
Adversarial Search

In which we examine the problems that arise 
when we try to plan ahead in a world 

where other agents are planning against us.
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Search Strategies for Games

• Difference to general search 
problems
– Imperfect Information: opponent 

not deterministic
– Time: approximate algorithms

• Early fundamental results
– Algorithm for perfect game  

von Neumann (1944)
– Approximation through 

evaluation 
Zuse (1945), Shannon (1950)

perfect 
information

incomplete 
information

Checkers, 
Chess, Go

deterministic random

Backgammon, 
Monopoly

? Bridge, Poker, 
Scrabble

• Our terminology:
– deterministic, fully accessible 

information

Games 3



Games as Search Problems

• Justification: Games are 
search problems with an 
opponent

• Imperfection through actions 
of opponent: possible 
results...

• Games hard to solve; 
exhaustive:
– Average branching factor 

chess: 35
– ≈ 50 steps per player ➞ 

10154 nodes in search tree
– But “Only” 1040 allowed 

positions

• Games as playground for 
serious research

• How can we determine the 
best next step/action?
– Cutting branches 

(„pruning“)
– Evaluation functions for 

approximation of utility 
function

Games 4
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Search Problem

• 2-player games
– Player MAX
– Player MIN
– MAX moves first; players 

then take turns 

• Example: Chess
– Search tree 10154 nodes
– Only 1040 valid positions

• Search problem
– Initial state

• Board, positions, first 
player

– Successor function
• Lists of (move, state)-

pairs
– Goal test

• Checks whether games is 
terminated

– Evaluation function
• Result of game 

e.g. +1,0,-1 (zero sum 
games)

• also:payoff function
Optimal decisions
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Example: 
Tic-Tac-Toe

• Initial state and legal moves define 
game tree

• MAX has nine options
• Games continues until one of the 

players has 3 x or 3 o in a row, 
column or diagonal or none of the 
fields is empty

• Number at leaves is utility 
value of final states from 
MAX’ view (high values are 
good)

Partial search tree forTic-Tac-
Toe, MAX moves first (x)

Optimal decisions
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Optimal Strategies
• Normal search problems

– Final states deliver result 
(Win)

– MIN against this
– Thus, MAX needs a 

contingent strategy
– First move
– Moves after MIN has moved

• Tic-Tac-Toe 
– Too complex to show 

complete tree. Here trivial 
game: ends after one move 
each

– One move deep, two half-
moves, each is called a ply

Optimal decisions
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Minimax-Value
• Minimax-Algorithm for 

determination of optimal 
strategy and for best first 
move. 

• Minimax-Decision: maximizes 
utility under the assumption 
that MIN plays perfectly (to 
minimize utility).

• Optimal strategy with game 
tree: determine the min/max 
value of each node
– Minimax-Value(n)

Minimax-Value(n) =

Optimal decisions
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Trivial Tic-Tac-Toe

• a1-a3 are MAX legal moves

• MIN can answer with 
b1-3 ,c1-3 ,d1-3

• One move = 2 half moves = 2 
plies

• ∇ - nodes: MIN moves

• Terminal values are utility values 
for MAX, other values are 
determined through utility-values 
of successors

Optimal decisions
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Minimax-Algorithm

• Create search tree of game
– All the way to the end!

• Evaluate leaves
– Utility for each end of game

• Propagate evaluations to 
root
– MAX chooses maximal utility
– MIN chooses minimal utility

• Depth-first for whole tree
• Time complexity: max 

depth m and b legal moves 
at each point: O(bm)

• Space complexity O(bm), if 
all successors are calculated

• Real Games: Time 
complexity completely 
different!

Optimal decisions
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• Minimax decisions
• maximize/minimize 

utility
• Action selection 

accordingly
• Assumption: Max/

Min always play 
optimal!

Optimal decisions

Minimax-Algorithm
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Optimal Decisions in Games with more than 
2 Players

• Extension of minimax algorithm 
possible

• Single value of node substituted 
by vector of values

• Example.: 
– 3 players A,B,C: 3 vectors per 

node {vA ,vB ,vC}

– Final states:  values from 
viewpoint of each player

– Nodes in tree

Optimal decisions
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Example

• C decides about next move
– Two options: {vA=1, vB=2 ,vC=6}, {vA=4, vB=2 ,vC=3}

– Because 6 > 3, the first option should be taken, i.e. if X is 
reached, (1,2,6) is final state

• Alliances as problem

Optimal decisions



14

Alpha-Beta Pruning

• Problem Minimax:
– Search space 

exponential in number 
of moves

• Shortening search
– Idea of Alpha-Beta-

Pruning: Cut off 
branches that cannot 
influence decision

Alpha-Beta Pruning

Range of values given per node
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General Case

• Alpha-Beta-Pruning: Cut off 
branches that cannot 
influence decision

• Principle of Alpha-Beta-
Pruning: if m better as n, we 
never get to n

Alpha-Beta Pruning
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Algorithm

• Only two different 
lines of code w.r.t. 
Minimax

• Effectivity: O(bd/2) 
Consider nodes only 
if the best successor 
nodes are analyzed 
first.

