
Adversarial Search

In which we examine the problems that arise
when we try to plan ahead in a world

where other agents are planning against us.

Outline

1. Games
2. Optimal Decisions in Games
3. Alpha-Beta Pruning
4. Imperfect, Real-Time Decisions
5. Games that include an Element of

Chance
6. State-of-the-Art Game Programs
7. Summary

2

Search Strategies for Games

• Difference to general search
problems
– Imperfect Information: opponent

not deterministic
– Time: approximate algorithms

• Early fundamental results
– Algorithm for perfect game

von Neumann (1944)
– Approximation through

evaluation
Zuse (1945), Shannon (1950)

perfect
information

incomplete
information

Checkers,
Chess, Go

deterministic random

Backgammon,
Monopoly

? Bridge, Poker,
Scrabble

• Our terminology:
– deterministic, fully accessible

information

Games 3

Games as Search Problems

• Justification: Games are
search problems with an
opponent

• Imperfection through actions
of opponent: possible
results...

• Games hard to solve;
exhaustive:
– Average branching factor

chess: 35
– ≈ 50 steps per player ➞

10154 nodes in search tree
– But “Only” 1040 allowed

positions

• Games as playground for
serious research

• How can we determine the
best next step/action?
– Cutting branches

(„pruning“)
– Evaluation functions for

approximation of utility
function

Games 4

5

Search Problem

• 2-player games
– Player MAX
– Player MIN
– MAX moves first; players

then take turns

• Example: Chess
– Search tree 10154 nodes
– Only 1040 valid positions

• Search problem
– Initial state

• Board, positions, first
player

– Successor function
• Lists of (move, state)-

pairs
– Goal test

• Checks whether games is
terminated

– Evaluation function
• Result of game

e.g. +1,0,-1 (zero sum
games)

• also:payoff function
Optimal decisions

6

Example:
Tic-Tac-Toe

• Initial state and legal moves define
game tree

• MAX has nine options
• Games continues until one of the

players has 3 x or 3 o in a row,
column or diagonal or none of the
fields is empty

• Number at leaves is utility
value of final states from
MAX’ view (high values are
good)

Partial search tree forTic-Tac-
Toe, MAX moves first (x)

Optimal decisions

7

Optimal Strategies
• Normal search problems

– Final states deliver result
(Win)

– MIN against this
– Thus, MAX needs a

contingent strategy
– First move
– Moves after MIN has moved

• Tic-Tac-Toe
– Too complex to show

complete tree. Here trivial
game: ends after one move
each

– One move deep, two half-
moves, each is called a ply

Optimal decisions

8

Minimax-Value
• Minimax-Algorithm for

determination of optimal
strategy and for best first
move.

• Minimax-Decision: maximizes
utility under the assumption
that MIN plays perfectly (to
minimize utility).

• Optimal strategy with game
tree: determine the min/max
value of each node
– Minimax-Value(n)

Minimax-Value(n) =

Optimal decisions

9

Trivial Tic-Tac-Toe

• a1-a3 are MAX legal moves

• MIN can answer with
b1-3 ,c1-3 ,d1-3

• One move = 2 half moves = 2
plies

• ∇ - nodes: MIN moves

• Terminal values are utility values
for MAX, other values are
determined through utility-values
of successors

Optimal decisions

10

Minimax-Algorithm

• Create search tree of game
– All the way to the end!

• Evaluate leaves
– Utility for each end of game

• Propagate evaluations to
root
– MAX chooses maximal utility
– MIN chooses minimal utility

• Depth-first for whole tree
• Time complexity: max

depth m and b legal moves
at each point: O(bm)

• Space complexity O(bm), if
all successors are calculated

• Real Games: Time
complexity completely
different!

Optimal decisions

11

• Minimax decisions
• maximize/minimize

utility
• Action selection

accordingly
• Assumption: Max/

Min always play
optimal!

Optimal decisions

Minimax-Algorithm

12

Optimal Decisions in Games with more than
2 Players

• Extension of minimax algorithm
possible

• Single value of node substituted
by vector of values

• Example.:
– 3 players A,B,C: 3 vectors per

node {vA ,vB ,vC}

– Final states: values from
viewpoint of each player

– Nodes in tree

Optimal decisions

13

Example

• C decides about next move
– Two options: {vA=1, vB=2 ,vC=6}, {vA=4, vB=2 ,vC=3}

– Because 6 > 3, the first option should be taken, i.e. if X is
reached, (1,2,6) is final state

• Alliances as problem

Optimal decisions

14

Alpha-Beta Pruning

• Problem Minimax:
– Search space

exponential in number
of moves

• Shortening search
– Idea of Alpha-Beta-

Pruning: Cut off
branches that cannot
influence decision

Alpha-Beta Pruning

Range of values given per node

15

General Case

• Alpha-Beta-Pruning: Cut off
branches that cannot
influence decision

• Principle of Alpha-Beta-
Pruning: if m better as n, we
never get to n

Alpha-Beta Pruning

16

Algorithm

• Only two different
lines of code w.r.t.
Minimax

• Effectivity: O(bd/2)
Consider nodes only
if the best successor
nodes are analyzed
first.

