PROBABILISTIC
REASONING SYSTEMS

In which we explain how to build reasoning systems that use network
models to reason with uncertainty according to the laws of probability
theory.
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Bayes’-Rule

Why is this rule useful?

® Causal experiences
C: cause, E: effect

® Diagnostic Inference

_P(E|C)P(C)

P(C|E) P(E)

This simple equation underlies
all modern Al systems for

probabilistic inference

Bayes’ Rule

causal
inferences

Cause
Mistake in
technical system

\4

VAN

Effect
system behavior
shows symptom

diagnostic
inferences




Knowledge in uncertain domains

* Joint probability distribution o Complexity

— delivers answers to questions — Independence and conditional
that exists in domain dependence reduce complexity
— Problem: intractable with large
number of variables e Bayesian Networks
— Specification . — Data structure represents
Probabilities difficult for atomic dependencies between
events variables
— Specification of joint
distribution

Knowledge in uncertain domains



Syntax

* Graph-theoretical structure e Conditional probability tables

— Set of variables as nodes — For each node a table for
(discrete, continuous) conditional probabilities

— Each node corresponds to — Table consists of distribution of
random variable probabilities given their parents

— Directed acyclic graph (DAG), P(Xj|Parents(X)))

links express causal
dependencies between variables

Toothache @

Probabilistic Networks



Simple Bayesian Network -+ Example Alarm

Burglary

Earthquake

Probabilistic Networks

— new burglar alarm fairly
reliable at detecting a
burglary

— also responds on occasion to
minor earthquake

— two neighbors, John and Mary
have promised to call when
they hear the alarm

— John always calls when he
hears alarm, but sometimes
confuses the telephone
ringing with the alarm and
calls then too

— Mary likes loud music and
sometimes misses the alarm
altogether

— Given the evidence of who
has or has not called, we
would like to estimate the
probability of a burglary.



Simple Bayesian Network

Burglary Earthquake OP(()?))1 OP(()E))Z
B| E| P(A)
11 1] 0.95
11 0] 0.94
0| 1| 0.29
0| O00.001
Al PU) A | P(M)
11 0.90 11 0.70
0| 0.05 0| 0.01

conditional distributions

Probabilistic Networks



Semantics of Bayesian Networks

e Two views on semantics e Views are equivalent
1. Global Semantics: The first — first helpful in
is to see the network as a understanding how to
representation of the joint construct networks
probability distribution — second helpful in designing
2. Local Semantics: The inference procedures

second is to view it as an
encoding of a collection of
conditional independence
statements

Semantics of Bayesian Networks



Representing the full joint distribution

e General idea

— Joint distribution can be expressed
as product of local conditional
probabilities

— Every entry in the joint probability
distribution can be calculated from
the information in the network.

— Generic entry

P(x,,....,Xx )= HP(X,- | Parents(X,)

Global Semantics



QP

Representing the full joint distribution joy

g O

* Example
— Alarm has sounded but neither a P(B) P(E)
burglary nor an earthquake has 0.001 0.002
ocITurred, and both John and Mary PA)
ca

— P(jAm~aan-b A -e)
= P (jla) P(m[a) P(a|=b,=e) P(=b) P(=e)

OOAAw
OO |=||M
o
(o)

AN

=0.9 x 0.7 x 0.00] x 0.999 x 0.998 0.001

~ 0.00063
Al PQU) A| P(M)
11 0.90 11 0.70
0| 0.05 0| 0.01

Global Semantics 10



Method for Constructing Bayesian Networks

e Generic Rule e Reformulate the rule

— Use of conditional
probabilities

P(x,,...,X, )= HP(X, | Parents(X;)
- - Product rule

— Semantic
P(x.,... =P P(x ...,
but: not how to construct a (Xiovees X ) = Py [ X X0 ) P (X0 X0)
network e Repeat process
— Implicitly: conditional — Reduction of conjunctive
independence probabilities to a conditional
~>Help for Knowledge dependency and a smaller
Engineer conjunction
— Final: a big product
P(X,yee0s X, ) =P(X, | X, jyeees X, )P(X_ | X, _pseees X, ) .P(X, | X,)P HP X, |x, e X))

