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Perception - Sensors for m

Aim

@ Learn how to extract information from sensor
measurements

Suggested Reading:

465 471-474

o Introduction to Autonomous Mobile Robots by Roland Siegwart, lllah
Nourbakhsh, Davide Scaramuzza, The MIT Press, Sections: 4.1.3, 4.6.1 -
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Information extraction

o Next step is to extract information from images, such as

o Geometric primitives (e.g., lines and circles): useful, for example, for robot
localization and mapping

o Object recognition and scene understanding: useful, for example, for
localization within a topological map and for high-level reasoning
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Information extraction

data (e.g., range data)

o Geometric feature extraction: extract geometric primitives from sensor
o Examples: lines, circles, corners, planes, etc.

@ We focus on line extraction from range data (a quite common task); other

geometric feature extraction tasks are conceptually analogous

@ The two main problems of line extraction from range data

o Which points belong to which line? — segmentation
parameters? — fitting

o Given an association of points to a line, how do we estimate line
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Step #2: line fitting

o Goal: fit a line to a set of sensor measurements

o It is useful to work in polar coordinates:
x =pcosf, y=sinf

@ Equation of a line in polar coordinates

o Let P = (p,0) be an arbitrary point on the
line

e Since P, Py, O determine a right triangle

‘pcos(@— a) = r‘ or xcosa+ysina=r

(1)

o (r,a) are the parameters of the line

>

P = (p,0)
p
r W0
aﬂ
0 \
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Step #2: Line Fitting

@ Due to measurement errors, the equation of the
line is only approximately satisfied:

picos(0; —a) = r+d; Error
@ Assume n measurement points represented in
polar coordinates as (p;, 0;).

o Objective: Identify the line that best “fits” all
the measurement points.
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Step #2: Line Fitting

@ Assume that all measurements have equal uncertainty.

o Find line parameters r, o that minimize the squared error:

@ Unweighted least squares

S(r,a) = z d? = Z(p; cos(0; — a) — r)?
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Step #2: Line Fitting

o Consider, now, the case where each measurement has its own, unique
uncertainty

@ For example, assume that the variance for each range measurement p; is o;
@ Associate with each measurement a weight, e.g., w; = 1/0,-2
@ Minimize

n

S(r,a) = Z w;d? = Z w;(p;j cos(6; — ) — r)?
i—1

i=1

o Weighted least squares
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Step #2: Line Fitting

o Solution:

1

a = §atan2 (

D25 wip7 €os20; — = 37 3 wiw;pip; cos(6; + )

@ Assume that the n measurements are independent.

r =

> wip?sin 26; — ZLW > ZJ. w; w; p; p; cos §; sin 6

T
2
> w;p;cos(f — )
Y
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Step #1: Line Segmentation

o Several algorithms are available

e Split-and-merge

@ Here: three popular algorithms:
o RANSAC

o Hough-Transform

g o0
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Split-and-Merge Algorithm

10:
11:
12:
13:
14:

Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold
d>0
Output: L, a list of sets of points each resembling a line
L+ (S);i+1
while / <len(L) do

Fit a line (r,a) to the set L;

Detect the point P € L; with the maximum distance D to
the line (r, @)

if D < d then

i—i+1
else

Split L; at P into $; and S,
L,' — 51; L,'+1 — 52
end if
end while

Merge collinear sets in L
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Split-and-merge: iterative-en

Iterative-end-point-fit: split-and-merge where the line is constructed by simply
connecting the first and last points (as opposed to least squares fit)

Merge

No more splits

Credit: SNS
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RANSAC

@ RANSAC: Random Sample Consensus

@ General method to estimate parameters of a model from a set of observed
data in the presence of outliers, where outliers should not influence the
estimates of the values

o Typical applications in robotics: line extraction from 2D range data, plane
extraction from 3D point clouds, feature matching for structure from
motion, etc.

o RANSAC is iterative and non-deterministic: the probability of finding a
set free of outliers increases as more iterations are used
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RANSAC

[y

Data: Set S consisting of all N points

Output: Set with the maximum number of inliers

(and corresponding fitting line)

for i=1to k do .
Randomly select two points from S " . o
Fit line /; through the two selected points R T
Compute the distance of all other points to line /; t o
Construct the inlier set by counting the number Y

of points with distance to the line less than ~

Store line /; and associated set of inliers .

9: end for

10: Choose the set with the maximum number of inliers

NoagRsrw N

®

u]
)
l
n
it

DA



RANSAC

[y
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RANSAC

[y

Data: Set S consisting of all N points
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RANSAC

[y
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RANSAC

[y
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RANSAC
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RANSAC

[y
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RANSAC

[y
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RANSAC iterations

@ In principle, one would need to check all possible combinations of 2 points in

dataset

o If |S| = N, number of combinations is W — too many

@ However, if we have a rough estimate of the percentage of inliers, we do not

need to check all combinations...
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RANSAC iterations: statistical

o Let w be the percentage of inliers in the dataset, i.e.,
#of inliers
w =
N
(typically, p = 0.99)
o P(both points selected are inliers) = w

o Let p be the desired probability of finding a set of points free of outliers
2

@ Assumption: 2 points chosen for line estimation | selected independently
o P(at least one of the selected points is an outlier) =1 — w

2
o P(RANSAC never selects two points that are both inliers) = (1 — w?)*
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RANSAC iterations: statistical?

probability, at least p is:

l-p=01-w?)r = k=

@ Then, the minimum number of iterations k to find an outlier-free set with
o Note:

log(1 — p)

log(1 — w?)

o Thus if we know w (at least approximately), after k iterations RANSAC will
find a set free of outliers with probability p
o k depends only on w, not on N!

o More advanced versions of RANSAC estimate w adaptively
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Hough Transform

o Key idea: Each point votes for a set of plausible
line parameters.