Alpha-Beta Pruning

17

Imperfect, real-time decisions

• Minimax searches whole tree
• Alpha-Beta Pruning helps to

shorten significant part
• However, search whole tree

down to leaves not practical in
most of the times

• Better: heuristic evaluation
function that makes non-
terminal node temporarily to
terminals

• Minimax or Alpha-Beta
algorithms are substituted in
two ways
– Heuristic evaluation function

instead utility function
– Shortening; Cutoff-Test instead

of goal test. Cutoff-Test
decides when to use
evaluation function

Imperfect, real-time decisions

18

Heuristic Evaluation Function

• Substitution of utility function through heuristic evaluation function

• Early cut-off of branches

• Requirements of evaluation
function:
– e.g. measure value of ‘material‘

in chess:
Pawn = 1, Knight/Bishop = 3,
Rook = 5, Queen = 9,
others (e.g. King safety =
1/2 Pawn

Imperfect, real-time decisions

19

Requirements of Evaluation Function

• Conformance with utility
function for leaves

• Performance!

• Depiction of winning chances

• “Evaluation function should
represent winning options for an
arbitrary position of a material
category”

• Example: weighted linear
evaluation function:

– w1f1 + w2f2 + … + wnfn
with: w = weights (values for
pieces, e.g. 1 for pawns, 3 for
knight) and f = number of
play elements

Imperfect, real-time decisions

20

Cut-Off Search
• … with fixed limit, i.e. Cut-off-Test for all

nodes until limit successful

• Goal: apply evaluation function only on
‘quiescent’ positions

• Example:
– Assumption: evaluation function based on

material advantage, program searches until limit
of depth, reaches position b)

– Evaluation function would probably say that win
is likely

– However, white can beat queen in one move
– Search from unstable states for stable states
– Material function, i.e. apply evaluation function

only of positions are quiescent

Imperfect, real-time decisions

21

Horizon Problem

• Horizon problem
– Opponent moves, move is significant

damage and cannot be avoided

• Example:
– It looks like black has light advantages. If

white brings pawn in 8th row a queen will
be given and white will win

– Black can forestall this by checking with
the rook. Stalling moves pushes the
inevitable queening move “over the search
horizon” to a place where it cannot be
detected.

– A limited depth-first search cannot foresee
move (pawn-queen)

Imperfect, real-time decisions

22

Example: Chess
• Assumption:

– Evaluation function
implemented

– “Reasonable” Cut-Off-Test
for stable states

– Large “transposition table”
(repeated states in a hash-
table)

– ≈ 1 Mio nodes can
generated and evaluated (on
2 GHz PC)

– ~200 Mio moves per
standard time control (3
min)

• Test
– b = 35 for chess, with 355 ~

50 Mio, i.e. 5 plies for
evaluation

• Average chess player
would win

– With Alpha-Beta-Pruning: 10
plies for evaluation

• Expert level

– With more pruning
techniques 14 plies

• Grandmaster level
Imperfect, real-time decisions

23

• Unpredictable events bring new situations
• Knowledge and luck (dice)

• Example:
White has diced a 6 and a 5,
four options now: (5-10,5-11),
(5-11,19-24), (5-10,10-16),
(5-11,11-16)

• Problem:
White does not know what Black
will dice nor what Black will do

• Construction of complete search
tree not possible

• ➞ Chance nodes in addition

Games with Element of Chance

Games with element of chance

24

• CN as circles
– We cannot calculate best

move
– But: we can calculate an

average for all possible
dice rolls

• Leaves (final states)
– As in deterministic games

• Chance C:
– Suppose di is a dice roll

and P(di) the a priori
probability. For each dice
roll calculate, sum-up and
weight utility for best
moves

Chance Nodes (CN)

Games with element of chance

25

Expectiminimax Value
• Expectiminimax Value

– Minimax value for games with
Chance Nodes

• But:
– Values are not “real” Minimax-

values
– Only: expected (probabilistic)

value

• Probability
– over dice roll occurrence

• Generalization
– of Minimax value to

Expectiminimax value

Games with element of chance

26

Position Evaluation
• Obvious: Cut-Off for search apply

evaluation function at each leaf
• With Minimax: order preserving

transformation of leaves does not
make difference (1,2,3,4) vs
(1,20,30,400),
➞ Free to choose a function

• With randomness we loose this
freedom: (1,2,3,4) is A1 is best choice.
(1,20,30,400): A2 is better
➞ program operates differently!