Global Semantics



Chain rule

P(X,yees X, ) = P(X, | X, _pyeees Xp YP(X o | X gseees X, )P (X, | X)P(X,) = ﬁP(x. | Xi_jseees X;)

1=1

e Compare with o |e.:
P(X,,.... X )= HP(X’ | Parents(X,) — This last condition is satisfied
=1 by labeling the nodes in any
reveals that specification is equivalent to order that is consistent with
general assertion the partial order implicit in the
graph structure.
P(X|X.,....x,) = P(X|Parents(X)) — The Bayesian network is a

correct representation of the
domain only if each node is

(as long as Parents(X)) € {X.,,...,.X,}) conditionally independent of its
predecessors in the node
ordering, given its parents.

Global Semantics 12



Construction of Bayesian Networks

* Important while constructing

— We need to choose parents for each Burglary Earthquake

node such that this property holds.

* Intuitive
— Parents of node X should contain all @

those nodes in X,,... X, that
directly influence Xi

— Example.:
* M (is influenced by B or E but not @ @

directly)

* Influenced by A, and ] calls are not
evident

P(M|)J,A,E,B) = P(M|A)

Global Semantics



General Procedure

1. Choose the set of relevant variables X, that describe the
domain.

2. Choose an ordering for the variables.
(Any ordering works, but some orderings work better than others, as we will

see.)

3. While there are variables left:
a) Pick a variable X; and add a node to the network for it.

D) Set Parents(Xj) to some minimal set of nodes already in the net such that
the conditional independence property is satisfied.

C) Define the conditional distribution P(X|Parents(X))

Global Semantics



Notes

* Construction method guarantees that the network is
acyclic

— Because each node is connected only to earlier nodes.

* Redundancies
— No redundant probability values

— Exception: for one entry in each row of each conditional
probability table, if (P(x,|x,) P(7x,|x,)) is redundant

* This means that it is impossible for the knowledge engineer
or domain expert to create a Bayesian network that violates
the axioms of probability!

Global Semantics 15



Compactness

* Compactness

— A Bayesian Network is a

complete and not-redundant
representation of a domain

— Can be more compact as a

joint distribution

— This is important in practice

— Compactness is an example
for property that we call in

local structure (or sparse
coded) in general

Global Semantics

e Local Structures (also: sparse)

Each sub-component is
connected to a limited
number of other components

Complexity: linear instead of
exponential

With BN:in most domains
one variable is influenced by k
others, with n variables 2k
conditional probabilities, the
whole network n2k

In contrast, the full joint
distribution contains 2n
numbers



Node Ordering

* Local structures (example) e Order
— 30 nodes, each max. 5 parents — Add:
— 960 for BN, > | billion with * root first

joint distribution e then direct influencers

e then down to leaves

Construction — What happens with “wrong”
— Not trivial order?

— Variable directly influenced
only from a few others

— Set parent node
“appropriately” = Network
topology

— “Direct influencers” first

— Thus: correct order important

Global Semantics



Example ordering

* Let us consider the burglary
example again.

* Suppose we decide to add the
nodes in the order

~ M,J,A,B,E
~ M,J,E,B,A

Global Semantics 18



Example

Suppose we choose the ordering M, J, A, B,

P(J|M) = P(J)?

19



Example contd.

Suppose we choose the ordering M, J, A, B, E

Crycate)
<

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)?



Example contd.

Suppose we choose the ordering M, J, A, B, E

Clrycote

N\ e

Burglary

P(J|M) = P(J)? No

P(A|J, M) = P(A|J)? P(A|J, M) = P(A)? No
P(B|A, J, M) = P(B|A)?

P(B|A, J, M) = P(B)?

21



Example contd.

Suppose we choose the ordering M, J, A, B,

@‘®

()

Burglary
Earthquake
J)? No

P(J|M) = P(J)

P(A|J, M) = P(A|J)? P(A|J,M)= P(A)? No
P(B|A,J,M) = P(B|A)? Yes
P(B|A,J,M)= P(B)? No

P(E|B,A,J, M) = P(E|A)?

