
Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Perception – Information Extraction –
CSC398 Autonomous Robots

Ubbo Visser

Department of Computer Science
University of Miami

November 21, 2024

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Perception - Sensors for mobile robots

Aim

Learn how to extract information from sensor
measurements

Suggested Reading:

Introduction to Autonomous Mobile Robots by Roland Siegwart, Illah
Nourbakhsh, Davide Scaramuzza, The MIT Press, Sections: 4.1.3, 4.6.1 -
4.6.5, 4.7.1 - 4.7.4

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Perception - Cognition - Action cycle

Source: Siegwart et. al (2018): Autonomous Mobile Robots, Lecture ETH Zürich

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Information extraction

Next step is to extract information from images, such as

Geometric primitives (e.g., lines and circles): useful, for example, for robot
localization and mapping
Object recognition and scene understanding: useful, for example, for
localization within a topological map and for high-level reasoning

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Information extraction

Geometric feature extraction: extract geometric primitives from sensor
data (e.g., range data)

Examples: lines, circles, corners, planes, etc.

We focus on line extraction from range data (a quite common task); other
geometric feature extraction tasks are conceptually analogous

The two main problems of line extraction from range data

Which points belong to which line? → segmentation
Given an association of points to a line, how do we estimate line
parameters? → fitting

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Step #2: line fitting

Goal: fit a line to a set of sensor measurements

It is useful to work in polar coordinates:
x = p cos θ, y = sin θ

Equation of a line in polar coordinates

Let P = (p, θ) be an arbitrary point on the
line
Since P ,P0,O determine a right triangle

p cos(θ − α) = r or x cosα+ y sinα = r

(1)

(r ,α) are the parameters of the line

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Step #2: Line Fitting

Due to measurement errors, the equation of the
line is only approximately satisfied:

pi cos(θi − α) = r + di −→
Error

Assume n measurement points represented in
polar coordinates as (pi , θi).

Objective: Identify the line that best “fits” all
the measurement points.

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Step #2: Line Fitting

Assume that all measurements have equal uncertainty.

Find line parameters r ,α that minimize the squared error:

S(r ,α) :=
n󰁛

i=1

d2
i =

n󰁛

i=1

(pi cos(θi − α)− r)2

Unweighted least squares

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Step #2: Line Fitting

Consider, now, the case where each measurement has its own, unique
uncertainty

For example, assume that the variance for each range measurement pi is σi

Associate with each measurement a weight, e.g., wi = 1/σ2
i

Minimize

S(r ,α) :=
n󰁛

i=1

wid
2
i =

n󰁛

i=1

wi(pi cos(θi − α)− r)2

Weighted least squares

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Step #2: Line Fitting

Assume that the n measurements are independent.

Solution:

α =
1

2
atan2

󰀣 󰁓
i wip

2
i sin 2θi − 2󰁓

i wi

󰁓
i

󰁓
j wiwjpipj cos θi sin θj

󰁓
i wip2i cos 2θi − 1󰁓

i wi

󰁓
i

󰁓
j wiwjpipj cos(θi + θj)

󰀤
+

π

2

r =

󰁓
i wipi cos(θ − α)󰁓

i wi

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Step #1: Line Segmentation

Several algorithms are available

Here: three popular algorithms:

Split-and-merge
RANSAC
Hough-Transform

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Split-and-Merge Algorithm

Most popular line extraction algorithm

1: Data: Set S consisting of all N points, a distance threshold
d > 0

2: Output: L, a list of sets of points each resembling a line
3: L ← (S); i ← 1
4: while i ≤ len(L) do
5: Fit a line (r ,α) to the set Li
6: Detect the point P ∈ Li with the maximum distance D to

the line (r ,α)
7: if D < d then
8: i ← i + 1
9: else
10: Split Li at P into S1 and S2
11: Li ← S1; Li+1 ← S2
12: end if
13: end while
14: Merge collinear sets in L