@ A line has two parameters: (m, b).
@ Given a point (x;, ¥;), the lines that could pass
through this point are all (m, b) satisfying:

Yi=mxi+b, or b=-—mx;+y

Ya
/y: mx +b
"
Ya
yd
xwyz)
o
g
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Hough Transform

Image space

Yy

@ A point in image space maps into a line in Hough space
A

Hough parameter space
b A
d b=—mx; + Yi
($i7 yz)
g m
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Hough Transform

Y,

o Key fact: all points on a line in image space yield lines in the parameter
space which intersects at a common point, (mx, bx)

b A
/‘/(.;7'!/3')

mex; + Y;

(m”, %)

b=—mz; + vy,

3"
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Hough transform algorithm
1: initialize accumulator array H(m, b) to zero
2: for each point (x;,y;), increment all cells that satisfy b = —x;m + y;
3: local Maxima in array H(m, b) corresponds to lines
b A
bmax
12 points voted for this line
o[1]e | ->local maximum
4|12¢s] |
0|42

Mmax
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Hough transform algorithm

T

@ Equation of a line in polar coordinates x cosa + ysina = r

@ The parameter space transform of a point is a sinusoidal curve

* Avoids infinite slope

Constant resolution
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Hough Transform Algorith?

[ gy

FOYLONTREWN

Data: Set S consisting of N points
Output: Line fitting the points in S
Initialize n, x n, accumulator H with zeros
for (x;,y;) € S do
for « € {a1,...an, } do
compute r = x; cosa + y; sin
Hla, r] < Hla, r] + 1;
end for
end for
Choose (as, rx) that corresponds to largest count in H;
Return line defined by (as, r«)
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Information extraction Split-and-merge RANSAC Hough Transform
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Hough transform: example
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Hough transform: example




Information extraction Split-and-merge RANSAC Hough Transform Object recognition References
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Object recognition

o Why is it hard? Many reasons, including:

appear in different poses

@ Object recognition: capability of naming discrete objects in the world

o There is a lot of variability intrinsic within each class (e.g., dogs)
@ Here, we will look at the following methods:
o Template matching

o Real world is made of a jumble of objects, which all occlude one another and
o Neural network methods
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Template matching

Finding Waldo

Source: Sanja Fidler
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Template matching

Finding Waldo

Filter F

Source: Sanja Fidler
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Template matching

@ In practice, remember correlation:

i=—nj=—m

P(y)=Fol=> > F(i,)l(x+iy+))
neighborhood patch.

o Equivalent: I'(x,y) =fT - t;, where f7 is the filter and t; is the
correlation:

f7-t;
'(x,5) .

@ To ensure that perfect matching yields one, we consider the normalized

-~ [IFIed
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Template matching

Result
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Source: Sanja Fidler
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Template matching

Result
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Source: Sanja Fidler
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Template matching

@ Problem: what if the object in the image is
much larger or smaller than our template?

@ Solution: re-scale the image multiple times
and do correlation on every size!

@ This leads to the idea of image pyramids

<
atiexy
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Image pyramids: scaling down

@ Naive solution: keep only some rows and columns
direction

o E.g.: keep every other column to reduce the image by 1/2 in the width

Source:

Sanja Fidler
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Image pyramids: scaling down

@ Solution: blur the image via Gaussian, then subsample

@ Intuition: remove high-frequency content in the image

Source:
Sanja Fidler
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@ Solution: blur the image via Gaussian, then subsample

@ Intuition: remove high-frequency content in the image

Source:
Sanja Fidler

[m]

=



Image pyramids: scaling

called a Gaussian pyramid

@ A sequence of images created with Gaussian blurring and down-sampling is
bicubic, etc.)

@ The other step is to perform up-sampling (nearest neighbor, bilinear,
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Neural Networks: Dense ObjectN

X
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Data

Convolutional Encoder-Decoder

X

Data

Pooling Indices
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YOLOv8 @ Rangeking
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Source: https://github.com/ultralytics/ultralytics/issues/189

Yolov8 architecture
@ Model summary used in
class:
o 225 layers,
3,012,798

parameters
o Based on YOLOvS8n
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YOLOv8: Measure Su

a)

Object

b)
Infersection
loU=0.35 loU= 0.74 loU=0.93
Detected hox
Area of Overlap
loU=
Area of Union
Obiec Poor Good Excellent
Detected box
Source: https://arxiv.org/html/2304.00501v6/#bib.bib115



https://arxiv.org/html/2304.00501v6/#bib.bib115
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