P(E|B, A, J, M) = P(E|A, B)?

22



Example contd.
Suppose we choose the ordering M, J, A, B, E

)= P(E|A)? No
)= P(E|A,B)? Yes

VU U UTT

CICIES

M
M) = P(B)? No
J,
J,

23



Example contd.

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1+ 2+ 4 + 2+ 4 =13 numbers needed
24



Example ordering (2)

e Order
- M,J,E,B,A

e Network
— 31| probabilities
— like full joint distribution
— thus: bad choice

e All three networks represent
same probability distribution

e Last two versions

— simply fail to represent all the
conditional independence

relationships
— end up specifying a lot of

unnecessary numbers instead.
Global Semantics 25



Conditional independence relations in Bayesian
networks

 Before

— “numerical (global) semantics
with probability distribution

— from this derive conditional
independencies

* |dea now

— opposite direction: topological
(local) semantics

— specifies conditional

independencies

— from this derive numerical
semantics

Local Semantics



Conditional independence relations in Bayesian
networks

e General idea

— A node is conditionally
independent of its non-
descendants given its parents

— A node is conditionally
independent of all other nodes in
the network given its parents,
children, and children’s parents—
that is, given its Markov
blanket

* Examples

] is independent of B and E given A, i.e.
P(J|A,B,E) = P(J|A)

B is independent of ] and M given A and E, i.e.
P(B|A,E,},M) = P(B|A,E)

Local Semantics 27



Conditional independence relations in Bayesian
networks

* Node X is conditionally e A node X is conditionally
independent of its non-descendants independent of all other nodes in
(e.g., the Zijj s) given its parents (the the network given its Markov
Uij s) blanket.

Local Semantics

28



Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian VvV US V Mexican

E.g., numerical relationships among continuous variables

OLevel
ot

= inflow + precipitation - outflow - evaporation

Efficient Representation of conditional distributions 29



P(—fever|cold, = flu, ~malaria) = 0.6

P(—fever|—cold, flu,—~malaria) = 0.2

Compact conditional distributions 7/cerimetd /i materie) =01

Noisy-OR distributions model multiple noninteracting causes
1) Parents U ... Uy include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= P(X|Uy...Uj,~Ujsr...=Ux) =1-1T_q

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2 x0.1

T F F 0.4 0.6

T F T 0.94 0.06 =0.6 x 0.1

T T F 0.88 0.12 =0.6 X 0.2

T T T 0.988 0.012=10.6 x 0.2 x 0.1

Number of parameters linear in number of parents

Efficient Representation of conditional distributions 30



Bayesian nets with continuous variables

Discrete (Subsidy? and Buys?); continuous (Harvest and C'ost)

= @
N

(&
o |

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)

Efficient Representation of conditional distributions 31



Continuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:
P(Cost =c|Harvest = h, Subsidy? =true)
= N(ash + b, of)(c)

e (—; (o= (e b”f)

Mean Cost varies linearly with Harwvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow

Efficient Representation of conditional distributions 32



Continuous child variables

P(c | h, subsidy) P(c | h, Rsubsidy) P(c | h)

0.4 £ 04 04
AMMINN
03 £ 03 03
W\
02 N 02 02
W\
0.1 1 1y 01 ~ 1, 01 1

(a) (b) (c)

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values

Efficient Representation of conditional distributions



Discrete variable w/ continuous parents

Probability of Buys? given C'ost should be a “soft” threshold:
1 ' ' ' P '

08 |
>
4
S 06 |
2
&
L
o~
@ 04 t
=]
e
oW
02 }
0 ‘ * : :
0 2 4 6 8 10 12

Cost ¢

Probit distribution uses integral of Gaussian:
d(x) =1 N(0,1)(z)dx
P(Buys?=true | Cost=c) = ®((—c+ u)/0o)