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Split-and-Merge Algorithm

Most popular line extraction algorithm

1: Data: Set S consisting of all N points, a distance threshold
d > 0

2: Output: L, a list of sets of points each resembling a line
3: L ← (S); i ← 1
4: while i ≤ len(L) do
5: Fit a line (r ,α) to the set Li
6: Detect the point P ∈ Li with the maximum distance D to

the line (r ,α)
7: if D < d then
8: i ← i + 1
9: else
10: Split Li at P into S1 and S2
11: Li ← S1; Li+1 ← S2
12: end if
13: end while
14: Merge collinear sets in L

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Split-and-Merge Algorithm

Most popular line extraction algorithm

1: Data: Set S consisting of all N points, a distance threshold
d > 0

2: Output: L, a list of sets of points each resembling a line
3: L ← (S); i ← 1
4: while i ≤ len(L) do
5: Fit a line (r ,α) to the set Li
6: Detect the point P ∈ Li with the maximum distance D to

the line (r ,α)
7: if D < d then
8: i ← i + 1
9: else
10: Split Li at P into S1 and S2
11: Li ← S1; Li+1 ← S2
12: end if
13: end while
14: Merge collinear sets in L

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Split-and-Merge Algorithm

Most popular line extraction algorithm

1: Data: Set S consisting of all N points, a distance threshold
d > 0

2: Output: L, a list of sets of points each resembling a line
3: L ← (S); i ← 1
4: while i ≤ len(L) do
5: Fit a line (r ,α) to the set Li
6: Detect the point P ∈ Li with the maximum distance D to

the line (r ,α)
7: if D < d then
8: i ← i + 1
9: else
10: Split Li at P into S1 and S2
11: Li ← S1; Li+1 ← S2
12: end if
13: end while
14: Merge collinear sets in L

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Split-and-Merge Algorithm

Most popular line extraction algorithm

1: Data: Set S consisting of all N points, a distance threshold
d > 0

2: Output: L, a list of sets of points each resembling a line
3: L ← (S); i ← 1
4: while i ≤ len(L) do
5: Fit a line (r ,α) to the set Li
6: Detect the point P ∈ Li with the maximum distance D to

the line (r ,α)
7: if D < d then
8: i ← i + 1
9: else
10: Split Li at P into S1 and S2
11: Li ← S1; Li+1 ← S2
12: end if
13: end while
14: Merge collinear sets in L

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Split-and-merge: iterative-end-point-fit variant

Iterative-end-point-fit: split-and-merge where the line is constructed by simply
connecting the first and last points (as opposed to least squares fit)

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

RANSAC: Random Sample Consensus

General method to estimate parameters of a model from a set of observed
data in the presence of outliers, where outliers should not influence the
estimates of the values

Typical applications in robotics: line extraction from 2D range data, plane
extraction from 3D point clouds, feature matching for structure from
motion, etc.

RANSAC is iterative and non-deterministic: the probability of finding a
set free of outliers increases as more iterations are used

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC

1: Data: Set S consisting of all N points
2: Output: Set with the maximum number of inliers

(and corresponding fitting line)
3: for i = 1 to k do
4: Randomly select two points from S
5: Fit line li through the two selected points
6: Compute the distance of all other points to line li
7: Construct the inlier set by counting the number

of points with distance to the line less than γ
8: Store line li and associated set of inliers
9: end for
10: Choose the set with the maximum number of inliers

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC iterations

In principle, one would need to check all possible combinations of 2 points in
dataset

If |S | = N , number of combinations is N(N−1)
2

→ too many

However, if we have a rough estimate of the percentage of inliers, we do not
need to check all combinations...

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC iterations: statistical characterization

Let w be the percentage of inliers in the dataset, i.e.,

w =
#of inliers

N

Let p be the desired probability of finding a set of points free of outliers
(typically, p = 0.99)

Assumption: 2 points chosen for line estimation I selected independently

P(both points selected are inliers) = w2

P(at least one of the selected points is an outlier) = 1− w2

P(RANSAC never selects two points that are both inliers) = (1− w2)k

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

RANSAC iterations: statistical characterization

Then, the minimum number of iterations k̄ to find an outlier-free set with
probability, at least p is:

1− p = (1− w 2)k̄ ⇒ k̄ =
log(1− p)

log(1− w 2)

Thus if we know w (at least approximately), after k̄ iterations RANSAC will
find a set free of outliers with probability p

Note:

k̄ depends only on w , not on N!
More advanced versions of RANSAC estimate w adaptively

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough Transform

Key idea: Each point votes for a set of plausible
line parameters.