• Avoidance: Evaluation function can
only be a positive linear
transformation of the
probability of winning from a
position

• Important and general property in
situations where uncertainty is
involved.

Games with element of chance

27

Complexity of Expectiminimax

• Minimax O(bm)

• Expectiminimax O(bm nm)
– n is number of dice rolls
– lot of extra costs (e.g. for

Backgammon n = 21, b ≈ 20),
sometimes even b=4,000
(doubles))

• Alpha-Beta Pruning
– Upper bound for C?
– Possible if upper bound for

utility function given

Games with element of chance

28

State-of-the-art Programs

• Two goals with game development:
– Action selection in complex

domains with uncertain result
– Development of high-performance

systems for special games

• Here: the latter (Chess)
– Concentration on chess

extremely distinctive
– Speed-Chess (5 and 25 min)

Computer wins against Kasparov
– In normal tournament a little less

good

State-of-the-Art

29

State-of-the-art Programs
• Chess

– Deep Blue: 30 billion positions per move, depth >14
– HYDRA successor using FPGA, 18 plies
– RYBKA, won 2008/9, unknown eval-function which is the key
– Komodo, Stockfish, Houdini as commercial products
– Stockfish 9, Houdini 6, or Komodo 11.2 highest rated on CCRL (’18)

won every game of 6 game match against WC Magnus Carlson (’15)
– https://ccrl.chessdom.com/ccrl/4040/

• Othello/Reversi
– Search space less than chess
– 5 -15 legal moves
– Computer way better than humans
– 1997 Logistello (Buro, 2002) 6:1 against WC
– Saio, Edax and Cyrano (2011) much faster than Logistello

• Backgammon
– Uncertainty through dice rolls, search thus expensive
– TD-Gammon (Gerry Tesauro) on ANN & RL basis
– 1 Mio training games against itself
– Top 3 of the world
– GNU Backgammon, BGBlitz, Palamedes winners of 2015 computer olympiad

State-of-the-Art

https://ccrl.chessdom.com/ccrl/4040/

30

State-of-the-art Programs

• Go
– b reaches 360 on 19x19 board, regular search

impossible
– Systems based on knowledge-based approach, until

1997 no good programs
– MoGo program (runs on 800 processor 15 Tflop

supercomputer (1000x DeepBlue)
– AlphaGo, first computer program beating a human

professional, 2018: ELO > 5,000, 2017 Nature article:
https://www.nature.com/articles/nature24270

– Uses a combination of ML and tree search techniques,
extensive training (both human and computer play).

State-of-the-Art

https://www.nature.com/articles/nature24270

31

Discussion
• Optimal decisions in games mostly inefficient (intractable in most

cases)
• Thus: algorithms operate with assumptions and approximations

– Standard approach, based on Minimax, Evaluation function and Alpha-
Beta Pruning

– Minimax is optimal method for next move if search tree is given and
evaluation of leaves are correct.

– Reality: only estimations, in
figure Minimax seems not to be
a good choice

– Algorithm decides for right
branch, but it is more likely that
left branch is better in reality

– Minimax assumption: all right
nodes are better that 99 on the
left

32

Summary

• Games for AI like Formula 1 in Motorsports. Here are the most
important ideas:

– A game can be defined by the initial state (how the board is set up), the
legal actions in each state, a terminal test (which says when the game
is over), and a utility function that applies to terminal states.

– In two-player zero-sum games with perfect information, the
minimax algorithm can select optimal moves using a depth-first
enumeration of the game tree.

– The alpha-beta search algorithm computes the same optimal move as
minimax, but achieves much greater efficiency by eliminating subtrees that
are provably irrelevant.

– Usually, it is not feasible to consider the whole game tree (even with alpha-
beta), so we need to cut the search off at some point and apply an
evaluation function that gives an estimate of the utility of a state.

33

Summary 2

– Games of chance can be handled by an extension to the minimax
algorithm that evaluates a chance node by taking the average utility of
all its children nodes, weighted by the probability of each child.

– Optimal play in games of imperfect information, such as bridge,
requires reasoning about the current and future belief states of each
player. A simple approximation can be obtained by averaging the value of an
action over each possible configuration of missing information.

– Programs can match or beat the best human players in Checkers, Othello,
and Backgammon, and are close behind in bridge. A program has beaten
the world chess champion in one exhibition match. Programs remain at
the amateur level in Go.