Efficient Representation of conditional distributions



Discrete variable w/ continuous parents

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

VAN
@ @ G

N O

Buys? ‘ |

Efficient Representation of conditional distributions 35



Discrete variable w/ continuous parents

Sigmoid (or logit) distribution also used in neural networks:

1

P(Buys? =true | Cost=c) = |+ eap(—2=CHi)

Sigmoid has similar shape to probit but much longer tails:

09 ¢
08
0.7 1
06
05
04
03 |
02t
0.1 |

0

P(Buys?=falselCost=c)

0 2 = 6 8 10 12



Inference tasks
Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge =empty, Lights = on, Starts = false)
Conjunctive queries: P(X;, X;|E=¢e) = P(X;|E=¢)P(X;|X;, E=¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomel|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?

Exact inference by enumeration 37



Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) < a distribution over X, initially empty
for each value z; of X do

extend e with value z; for X

Q(z;) «— ENUMERATE-ALL(VARS[bn], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars,e) returns a real number
if EMPTY?(vars) then return 1.0
Y« FIRST(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return ©, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where e, is e extended with ¥ = y

Exact inference by enumeration



Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:
P(B, j,m) ®

= aP(B,j,m)
—QZZPBj,mea) @ﬁw)

Rewrlte fuII joint entries using product of CPT entries:

P(bli.m) = a 323 POPEP(ale)Pla)Pmlo

Recursive depth-first enumeration: O(n) space, O(d") time

P(B|j, m) = a(0.00059224,0.0014919) = (0.284,0.716)

Exact inference by enumeration

39



Evaluation tree

P(b)
001

P(e) + P(-e)

P(albe) E P(—alb,e) P(alb,~e) B P(—alb~e)
R 03 o, 0 06

/ P(jl—a)
i 05

N I e

{ P(jla)
§F 90

Q

\ P(mla)

P(ml—a)
A .70 K/ \ K/ \ k '01 (
Oy oF . O

Enumeration is inefficient: repeated computtion
e.g., computes P(j|a)P(m/|a) for each value of e

Exact inference by enumeration



Inference by variable elimination

P(B|5,m) =a P(B)S" () Pla| B P |a) Pl a)
e C 6ie ° bABE fZ&) £ (A)
- (R)-(4m) - (2519) - ()

P(B|j.m) = af(B) x Zfz x Y f3(A, B, E) x f4(A) x f5(A)

Exact inference by enumeration 41



Inference by variable elimination

fs(B,E) = Y f3(A,B,E)x fy(A) x f5(A)

— (f3(a. B.E) x £4(a) x f5(a)) + (f3(=a, B, E) x f1(—a) x f5(—a))

P(B|j,m)=af (B fog ) x fs(B, E)

f:(B) = » fo(E) xf5(B, E)

€

— f2(€) X f(;(B, 6) -+ fz(ﬂe) X f(;(B, ﬂ8)

P(B |] m) = (Ifl(B) X f7(B)

Exact inference by enumeration

42



Variable elimination: Basic operations

Pointwise product of factors/iandf; :

filze, .. zi,y1, -, k) X fa(yn, ooy Yk 21y - -5 21)
= f(T1, o s XYLy ooy Yhy By - - -5 21)
E'g'afl(aa b) X fg(b,C) — f(aaba C)

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

folx ka:flx Xfiza:fi+1>< ka:flx

assuming /1, ..., f; do not depend on X

Exact inference by enumeration

X i X [

43



Variable elimination: Basic operations

Pointwise product of factorsfiandf> :
fil@e, o xgyn, o Uk) X fo(Yns o Yks 21505 21)
= f(@1,- T, Ylse s Yk 215 - - -5 21)

E.g., fi(a,b) x fa(b,c) = f(a,b,c)

A| B| #1AB) | B| ¢ | &B.C) || A| B| C | f54.B,0)
T| T 3 T| T 2 T| T| T | 3x.2=.06
T | F 7 T | F 8 T| T| F| 3x.8=.24
F| T 9 F| T 6 T| F| T | 7x.6=.42
F| F 1 F| F 4 T| F| F| 7x.4=.28
F| T| T| 9x.2=.18
F| T| F| 9x.8=.72
F| F| T| .1x.6=.06
F| F| F| 1x.4=.04

Figure 14.10  Illustrating pointwise multiplication: f; (A, B) x f5(B, C) = f3(A, B, C).