A line has two parameters: (m, b).

Given a point (xi , yi), the lines that could pass
through this point are all (m, b) satisfying:

yi = mxi + b, or b = −mxi + yi

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough Transform

A point in image space maps into a line in Hough space

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough Transform

Key fact: all points on a line in image space yield lines in the parameter
space which intersects at a common point, (m∗, b∗)

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough transform algorithm

1: initialize accumulator array H(m, b) to zero
2: for each point (xi , yi), increment all cells that satisfy b = −xim + yi
3: local Maxima in array H(m, b) corresponds to lines

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough transform algorithm: polar coordinate representation

Equation of a line in polar coordinates x cosα + y sinα = r

The parameter space transform of a point is a sinusoidal curve

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough Transform Algorithm, Revised

1: Data: Set S consisting of N points
2: Output: Line fitting the points in S
3: Initialize nα × nr accumulator H with zeros
4: for (xi , yi) ∈ S do
5: for α ∈ {α1, . . .αnα} do
6: compute r = xi cosα+ yi sinα;
7: H[α, r] ← H[α, r] + 1;
8: end for
9: end for
10: Choose (α∗, r∗) that corresponds to largest count in H;
11: Return line defined by (α∗, r∗)

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough transform: example

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough transform: example

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Hough transform: example

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Object recognition

Object recognition: capability of naming discrete objects in the world

Why is it hard? Many reasons, including:

Real world is made of a jumble of objects, which all occlude one another and
appear in different poses
There is a lot of variability intrinsic within each class (e.g., dogs)

Here, we will look at the following methods:

Template matching
Neural network methods

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Template matching

Finding Waldo

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Template matching

Finding Waldo

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Template matching

In practice, remember correlation:

I ′(x , y) = F ◦ I =
n󰁛

i=−n

m󰁛

j=−m

F (i , j)I (x + i , y + j)

Equivalent: I ′(x , y) = fT · tij , where fT is the filter and tij is the
neighborhood patch.

To ensure that perfect matching yields one, we consider the normalized
correlation:

I ′(x , y) =
fT · tij
󰀂f󰀂󰀂t󰀂

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Template matching

Result

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Template matching

Result

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Template matching

Problem: what if the object in the image is
much larger or smaller than our template?

Solution: re-scale the image multiple times
and do correlation on every size!

This leads to the idea of image pyramids

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Image pyramids: scaling down

Naive solution: keep only some rows and columns

E.g.: keep every other column to reduce the image by 1/2 in the width
direction

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Image pyramids: scaling down

Naive solution: keep only some rows and columns

E.g.: keep every other column to reduce the image by 1/2 in the width
direction

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Image pyramids: scaling down

Solution: blur the image via Gaussian, then subsample

Intuition: remove high-frequency content in the image

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Image pyramids: scaling down

Solution: blur the image via Gaussian, then subsample

Intuition: remove high-frequency content in the image

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Image pyramids: scaling down

Solution: blur the image via Gaussian, then subsample

Intuition: remove high-frequency content in the image

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Image pyramids: scaling down

A sequence of images created with Gaussian blurring and down-sampling is
called a Gaussian pyramid

The other step is to perform up-sampling (nearest neighbor, bilinear,
bicubic, etc.)

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Neural Networks: Dense ObjectNets

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Yolov8 architecture

Model summary used in
class:

225 layers,
3,012,798
parameters
Based on YOLOv8n

Source: https://github.com/ultralytics/ultralytics/issues/189

https://github.com/ultralytics/ultralytics/issues/189

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

YOLOv8: Measure Success

Source: https://arxiv.org/html/2304.00501v6/#bib.bib115

https://arxiv.org/html/2304.00501v6/#bib.bib115

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

Acknowledgements

Acknowledgement

This slide deck is based on material from the Stanford ASL and ETH Zürich

Information extraction Split-and-merge RANSAC Hough Transform Object recognition References

References