Alpha-Beta Pruning
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Imperfect, real-time decisions

• Minimax searches whole tree
• Alpha-Beta Pruning helps to 

shorten significant part
• However, search whole tree 

down to leaves not practical in 
most of the times

• Better: heuristic evaluation 
function that makes non-
terminal node temporarily to 
terminals  

• Minimax or Alpha-Beta 
algorithms are substituted in 
two ways
– Heuristic evaluation function 

instead utility function
– Shortening; Cutoff-Test instead 

of goal test. Cutoff-Test 
decides when to use 
evaluation function

Imperfect, real-time decisions
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Heuristic Evaluation Function

• Substitution of utility function through heuristic evaluation function

• Early cut-off of branches

• Requirements of evaluation  
function:
– e.g. measure value of ‘material‘  

in chess: 
Pawn = 1, Knight/Bishop = 3, 
Rook = 5, Queen = 9, 
others (e.g. King safety =  
1/2 Pawn

Imperfect, real-time decisions
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Requirements of Evaluation Function

• Conformance with utility 
function for leaves

• Performance!

• Depiction of winning chances

• “Evaluation function should 
represent winning options for an 
arbitrary position of a material 
category”

• Example: weighted linear 
evaluation function:

– w1f1 + w2f2 + …  + wnfn  
with: w = weights (values for 
pieces, e.g. 1 for pawns, 3 for 
knight) and f = number of 
play elements

Imperfect, real-time decisions
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Cut-Off Search
• … with fixed limit, i.e. Cut-off-Test for all 

nodes until limit successful

• Goal: apply evaluation function only on 
‘quiescent’ positions

• Example:
– Assumption: evaluation function based on 

material advantage, program searches until limit 
of depth, reaches position b)

– Evaluation function would probably say that win 
is likely

– However, white can beat queen in one move
– Search from unstable states for stable states
– Material function,  i.e. apply evaluation function 

only of positions are quiescent

Imperfect, real-time decisions



21

Horizon Problem

• Horizon problem
– Opponent moves, move is significant 

damage and cannot be avoided

• Example:
– It looks like black has light advantages. If 

white brings pawn in 8th row a queen will 
be given and white will win 

– Black can forestall this by checking with 
the rook. Stalling moves pushes the 
inevitable queening move “over the search 
horizon” to a place where it cannot be 
detected.

– A limited depth-first search cannot foresee 
move (pawn-queen)

Imperfect, real-time decisions
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Example: Chess
• Assumption:

– Evaluation function 
implemented

– “Reasonable” Cut-Off-Test 
for stable states

– Large “transposition table” 
(repeated states in a hash-
table)

– ≈ 1 Mio nodes can 
generated and evaluated (on 
2 GHz PC)

– ~200 Mio moves per 
standard time control (3  
min)

• Test
– b = 35 for chess, with 355 ~ 

50 Mio, i.e. 5 plies for 
evaluation

• Average chess player 
would win

– With Alpha-Beta-Pruning: 10 
plies for evaluation

• Expert level

– With more pruning 
techniques 14 plies

• Grandmaster level
Imperfect, real-time decisions
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• Unpredictable events bring new situations
• Knowledge and luck (dice)

• Example:
White has diced a 6 and a 5,  
four options now: (5-10,5-11), 
(5-11,19-24), (5-10,10-16), 
(5-11,11-16)

• Problem: 
White does not know what Black  
will dice nor what Black will do 

• Construction of complete search 
tree not possible

• ➞ Chance nodes in addition

Games with Element of Chance

Games with element of chance
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• CN as circles
– We cannot calculate best 

move
– But: we can calculate an 

average for all possible 
dice rolls

• Leaves (final states)
– As in deterministic games

• Chance C: 
– Suppose di is a dice roll 

and P(di) the a priori 
probability. For each dice 
roll calculate, sum-up and 
weight utility for best 
moves

Chance Nodes (CN)

Games with element of chance
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Expectiminimax Value
• Expectiminimax Value

– Minimax value for games with 
Chance Nodes

• But:
– Values are not “real” Minimax-

values
– Only: expected (probabilistic) 

value

• Probability
– over dice roll occurrence

• Generalization
– of Minimax value to 

Expectiminimax value

Games with element of chance
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Position Evaluation
• Obvious: Cut-Off for search apply 

evaluation function at each leaf
• With Minimax: order preserving 

transformation of leaves does not 
make difference (1,2,3,4) vs 
(1,20,30,400),  
➞ Free to choose a function

• With randomness we loose this 
freedom: (1,2,3,4) is A1 is best choice. 
(1,20,30,400):  A2 is better  
➞ program operates differently!