Exact inference by enumeration

44



Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

folx e X fp=f1x e XfiZ:cfiJrlX e X =i X X i X [k

assuming f1, ..., f; do not depend on X X =variable to be summed out

f(B,C) = > f3(A,B,C) = f3(a, B,C) +f3(-a, B,C)

a

_ (06 24 (8 .72 _ (.24 .96
— 42 .28 06 .04 ) \ 48 32 )"

Al Bl nan | Bl ¢ emo | a] B ¢ 4,80
T| T 3 T| T 2 T| v 17| 3x.2=.06

T| F 7 T| F 8 T| T| F| 3x8=.24

F| T 9 F| T 6 T| F| T | 7x.6=.42

F| F 1 F| F 4 T| F| F| 7x.4=.28

F| T| T| 9x.2=.18

F| T| F| 9x8=72

F| F| T| 1x.6=.06

F| F| F| 1x.4=.04

Exact inference by enumeration Figure 14.10  Illustrating pointwise multiplication: £, (4, B) x f2(B, C) = f3(A, B, C). 45




Variable elimination algorithm

function ELIMINATION-ASK(X ,e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network specifying joint distribution P( X7, ..., X,)

factors « []
for each var in ORDER(bn.VARS) do

factors < [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors < SUM-OUT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

Exact inference by enumeration 46



Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

P(C)= 5

C P(S) C P(R)
F 50 F 20

P(W)

99
90
90
00

oo B Bie s IR B I -

Exact inference by enumeration 47



Clustering algorithms

* Variable elimination algorithm is simple and efficient for
answering individual queries

* For computation of posterior probabilities for all the
variables in a network it can be less efficient: O(n?)

* Using clustering algorithms (also known as join tree
algorithms), this can be reduced to O(n).

* The basic idea of clustering is to join individual nodes of
the network to form cluster nodes in such a way that the
resulting network is a polytree.

Exact inference by enumeration 48



Clustering algorithms

* Multiply connected network can be
converted into a polytree by
combining Sprinkler and Rain node
into cluster node called
Sprinkler+Rain.

* Two Boolean nodes replaced by a
mega-node that takes on four
possible values: TILTF FI, FF.The
mega-node has only one parent, the
Boolean variable Cloudy, so there are
two conditioning cases.

Exact inference by enumeration

P(S)

10
.50

S+R

PW)

TT
TF
FT

59
50
50

P(C)= 15

TS T 3|=»

S
I
T
¥
I

99
90
90
00

O=35

)

—

1

Gpm—Ra.ir’\\/.

i

€

F 20

P(W)

C P(R)

P(S+R=x)
TT TF FT FF

08 02 72 18
A0 40 10 40

49




APPROXIMATE INFERENCE IN BAYESIAN
NETWORKS

Randomized sampling algorithms, also called Monte
Carlo algorithms

Provide approximate answers whose accuracy depends
on the number of samples generated

Monte Carlo algorithms are used in many branches of
science to estimate quantities that are difficult to
calculate exactly.

Here: sampling applied to the computation of posterior
probabilities

Two families of algorithms: direct sampling and Markov
chain sampling

50



Direct sampling methods

e Generation of samples from a known probability
distribution

e Example
P(Coin) =<0.5,0.5)
e Sampling from this distribution is exactly like

flipping the coin: with probability 0.5 it will return
heads , and with probability 0.5 it will return tails.

Approximate inference in BN 51



Direct sampling methods

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P( X7y, ..., X},)

X < an event with n elements
foreach variable X; in X,..., X,, do

X|i] «— a random sample from P(X; | parents(X;))
return x

Figure 14.13 A sampling algorithm that generates events from a Bayesian network. Each

variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.

