) Define the conditional distribution P(Xi|Parents(Xi))

Global Semantics
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Notes

• Construction method guarantees that the network is 
acyclic
– Because each node is connected only to earlier nodes.

• Redundancies
– No redundant probability values
– Exception:  for one entry in each row of each conditional 

probability table, if (P(x2|x1) P(¬x2|x1)) is redundant

• This means that it is impossible for the knowledge engineer 
or domain expert to create a Bayesian network that violates 
the axioms of probability!

Global Semantics



16

Compactness

• Compactness
– A Bayesian Network is a 

complete and not-redundant 
representation of a domain

– Can be more compact as a 
joint distribution

– This is important in practice
– Compactness is an example 

for property that we call in 
local structure (or sparse 
coded) in general

• Local Structures (also: sparse)
– Each sub-component is 

connected to a limited 
number of other components

– Complexity: linear instead of 
exponential

– With BN: in most domains 
one variable is influenced by k 
others, with n variables 2k 
conditional probabilities, the 
whole network n2k

– In contrast, the full joint 
distribution contains 2n 
numbers 

Global Semantics
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 Node Ordering

• Local structures (example)
– 30 nodes, each max. 5 parents
– 960 for BN, > 1 billion with 

joint distribution

• Construction
– Not trivial
– Variable directly influenced 

only from a few others
– Set parent node 

“appropriately” ➞ Network 
topology

– “Direct influencers” first
– Thus: correct order important

• Order
– Add:

• root first
• then direct influencers
• then down to leaves

– What happens with “wrong” 
order?

Global Semantics



18

Example ordering

• Let us consider the burglary 
example again. 

• Suppose we decide to add the 
nodes in the order 

– M, J, A, B, E
– M, J, E, B, A

Burglary Earthquake

JohnCalls MaryCalls

Alarm

Global Semantics



Example
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Example contd.
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Example contd.
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Example contd.
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Example contd.
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Example contd.
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Example ordering (2)

Burglary

Earthquake

JohnCallsMaryCalls

Alarm

1 2

3

4 5

• Order 
– M,J,E,B,A

• Network
– 31 probabilities
– like full joint distribution
– thus: bad choice

• All three networks represent 
same probability distribution

• Last two versions
– simply fail to represent all the 

conditional independence 
relationships

– end up specifying a lot of 
unnecessary numbers instead. 

Global Semantics
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Conditional independence relations in Bayesian 
networks

• Before
– “numerical (global) semantics 

with probability distribution

– from this derive conditional 
independencies 

• Idea now
– opposite direction: topological 

(local) semantics

– specifies conditional 
independencies

– from this derive numerical 
semantics

Burglary Earthquake

JohnCalls MaryCalls

Alarm

Local Semantics
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• General idea
– A node is conditionally 

independent of its non-
descendants given its parents

– A node is conditionally 
independent of all other nodes in 
the network given its parents, 
children, and children’s parents—
that is, given its Markov 
blanket

Burglary Earthquake

JohnCalls MaryCalls

Alarm

Conditional independence relations in Bayesian 
networks

Local Semantics

• Examples 
J is independent of B and E given A, i.e. 
P(J|A,B,E) = P(J|A)  
 
B is independent of J and M given A and E, i.e. 
P(B|A,E,J,M) = P(B|A,E)  
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• Node X is conditionally 
independent of its non-descendants 
(e.g., the Zij s) given its parents (the 
Uij s)

• A node X is conditionally 
independent of all other nodes in 
the network given its Markov 
blanket. 

Local Semantics

Conditional independence relations in Bayesian 
networks



29Efficient Representation of conditional distributions

Compact conditional distributions
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Compact conditional distributions

P (¬fever|cold,¬flu,¬malaria) = 0.6

P (¬fever|¬cold, f lu,¬malaria) = 0.2

P (¬fever|¬cold,¬flu,malaria) = 0.1
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Bayesian nets with continuous variables

Subsidy?

Buys?

Harvest

Cost
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Continuous child variables

2



33Efficient Representation of conditional distributions

Continuous child variables
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Discrete variable w/ continuous parents

Subsidy?

Buys?

