Adversarial Search

In which we examine the problems that arise
when we try to plan ahead in a world
where other agents are planning against us.

o

i h W N —

Outline

Games

Optimal Decisions in Games
Alpha-Beta Pruning

Imperfect, Real-Time Decisions

Games that include an Element of
Chance

State-of-the-Art Game Programs

0 1 2 3 4 5 6

7 8 9 10 11 12

25 24 23 22 21 20 19

18 17 16 15 14 13

Summary

Search Strategies for Games

Difference to general search

problems

— Imperfect Information: opponent
not deterministic

— Time: approximate algorithms

Early fundamental results

— Algorithm for perfect game
von Neumann (1944)

— Approximation through
evaluation
Zuse (1945), Shannon (1950)

Games

perfect
information

incomplete
information

deterministic random
Checkers, Backgammon,
Chess, Go Monopoly

Bridge, Poker,
Scrabble

Our terminology:

— deterministic, fully accessible
information

Games as Search Problems

* Justification: Games are
search problems with an
opponent

* Imperfection through actions
of opponent: possible
results...

e Games hard to solve;
exhaustive:

— Average branching factor
chess: 35

— = 50 steps per player —
| 0!54 nodes in search tree

— But “Only” 1040 allowed
positions

Games

Games as playground for
serious research

How can we determine the
best next step/action?

— Cutting branches

(,,pruning®)

— Evaluation functions for
approximation of utility
function

Search Problem

* 2-player games * Search problem
— Player MAX — Initial state
— Player MIN * Board, positions, first
player

— MAX moves first; players
then take turns

— Successor function
* Lists of (move, state)-
pairs

. : — Goal test
Example: Chess Checks whether games is

— Search tree 10!54 nodes terminated

— Only 1040 valid positions — Evaluation function
* Result of game
e.g. +1,0,-1 (zero sum
games)

* also:payoff function

Optimal decisions

Example:
i /N
FNic-Tac-Toe B
MIN (O) X % %
X X X
\
X|0 X o] X
MAX (X))
X|0| X X|O X|0
MIN (0) X x
I R
X|0| X X|0| X X|(Oo| X
TERMINAL 0| X 00| X X
Partial search tree forTic-Tac- iy _‘: X : 0 X:: 0

Toe, MAX moves first (x)

* Initial state and legal moves define * Number at leaves is utility

game tree value of final states from
° MAX has nine Options MAX’ VieW (h|gh Va|ueS are
e Games continues until one of the good)

players has 3 x or 3 o in a row,
column or diagonal or none of the
fields is empty

Optimal decisions

Optimal Strategies

* Normal search problems e Tic-Tac-Toe
— Final states deliver result — Too complex to show
(Win) complete tree. Here trivial
— MIN against this game: ends after one move
— Thus, MAX needs a each
contingent strategy — One move deep, two half-
— First move moves, each is called a ply

— Moves after MIN has moved

MAX

MIN

Optimal decisions

Minimax=Value

e Optimal strategy with game
tree: determine the min/max
value of each node

— Minimax-Value(n)

Minimax-Algorithm for
determination of optimal
strategy and for best first
move.

Minimax-Decision: maximizes
utility under the assumption
that MIN plays perfectly (to
minimize utility).

UTILITY(n)

if n 1s a terminal state

Minimax-Value(n) = MaX,e gyecessors(n) MINIMAX-VALUE(s) if 7 is a MAX node
MiNge gyecessors(n) MINIMAX-VALUE(s) if n is a MIN node.

Optimal decisions

Trivial Tic-Tac-Toe

MAX
MIN
e a,-a; are MAX legal moves * V- nodes: MIN moves
* MIN can answer with * Terminal values are utility values
b, 3,¢/3,d,.3 for MAX, other values are
determined through utility-values
e One move = 2 half moves =2 of successors

plies

Optimal decisions

Minimax-Algorithm

* Create search tree of game <+ Depth-first for whole tree

— All the way to the end! Time complexity: max

* Evaluate leaves depth m and b legal moves
— Utility for each end of game at each point: O(bm)

* Propagate evaluations to * Space complexity O(bm), if
root all successors are calculated
— MAX chooses maximal utility ¢ Real Games: Time
— MIN chooses minimal utility complexity completely

different!