Approximate inference in BN 52




Direct sampling methods

P(C)=.5

P(S) C | P(R)
10 | (Sprinkier) (Rain ) [ 0
50 £l 20

S R|PW)

t t| 99

t f| .90

f t| 90

f f1 .00

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn,a Bayesian network specifying joint distribution P(X;, ..., X,,)
X «+—an event with n elements
foreach variable X; in X;,..., X, do

X[i] «— a random sample from P(X; | parents(X;))
return x

Figure 14.13 A sampling algorithm that generates events from a Bayesian network. Each

variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.

Approximate inference in BN

53



Direct sampling methods

e PRIOR-SAMPLE generates samples from the prior
joint distribution specified by the network

Sps(x1...2,) = H P(x; | parents(X;))
i=1

e Each sampling step depends only on the parent
values

Sps(x; ... X,) =P(x, ... X,) .

Approximate inference in BN 54



Computing answers

e Answers are computed by counting the actual
samples generated

e Say, N total samples and Nps(x1,..., Xn) number of
times the event xj,...x» occurs in the samples

. Npgl(z1,...,T
]\}1—I>noo s lN n) = Sps(z1,...,2n) = P(x1,...,Zy) .

Approximate inference in BN

55



Computing answers

lim Nps(xi,...,2p)

— m)) = Plz,... .z .
m N Sps(zi,...,Zn) (z1 Tp)

e For example, consider the event produced earlier:
[true,false,true,true]. The sampling probability for
this event is

Sps(true, false, true, true) = 0.5 x 0.9 x 0.8 x 0.9 = 0.324 .

e Hence, in the limit of large N, we expect 32.4% of
the samples to be of this event.

Approximate inference in BN 56



Rejection sampling

function REJECTION-SAMPLING(X e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated
local variables: N, a vector of counts for each value of X, initially zero

for j =1to N do
X «— PRIOR-SAMPLE(bn)
if x is consistent with e then

N[z] < N[z]+1 where z is the value of X in x
return NORMALIZE(N)

Figure 14.14  The rejection-sampling algorithm for answering queries given evidence in a
Bayesian network.

Approximate inference in BN 57




Rejection sampling

o Let I/5(X|e) be the estimated distribution. Then
from the definition just given

P(X |€) = aNpg(X, e) = N]Qi f(i)e) |
P(X |e) ~ Pg(i)e) —P(X|e).

e Rejection sampling produces a consistent estimate
of the true probability.
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Rejection sampling

e Estimate P(Rain | Sprinkler = true), using 100
samples. Of the 100 that we generate, suppose
that 73 have Sprinkler = false and are rejected,

while 27 have Sprinkler = true.
e Of the 27, 8 have Rain = true and 19 have Rain =

false.
e Thus,

P(Rain | Sprinkler = true) ~ NORMALIZE( < 8,19 > ) = < 0.296,0.704 >
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Rejection sampling

How often does it rain the day after we have observed aurora
borealis?! Ignoring all those days with no aurora borealis...
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Likelihood weighting

e Likelihood weighting avoids the inefficiency of
rejection sampling

e It generates only events that are consistent with
the evidence e.

e It is a particular instance of the general statistical
technique of importance sampling, tailored for
inference in Bayesian networks.

e |et's see how it works...
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Likelihood weighting

function LIKELIHOOD-WEIGHTING(X ,e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X1, ..., X,)
N, the total number of samples to be generated
local variables: W, a vector of weighted counts for each value of X, initially zero

forj=1to N do

X, w < WEIGHTED-SAMPLE(bn,e)

Wiz| «+ W][z] + w where z is the value of X in x
return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn,e) returns an event and a weight

w «— 1; X < an event with n elements initialized from e
foreach variable X; in X,...,X,, do
if X is an evidence variable with value x; in e
then w — w x P(X;= z; | parents(X;))
else x|[i] < a random sample from P(X; | parents(X;))
return x, w

Approximate inference in BN
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Likelihood weighting

For the evidence P(Rain | Cloudy = true , WetGrass = true) c 75

P(R)

Een [

20

Cloudy is an evidence variable with S
value frue. Therefore, we set
w +— wxP(Cloudy=true) = 0.5 .
Sprinkler is not an evidence variable, so sample from
P(Sprinkler | Cloudy = true ) = <0.1,0.9); suppose this
returns false.