Harvest

Cost
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Discrete variable w/ continuous parents
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Discrete variable w/ continuous parents



37Exact inference by enumeration

Inference tasks
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Enumeration algorithm
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Inference by enumeration

P(B|j,m) = ↵h0.00059224, 0.0014919i ⇡ h0.284, 0.716i

<latexit sha1_base64="e0AiG8DbbZ0xkrC+azfkn89N8wY="></latexit>

P (b|j,m) = ↵
X

e

X

a

P (b)P (e)P (a|b, e)P (j|a)P (m|a)

<latexit sha1_base64="iSh0IN7RqaZW3RGq0diCQBplaDw=">AAACH3icbZBLSwMxFIUzvq2vqks3wSIoSJn6qF0W3bisYFuhU+VO5o5Gk8yQZJQy9H+4rX/Gnbj1v7gwrRV8HQh8nHMvuZwwFdxY33/zJianpmdm5+YLC4tLyyvF1bWWSTLNsMkSkeiLEAwKrrBpuRV4kWoEGQpsh3cnw7x9j9rwRJ3bXopdCdeKx5yBddZlHoQxbfS3j3dvd+XOVbHkl6u1/cPqPvXL/ki08htKZKzGVfE9iBKWSVSWCTCmU/FT281BW84E9gtBZjAFdgfX2HGoQKLp5qOr+3TLORGNE+2esnTkft/IQRrTk6GblGBvzO9saP6XdTIb17o5V2lmUbHPj+JMUJvQYQU04hqZFT0HwDR3t1J2AxqYdUUVAo0KH1giJagoD2KQXPQijCETtp8HJv7igqvrTzl/obVXrlTLB2cHpXptXNwc2SCbZJtUyBGpk1PSIE3CiCaPZECevIH37L14r5+jE954Z538kPf2ASx5o6I=</latexit>

P(B, j,m)
<latexit sha1_base64="JkcjlKEWADoo28Pg20v8OX2o568="></latexit>

= ↵P(B, j,m)
<latexit sha1_base64="vUUznu7B5haZwxbCiVr6CXKcaIA="></latexit>

= ↵
X

e

X

a

P(B, j,m, e, a)
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Evaluation tree
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Inference by variable elimination
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Inference by variable elimination



43Exact inference by enumeration

Variable elimination: Basic operations

Pointwise product of factorsf1andf2 :
f1(x1, . . . , xj , y1, . . . , yk)⇥ f2(y1, . . . , yk, z1, . . . , zl)
= f(x1, . . . , xj , y1, . . . , yk, z1, . . . , zl)
E.g., f1(a, b)⇥ f2(b, c) = f(a, b, c)

<latexit sha1_base64="OJ78PhF9t/YBG0fzPS+pAxGAdYA="></latexit>

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

<latexit sha1_base64="xTrMYrmz8nMOxCnUMb0u9/ngzF4=">AAADX3icbVJNb9NAEHUcoCUtbQonBEIrIiQOVRRTKB+nCi4cW0HaSrFVrdfjZBXvrrUfaS3LR/5Tfwc3JC6c+ROM7QAlYaS1xvPezNt52jjPuLGj0beO3711+87G5t3e1va9nd3+3v1To5xmMGYqU/o8pgYyLmFsuc3gPNdARZzBWTz/UONnC9CGK/nZFjlEgk4lTzmjFksXex0XJpBiczOqFAXiIC2tSiaKeVWO9kfDw/36+7LqrVDjzEFV6mmMtGFNqc8rpEm4ZEoIKpMyFNRWkyAqQwtXdk1kEFQrfJSQ6w2tVMuu6y2v/OSE4HJKlLMVoWRBNae4OUm1Evifa5U4ZolKSUqZVdq8q8JwOUGoBRAqC8KUNJZK+5tTTzM8AWJnQAwqNFb9baRJQlyOSIyI5gwM4ZLkikt7yQ3cVNUgKJf1DZezccokgKvooj9Au5og60mwTAZHj69Pfn55cn180f8aJoo5gbaxjBozCUa5jUqqLWcZoCvOQE7ZHI2dYCqpABOVjX0VeYaVhKRK48E9m+rNjpIKYwoRIxNXmplVrC7+D5s4m76JSi5zZ0GyVih1GbGK1I+NJFwDs1mBCWWa410Jm1GNXuCT7DUmvK3j8M/K68npi2FwMDw4QTfee21seo+8p95zL/Bee0feR+/YG3us8933/S1/2//R3ejudPst1e8sex54/0T34S+3Whxb</latexit>