Optimal decisions 10

Minimax-Algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

v ¢ MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
Ve —00
for a, s in SUCCESSORS(state) do
v MAX(v, MIN-VALUEC(s))
return v

function MIN-VALUE(state) returns aq utility value
if TERMINAL-TEST(state) then return UTILITY (state)
VE X0
for a, s in SUCCESSORS(state) do
v ¢ MIN(v, MAX-VALUE(s))
return v

Optimal decisions

Minimax decisions
maximize/minimize
utility

Action selection
accordingly
Assumption: Max/
Min always play
optimal!

Optimal Decisions in Games with more than

2 Players
Extension of minimax algorithm ¢ Example.:
possible — 3 players A,B,C: 3 vectors per
Single value of node substituted node {vy ,Vg Vc}
by vector of values — Final states: values from

viewpoint of each player
— Nodes in tree

to move

(1,2,6) (4,2,3) (6,1,2) (7.4,-1) (5-1-1) (-1,52) (7.7-1) (5,4,5)

Optimal decisions 12

to move
A

(1,2,6) (4,2,3) (6,1,2) (7.4-1) (5-1-1) (-1,52) (7.,7-1) (5,4,5)

* C decides about next move
— Two options: {v =1, vg=2 ,v-=6}, {v,=4, vg=2 ,v-=3}

— Because 6 > 3, the first option should be taken, i.e. if X is
reached, (1,2,6) is final state

* Alliances as problem

Optimal decisions

Alpha-Beta Pruning

* Problem Minimax: @ ®)
— Search space 00,31 T 00.]
exponential in number
of moves
* Shortening search © (3. +00] @

— ldea of Alpha-Beta-
Pruning: Cut off
branches that cannot h &4
influence decision

[3,3]

Range of values given per node

Alpha-Beta Pruning

General Case

* Alpha-Beta-Pruning: Cut off
branches that cannot
influence decision Player
* Principle of Alpha-Beta-
Pruning: if m better as n, we Opponent
never get to n
Player
Opponent

Alpha-Beta Pruning

* Only two different
lines of code w.r.t.
Minimax

 Effectivity: O(bd2)
Consider nodes only
if the best successor
nodes are analyzed
first.

Alpha-Beta Pruning

Algorithm

function ALPHA-BETA-SEARCH(s#ate) returns an action
inputs: state, current state in game

v +— MAX-VALUE(state, — o0, +00)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, a, 3) returns a utility value
inputs: state, cuirent state in game
a, the value of the best alternative for MAX along the path to szate
B, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY (state)
V4 —00

v+ MAX(v, MIN-VALUE(s, a, 3))
ifv > [then return v

N a+— MaxX(a, v)
I

function MIN-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
a, the value of the best alternative for MAX along the path to szate
B, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY (state)
V4= 400
a, s in SUCCESSORS(state
v ¢ MIN(v, MAX-VALUE(Ss, a, 3))
ifv < athen returnv

\&'—ﬁm(ﬂ, v)
returiir

Imperfect, real-time decisions

e Minimax searches whole tree Better: heuristic evaluation
» Alpha-Beta Pruning helps to function that makes non-
shorten significant part terminal node temporarily to
terminals

e However, search whole tree

down to leaves not practical in * Minimax or Alpha-Beta
most of the times algorithms are substituted in

two ways
— Heuristic evaluation function
instead utility function

— Shortening; Cutoff-Test instead
of goal test. Cutoff-Test
decides when to use
evaluation function

Imperfect, real-time decisions |7

Heuristic Evaluation Function

 Substitution of utility function through heuristic evaluation function
£

Early cut-off of branches

[
(b) Black to move
White slightly better

* Requirements of evaluation
function:
— e.g. measure value of ‘material’
in chess: Faily even
Pawn = |, Knight/Bishop = 3,
Rook = 5, Queen = 9, 1§ @ €1
others (e.g. King safety = .i...i.i1
1/2 Pawn HE E B
H:E:H B
< B HF
: Bzl EyvE §
s [l 2
(c) White to move (d) Black to move
Black winning White about to lose

Imperfect, real-time decisions

Requirements of Evaluation Function

* Conformance with utilit)' o Examp|e; Weighted linear
function for leaves evaluation function:

e Performance!