Similarly, sample from P(Rain/Cloudy=true) =
(0.8,0.2); suppose this returns true .

WetGrass is an evidence variable with value true.

Therefore, we set
w +— w x P(WetGrass=true | Sprinkler=false, Rain=true ) =
0.5x0.9=0.45

R
t t
t f1| 9
S

fr
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Likelihood weighting

- The weight for a given sample x is the product of the
likelihoods for each evidence variable given its
parents

w(z,e) = H P(e; | parents(E;))

* Multiplying the last two equations we see that the
weighted probability of a sample has the particularly
convenient form

[
Sws(z,e)w(z,e) H P(z;|parents(Z;)) | | P(ei|parents(E;))
i=1 i

P(z,e)
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Likelihood weighting

- For any particular value x of X, the estimated posterior
probability can be calculated as follows:

P(z|e) = o Y Nws(z,y,e)w(z,y,e)  from LIKELIHOOD-WEIGHTING
y

Q

o/ Z Sws(z,y,e)w(z,y,e) for large N
y
= o' Y P(z,y,e) by Equation (14.9)
y

o' P(x,e) = P(z|e).

Hence, likelihood weighting returns consistent
estimates.
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Inference by Markov chain simulation

e Markov chain Monte Carlo (MCMC) algorithms
work quite differently from rejection sampling and
likelihood weighting.

e MCMC state change similar to SA

e Gibbs sampling well suited for BN

e Starts with an arbitrary state and generates a next
state by randomly sampling a value for one of the
nonevidence variables X.

e Sampling for X; is done conditioned on the current
values of the variables in the Markov blanket of X..
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Inference by Markov chain

simulation Bt
 P(Rain | Sprinkler=true, WetGrass=true) s
« Initial state is [true,true,false,true] P
« Cloudy:

— P(Cloudy|Sprinkler=true,Rain=false). Suppose the
result is Cloudy = false.

— Then the new current state is [false, true,false,true].
Rain:

— Given the current values of its Markov blanket
variables: P(Rain | Cloudy = false , Sprinkler = true ,
WetGrass = true ). Suppose this yields Rain = true .

— The new current state is [false, true,true,true].
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Inference by Markov chain simulation

function GIBBS-ASK(X ,e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts for each value of X, initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Z
forj=1to Ndo
for each Z; in Z do
set the value of Z; in x by sampling from P(Z;|mb(Z;))
N|[z] < N[z] + 1 where z is the value of X in x
return NORMALIZE(N)

Figure 14.16 The Gibbs sampling algorithm for approximate inference in Bayesian net-
works; this version cycles through the variables, but choosing variables at random also works.
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Summary

This chapter has described Bayesian networks, a well-
developed representation for uncertain knowledge. Bayesian
networks play a role roughly analogous to that of propositional
logic for definite knowledge.

* A Bayesian network is a directed acyclic graph whose nodes
correspond to random variables; each node has a conditional
distribution for the node given its parents.

* Bayesian networks provide a concise way to represent
conditional independence relationships in the domain.

* A Bayesian network specifies a full joint distribution; each joint
entry is defined as the product of the corresponding entries in
the local conditional distributions. A Bayesian network is often
exponentially smaller than the full joint distribution.
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Summary (2)

* Inference in Bayesian networks means computing the probability
distribution of a set of query variables, given a set of evidence
variables. Exact inference algorithms, such as variable
elimination, evaluate sums of products of conditional
probabilities as efficiently as possible.

* In polytrees (singly connected networks), exact inference takes
time linear in the size of the network. In the general case, the
problem is intractable.

* Stochastic approximation techniques such as likelihood
weighting and Markov chain Monte Carlo can give
reasonable estimates of the true posterior probabilities in a
network and can cope with much larger networks than can
exact algorithms.
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