⌃xf1 ⇥ · · · ⇥ fk = f1 ⇥ · · · ⇥ fi⌃x fi+1 ⇥ · · · ⇥ fk = f1 ⇥ · · · ⇥ fi ⇥ fX̄

assuming f1, . . . , fi do not depend onX
<latexit sha1_base64="aqeXn6Ga999+fl4lmRIfCYjArpA=">AAAD7XicfVPNbtQwEE4Tfsry0y09cjG0SEhEq00LBYQqVXDpsQi2XWm9WjmOszUb21HswEaW3wEhcQAhrrwPN96Ax2CSlKrsQkdy9GXmm/lmxkmcZ1ybfv/nih9cunzl6uq1zvUbN2+tdddvH2lVFpQNqMpUMYyJZhmXbGC4ydgwLxgRccaO49nLOn78jhWaK/nGVDkbCzKVPOWUGHBN1v0AJyzFotKlsDhmUy7tQTllDotYze0Wfs2ngmw5zGTSBlynydCGC6atxSFuEA6dQwg1Qeil6cyKCuSYNMRZKqqZs/2w39sN6+cjt0iNs5I5W0xjoPVqSn0eA02y91QJQaADLIhxo2hssWFzsySyGbkFPkjI5YRWqmVDRdvOP5mjdBKh09EQpoky+uw1nczQXudCAkfoTyX8HN4tfxi5/9A7Tb2LBfk5DJdDCjt0zmE82mbzcaeZyBINelxOYf+omQUqhjirK4VQAZwNDYeJQlIZlLAcrhIpeZYwdJPuJmy7MbQMolOwuX93z3ysNn4dTro/cKJoKWDrNIMORlE/N2NLCsNpxmCppWY5oTO4lxFASWCGsW2279B98CQoVQUcaVDjPZ9hidC6EjEwob0TvRirnf+KjUqTPh1bLvPSMElbobTMkFGo/vRRwgtGTVYBILTg0CuiJ6Qg1MAP0mmW8Ky23bORl8HRdi/a6e28gm288Fpb9e5497wHXuQ98fa9A+/QG3jUf+t/8D/7XwIVfAq+Bt9aqr9ymrPh/WXB998ejVA+</latexit>



44Exact inference by enumeration

Variable elimination: Basic operations

Pointwise product of factorsf1andf2 :
f1(x1, . . . , xj , y1, . . . , yk)⇥ f2(y1, . . . , yk, z1, . . . , zl)
= f(x1, . . . , xj , y1, . . . , yk, z1, . . . , zl)
E.g., f1(a, b)⇥ f2(b, c) = f(a, b, c)

<latexit sha1_base64="OJ78PhF9t/YBG0fzPS+pAxGAdYA="></latexit>



45Exact inference by enumeration

Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

<latexit sha1_base64="xTrMYrmz8nMOxCnUMb0u9/ngzF4="></latexit>

⌃xf1 ⇥ · · · ⇥ fk = f1 ⇥ · · · ⇥ fi⌃x fi+1 ⇥ · · · ⇥ fk = f1 ⇥ · · · ⇥ fi ⇥ fX̄

assuming f1, . . . , fi do not depend onX
<latexit sha1_base64="aqeXn6Ga999+fl4lmRIfCYjArpA="></latexit>

X = variable to be summed out
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Variable elimination algorithm



47Exact inference by enumeration

Complexity of exact inference



48Exact inference by enumeration

Clustering algorithms

• Variable elimination algorithm is simple and efficient for 
answering individual queries

• For computation of posterior probabilities for all the 
variables in a network it can be less efficient: O(n2)

• Using clustering algorithms (also known as join tree 
algorithms), this can be reduced to O(n).

• The basic idea of clustering is to join individual nodes of 
the network to form cluster nodes in such a way that the 
resulting network is a polytree.



49Exact inference by enumeration

Clustering algorithms

• Multiply connected network can be 
converted into a polytree by 
combining Sprinkler and Rain node 
into cluster node called 
Sprinkler+Rain. 

• Two Boolean nodes replaced by a 
mega-node that takes on four 
possible values:  TT, TF, FT, FF. The 
mega-node has only one parent, the 
Boolean variable Cloudy, so there are 
two conditioning cases.



APPROXIMATE INFERENCE IN BAYESIAN 
NETWORKS

• Randomized sampling algorithms, also called Monte 
Carlo algorithms 

• Provide approximate answers whose accuracy depends 
on the number of samples generated 

• Monte Carlo algorithms are used in many branches of 
science to estimate quantities that are difficult to 
calculate exactly. 

• Here: sampling applied to the computation of posterior 
probabilities 

• Two families of algorithms: direct sampling and Markov 
chain sampling

50



Direct sampling methods

• Generation of samples from a known probability 
distribution 

• Example 
 

• Sampling from this distribution is exactly like 
flipping the coin: with probability 0.5 it will return 
heads , and with probability 0.5 it will return tails.

51

P(Coin) = ⟨0.5,0.5⟩

Approximate inference in BN



Direct sampling methods

52Approximate inference in BN



Direct sampling methods

53Approximate inference in BN



Direct sampling methods

• PRIOR-SAMPLE generates samples from the prior 
joint distribution specified by the network 

• Each sampling step depends only on the parent 
values

54Approximate inference in BN

SPS(x1 … xn) = P(x1 … xn) .



Computing answers

• Answers are computed by counting the actual 
samples generated 

• Say, N total samples and NPS(x1,…, xn) number of 
times the event x1,…xn occurs in the samples

55Approximate inference in BN



Computing answers

• For example, consider the event produced earlier: 
[true,false,true,true]. The sampling probability for 
this event is 
 

• Hence, in the limit of large N, we expect 32.4% of 
the samples to be of this event.