—wify twf ... twf,
with: w = weights (values for
° Depiction of Winning chances Pieces’ e.g. | for pawns, 3 for
knight) and f = number of
e “Evaluation function should play elements

represent winning options for an
arbitrary position of a material
category”

Imperfect, real-time decisions

Cut-Off Search

e ... with fixed limit, i.e. Cut-off-Test for all
nodes until limit successful

* Goal: apply evaluation function only on
‘quiescent’ positions

* Example:

— Assumption: evaluation function based on

material advantage, program searches until limit
of depth, reaches position b)

— Evaluation function would probably say that win
is likely

— However, white can beat queen in one move

— Search from unstable states for stable states

— Material function, i.e. apply evaluation function
only of positions are quiescent

(b) White to move

Imperfect, real-time decisions

20

Horizon Problem

* Horizon problem
— Opponent moves, move is significant

damage and cannot be avoided

* Example:

— It looks like black has light advantages. If
white brings pawn in 8th row a queen will
be given and white will win

— Black can forestall this by checking with
the rook. Stalling moves pushes the
inevitable queening move “over the search

horizon” to a place where it cannot be

vs)

lack to move

detected.

— A limited depth-first search cannot foresee
move (pawn-queen)

Imperfect, real-time decisions

Example: Chess

* Assumption:

— Evaluation function
implemented

— “Reasonable” Cut-Off-Test
for stable states

— Large “transposition table”
(repeated states in a hash-
table)

— = | Mio nodes can
generated and evaluated (on

2 GHz PC)

— ~200 Mio moves per
standard time control (3
min)

Imperfect, real-time decisions

e Test

— b = 35 for chess, with 355 ~
50 Mio, i.e. 5 plies for
evaluation

* Average chess player
would win

— With Alpha-Beta-Pruning: |10
plies for evaluation
* Expert level

— With more pruning
techniques 14 plies

e Grandmaster level

22

Games with Element of Chance

Unpredictable events bring new situations

Knowledge and luck (dice)

Example:

White has diced a 6 and a 5,
four options now: (5-10,5-11),
(5-11,19-24), (5-10,10-16),
(5-11,11-16)

Problem:
White does not know what Black
will dice nor what Black will do

Construction of complete search
tree not possible

— Chance nodes in addition

Games with element of chance

25

7 8 9 10 11 12

24 23 22 21 20 19

18 17 16 15 14 13

23

Chance Nodes (CN)

e CN as circles

— We cannot calculate best
move

— But: we can calculate an
average for all possible
dice rolls

* Leaves (final states)

— As in deterministic games

e Chance C;

— Suppose d. is a dice roll
and P(d) the a priori
probability. For each dice
roll calculate, sum-up and

weight utility for best
moves

Games with element of chance

MAX

DICE

MIN

DICE

MAX

TERMINAL

£\

24

Expectiminimax Value

* Expectiminimax Value * Probability
— Minimax value for games with — over dice roll occurrence
Chance Nodes
* But: o
o Generalization
— Values are not “real” Minimax- o
values — of Minimax value to

— Only: expected (probabilistic) Expectiminimax value

value
EXPECTIMINIMAX (1) =
UTILITY (n) if . is a terminal state
MaX,e Syccessors(n) EXPECTIMINIMAX (s) if n 1s a MAX node
MiNge §yccessors(n) EXPECTIMINIMAX (s) if 1s a MIN node

> seSuccessors(n) F(8) - EXPECTIMINIMAX (s} if n is a chance node

Games with element of chance 25

Position Evaluation

* Obvious: Cut-Off for search apply * With randomness we loose this
evaluation function at each leaf freedom: (1,2,3,4) is A, is best choice.
* With Minimax: order preserving (1,20,30,400): A, is better
transformation of leaves does not — program operates differently!
make difference (1,2,3,4) vs * Avoidance: Evaluation function can
(1,20,30,400), only be a positive linear
— Free to choose a function transformation of the
probability of winning from a
position

* Important and general property in
situations where uncertainty is

MAX

DICE

MIN

20 20 30 30 1 1 400 400

Games with element of chance

Complexity of Expectiminimax

* Minimax O(bm)

* Expectiminimax O(bm nm)
— n is number of dice rolls

— lot of extra costs (e.g. for
Backgammon n = 2/,b = 20),
sometimes even b=4,000
(doubles))

* Alpha-Beta Pruning
— Upper bound for C?