• Avoidance: Evaluation function can 
only be a positive linear 
transformation of the 
probability of winning from a 
position

• Important and general property in 
situations where uncertainty is 
involved.

Games with element of chance
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Complexity of Expectiminimax

• Minimax O(bm)

• Expectiminimax O(bm nm) 
– n is number of dice rolls
– lot of extra costs (e.g. for 

Backgammon n = 21, b ≈ 20), 
sometimes even b=4,000 
(doubles))

• Alpha-Beta Pruning 
– Upper bound for C?
– Possible if upper bound for 

utility function given

Games with element of chance
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State-of-the-art Programs

• Two goals with game development:
– Action selection in complex 

domains with uncertain result
– Development of high-performance 

systems for special games

• Here: the latter (Chess)
– Concentration on chess 

extremely distinctive
– Speed-Chess (5 and 25 min) 

Computer wins against Kasparov
– In normal tournament a little less 

good

State-of-the-Art
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State-of-the-art Programs
• Chess

– Deep Blue: 30 billion positions per move, depth >14
– HYDRA successor using FPGA, 18 plies
– RYBKA, won 2008/9, unknown eval-function which is the key
– Komodo, Stockfish, Houdini as commercial products
– Stockfish 9, Houdini 6, or Komodo 11.2 highest rated on CCRL (’18) 

won every game of 6 game match against WC Magnus Carlson (’15)
– https://ccrl.chessdom.com/ccrl/4040/

• Othello/Reversi
– Search space less than chess
– 5 -15 legal moves
– Computer way better than humans
– 1997 Logistello (Buro, 2002) 6:1 against WC
– Saio, Edax and Cyrano (2011) much faster than Logistello 

• Backgammon
– Uncertainty through dice rolls, search thus expensive
– TD-Gammon (Gerry Tesauro) on ANN & RL basis
– 1 Mio training games against itself
– Top 3 of the world
– GNU Backgammon, BGBlitz, Palamedes winners of 2015 computer olympiad

State-of-the-Art

https://ccrl.chessdom.com/ccrl/4040/
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State-of-the-art Programs

• Go
– b reaches 360 on 19x19 board, regular search 

impossible
– Systems based on knowledge-based approach, until 

1997 no good programs
– MoGo program (runs on 800 processor 15 Tflop 

supercomputer (1000x DeepBlue)
– AlphaGo, first computer program beating a human 

professional, 2018: ELO > 5,000, 2017 Nature article: 
https://www.nature.com/articles/nature24270

– Uses a combination of ML and tree search techniques, 
extensive training (both human and computer play).

State-of-the-Art

https://www.nature.com/articles/nature24270
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Discussion
• Optimal decisions in games mostly inefficient (intractable in most 

cases)
• Thus: algorithms operate with assumptions and approximations

– Standard approach, based on Minimax, Evaluation function and Alpha-
Beta Pruning

– Minimax is optimal method for next move if search tree is given and 
evaluation of leaves are correct.

– Reality: only estimations, in 
figure Minimax seems not to be 
a good choice

– Algorithm decides for right 
branch, but it is more likely that 
left branch is better in reality

– Minimax assumption: all right 
nodes are better that 99 on the 
left
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Summary

• Games for AI like Formula 1 in Motorsports. Here are the most 
important ideas:

– A game can be defined by the initial state (how the board is set up), the 
legal actions in each state, a terminal test (which says when the game 
is over), and a utility function that applies to terminal states. 

– In two-player zero-sum games with perfect information, the 
minimax algorithm can select optimal moves using a depth-first 
enumeration of the game tree. 

– The alpha-beta search algorithm computes the same optimal move as 
minimax, but achieves much greater efficiency by eliminating subtrees that 
are provably irrelevant. 

– Usually, it is not feasible to consider the whole game tree (even with alpha-
beta), so we need to cut the search off at some point and apply an 
evaluation function that gives an estimate of the utility of a state. 
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Summary 2

– Games of chance can be handled by an extension to the minimax 
algorithm that evaluates a chance node by taking the average utility of 
all its children nodes, weighted by the probability of each child. 

– Optimal play in games of imperfect information, such as bridge, 
requires reasoning about the current and future belief states of each 
player. A simple approximation can be obtained by averaging the value of an 
action over each possible configuration of missing information. 

– Programs can match or beat the best human players in Checkers, Othello, 
and Backgammon, and are close behind in bridge.  A program has beaten 
the world chess champion in one exhibition match. Programs remain at 
the amateur level in Go. 