56Approximate inference in BN



Rejection sampling

57Approximate inference in BN



• Let P(X|e) be the estimated distribution. Then 
from the definition just given 

• Rejection sampling produces a consistent estimate 
of the true probability.

58Approximate inference in BN

Rejection sampling 
＾



• Estimate P(Rain | Sprinkler = true), using 100 
samples. Of the 100 that we generate, suppose 
that 73 have Sprinkler = false and are rejected, 
while 27 have Sprinkler = true. 

• Of the 27, 8 have Rain = true and 19 have Rain = 
false.  

• Thus,

59Approximate inference in BN

Rejection sampling

P(Rain |Sprinkler = true) ≈ NORMALIZE( < 8,19 > ) = < 0.296,0.704 >



Rejection sampling

60

How often does it rain the day after we have observed aurora 
borealis? Ignoring all those days with no aurora borealis…



• Likelihood weighting avoids the inefficiency of 
rejection sampling 

• It generates only events that are consistent with 
the evidence e.  

• It is a particular instance of the general statistical 
technique of importance sampling, tailored for 
inference in Bayesian networks. 

• Let’s see how it works…

61Approximate inference in BN

Likelihood weighting 



62Approximate inference in BN

Likelihood weighting



63Approximate inference in BN

Likelihood weighting

• Cloudy is an evidence variable with  
value true. Therefore, we set  
w ← w×P(Cloudy=true) = 0.5 .

• Sprinkler is not an evidence variable, so sample from 
P(Sprinkler | Cloudy = true ) = ⟨0.1,0.9⟩; suppose this 
returns false.

• Similarly, sample from P(Rain|Cloudy=true) = 
⟨0.8,0.2⟩; suppose this returns true .

• WetGrass is an evidence variable with value true. 
Therefore, we set 
w ← w × P(WetGrass=true | Sprinkler=false, Rain=true ) =  
0.5 x 0.9 = 0.45 

For the evidence P(Rain | Cloudy = true , WetGrass = true )



64Approximate inference in BN

• The weight for a given sample x is the product of the 
likelihoods for each evidence variable given its 
parents

• Multiplying the last two equations we see that the 
weighted probability of a sample has the particularly 
convenient form

Likelihood weighting



65Approximate inference in BN

• For any particular value x of X, the estimated posterior 
probability can be calculated as follows:

• Hence, likelihood weighting returns consistent 
estimates.

Likelihood weighting



Inference by Markov chain simulation

• Markov chain Monte Carlo (MCMC) algorithms 
work quite differently from rejection sampling and 
likelihood weighting. 

• MCMC state change similar to SA 
• Gibbs sampling well suited for BN 
• Starts with an arbitrary state and generates a next 

state by randomly sampling a value for one of the 
nonevidence variables Xi.  

• Sampling for Xi is done conditioned on the current 
values of the variables in the Markov blanket of Xi.

66Approximate inference in BN



Inference by Markov chain 
simulation

• P(Rain | Sprinkler=true, WetGrass=true) 
• Initial state is [true,true,false,true] 
• Cloudy: 

– P(Cloudy|Sprinkler=true,Rain=false). Suppose the 
result is Cloudy = false. 

– Then the new current state is [false,true,false,true]. 
• Rain: 

– Given the current values of its Markov blanket 
variables: P(Rain | Cloudy = false , Sprinkler = true , 
WetGrass = true ). Suppose this yields Rain = true . 

– The new current state is [false,true,true,true].

67Approximate inference in BN



Inference by Markov chain simulation

68Approximate inference in BN



Summary

This chapter has described Bayesian networks, a well-
developed representation for uncertain knowledge. Bayesian 
networks play a role roughly analogous to that of propositional 
logic for definite knowledge.

•  A Bayesian network is a directed acyclic graph whose nodes 
correspond to random variables; each node has a conditional 
distribution for the node given its parents.

• Bayesian networks provide a concise way to represent 
conditional independence relationships in the domain.

• A Bayesian network specifies a full joint distribution; each joint 
entry is defined as the product of the corresponding entries in 
the local conditional distributions. A Bayesian network is often 
exponentially smaller than the full joint distribution.

69



Summary (2)

• Inference in Bayesian networks means computing the probability 
distribution of a set of query variables, given a set of evidence 
variables. Exact inference algorithms, such as variable 
elimination, evaluate sums of products of conditional 
probabilities as efficiently as possible.

• In polytrees (singly connected networks), exact inference takes 
time linear in the size of the network. In the general case, the 
problem is intractable.

• Stochastic approximation techniques such as likelihood 
weighting and Markov chain Monte Carlo can give 
reasonable estimates of the true posterior probabilities in a 
network and can cope with much larger networks than can 
exact algorithms.
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