— Possible if upper bound for
utility function given

Games with element of chance

MAX

DICE

MIN

DICE

MAX

TERMINAL

27

* Two goals with game development:

State-of-the-art Programs

— Action selection in complex

domains with uncertain result
— Development of high-performance

systems for special games

State-of-the-Art

Here: the latter (Chess)

Concentration on chess
extremely distinctive

Speed-Chess (5 and 25 min)
Computer wins against Kasparov

In normal tournament a little less
good

(7]
[—4
(=4
(=]

2000

1000

1@ ® *y (P |)
— (@)
— —~
—)
= g
O <
- ¢ 5
- - £
=
_ n g
—al 4 = = = ~ = I8 ~ =
42| gl & B _ SR =3 N gl <
— e 8 F S a N) e S E K =
(S {Q * 2 2121 ~ N5 &
Jda g = = = 8 3 Sl = X 50
&) Z v§ = =g o R = id E1 ~ =
- X = o =1 e) el Y] =z & lals >]
— = I QL B q = ~ o~ <) =
E = S gl = | =] £ g = ﬁ =
— £ Z = % | % 13 R E gl=s 3
) g S sl 2 5 1 B B) 213 = g Py
3 3 s =] & 2 =21 sl 8 o} E1 1 B3 &) <
e A = Ol & i Ol &~ -l A f==f [a ¥ A
I I T I [[||| ||| |
1960 1965 1970 1975 1980 1985 1990

28

State-of-the-art Programs

* Chess

— Deep Blue: 30 billion positions per move, depth >14

— HYDRA successor using FPGA, 18 plies

— RYBKA, won 2008/9, unknown eval-function which is the key
— Komodo, Stockfish, Houdini as commercial products

— Stockfish 9, Houdini 6, or Komodo 11.2 highest rated on CCRL (’I8)
won every game of 6 game match against WC Magnus Carlson (’15)

— https://ccrl.chessdom.com/ccrl/4040/

* Othello/Reversi
— Search space less than chess
— 5 -15 legal moves
— Computer way better than humans
— 1997 Logistello (Buro, 2002) 6:1 against WC
— Saio, Edax and Cyrano (201 I) much faster than Logistello

* Backgammon
— Uncertainty through dice rolls, search thus expensive
— TD-Gammon (Gerry Tesauro) on ANN & RL basis
— | Mio training games against itself
— Top 3 of the world
— GNU Backgammon, BGBIitz, Palamedes winners of 2015 computer olympiad

State-of-the-Art

29

https://ccrl.chessdom.com/ccrl/4040/

State-of-the-art Programs

e Go

— b reaches 360 on 19x19 board, regular search
impossible

— Systems based on knowledge-based approach, until
1997 no good programs

— MoGo program (runs on 800 processor |5 Tflop
supercomputer (1000x DeepBlue)

— AlphaGo, first computer program beating a human
professional, 2018: ELO > 5,000, 2017 Nature article:
https://www.nature.com/articles/nature24270

— Uses a combination of ML and tree search techniques,
extensive training (both human and computer play).

v

State-of-the-Art

30

https://www.nature.com/articles/nature24270

Discussion

* Optimal decisions in games mostly inefficient (intractable in most
cases)

* Thus:algorithms operate with assumptions and approximations

Standard approach, based on Minimax, Evaluation function and Alpha-

Beta Pruning

Minimax is optimal method for next move if search tree is given and

evaluation of leaves are correct.
Reality: only estimations, in
figure Minimax seems not to be
a good choice

Algorithm decides for right
branch, but it is more likely that
left branch is better in reality

Minimax assumption: all right
nodes are better that 99 on the
left

MAX

MIN 99 100

99 1000 1000 1000 100 101 102

100

31

summary

* Games for Al like Formula | in Motorsports. Here are the most
important ideas:

A game can be defined by the initial state (how the board is set up), the
legal actions in each state, a terminal test (which says when the game
is over), and a utility function that applies to terminal states.

In two-player zero-sum games with perfect information, the
minimax algorithm can select optimal moves using a depth-first
enumeration of the game tree.

The alpha-beta search algorithm computes the same optimal move as
minimax, but achieves much greater efficiency by eliminating subtrees that
are provably irrelevant.

Usually, it is not feasible to consider the whole game tree (even with alpha-
beta), so we need to cut the search off at some point and apply an
evaluation function that gives an estimate of the utility of a state.

32

sSummary 2

— Games of chance can be handled by an extension to the minimax
algorithm that evaluates a chance node by taking the average utility of
all its children nodes, weighted by the probability of each child.

— Optimal play in games of imperfect information, such as bridge,
requires reasoning about the current and future belief states of each
player.A simple approximation can be obtained by averaging the value of an
action over each possible configuration of missing information.

— Programs can match or beat the best human players in Checkers, Othello,
and Backgammon, and are close behind in bridge. A program has beaten
the world chess champion in one exhibition match. Programs remain at
the amateur level in Go.

33

