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From 3D world to 2D im

@ So far we have focused on mapping 3D objects onto 2D images and on
leveraging such mapping for scene reconstruction

o Next step: how to represent images and infer visual content?
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Today's lecture

o Aim:

o Learn fundamental tools in image processing for filtering and detecting
similarities
o Readings:

o Learn how to detect and describe key features in images

o Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile
Robots. Sections 4.3 — 4.5.4.
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Representations in Computer Vision

Observed image
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Example from Advances in Computer Vision — MIT - 6.869/6.819
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[Bartlett, 1932]
[Intraub & Richardson, 1989]



Typical CV Pipeline
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Example
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Example from CS331B: Representation Learning in Computer Vision
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Example

~12 lbs

Example from CS331B: Representation Learning in Computer Vision
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Example

Representation
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Typical CV Pipeline
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Traditional CV Pipeline
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Example from Advances in Computer

Vision — MIT - 6.869/6.819

Feature extractors

Classifier
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Represent these cats wi

Example from CS331B: Representation Learning in Computer Vision
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Represent these cats with a cat det_

Example from CS331B: Representation Learning in Computer Vision
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Represent these cats with a cat d_

Example from CS331B: Representation Learning in Computer Vision
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Represent these cats with a cat

Example from CS331B: Representation Learning in Computer Vision
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Represent these cats with a cat d_

Example from CS331B: Representation Learning in Computer Vision
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Summary of Traditional Componen—

Color Model based
Histograms Shapes
4
-
1
e
Deformable Histogram of
Part based Gradients
Models (DPM) (HOG)

Felzenszwalb et al. 2010.
Dalal and Triges, 2005.
Beis and Lowe, 1997.

Example from CS331B: Representation Learning in Computer Vision
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Traditional CV Pipeline
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Feature extractors

Classifier
Example from Advances in Computer Vision — MIT — 6.869/6.819
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Traditional CV Pipeline

Learned

“clown fish”

Example from Advances in Computer Vision — MIT — 6.869/6.819
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How do you interpret what the

— “Fish”

.

AN SN R
Example from Advances in Computer Vision — MIT — 6.869/6.819

[Zeiler & Fergus, ECCV 2014]
[Zhou et al., ICLR 2015]
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Visualizing and Understanding CNNs

[Zeiler and Fergus, 2014]
Gabor-like filters learned by layer 1

Image patches that activate each of the
layer 1 filters most strongly

Example from Advances in Computer Vision — MIT — 6.869/6.819
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Visualizing and Understanding CNN

[Zeiler and Fergus, 2014]
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Example from Advances in Computer Vision — MIT - 6.869/6.819
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Visualizing and Understanding CNNs

[Zeiler and Fergus, 2014]

Image patches that activate
each of the layer 4 neurons

most strongly

Example from Advances in Computer Vision — MIT — 6.869/6.819
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Visualizing and Understanding CN

[Zeiler and Fergus, 2014]

Image patches that activate
each of the layer 5 neurons
most strongly

Example from Advances in Computer Vision — MIT — 6.869/6.819
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Visualizing and Understanding CNN

CNNs learned the classical visual recognition pipeline!

Edges
\ Segments
Texture “clown fish”
Parts /
Colors

-
Example from Advances in Computer Vision — MIT — 6.869/6.819
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How to represent images? _
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Typical image processing pipeli

1. Signal treatment / filtering

2. Feature detection (e.g., DoG)

3. Feature description (e.g., SIFT)

4. Higher-level processing
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Image filtering

e Filtering: process of accepting / rejecting certain frequency components

o Starting point is to view images as functions / : [a, b] x [c, d] — [0, L],

where I(x, y) represents intensity at position (x, y)

@ A color image would give rise to a vector function with 3 components

148

231

Represented as a matrix
—_—

|

J

—
88 | 82 |84 |88 | 85 [83 | 80 J 93 |102
88 |80 |78 |80 |80 78 |73 § 94 |100
85|79 |80 |78 |77 |74 |65 )91 )99
38 |35 |40 |35]39 |74 | 77 |70 | 65
20 |25 |23 |28 | 37 | 69 | 64 | 60 | 57
22 |26 |22 |28 | 40 |65 | 64 |59 | 34
24 |28 |24 |30 | 37 | 60 | 58 ) 56 | 66
212223 |27 | 38 | 60 | 67 | 65 | 67
23|22 |22 |25 38 | 59 | 64 | 67 | 66
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Spatial filters _

A spatial filter consists of

o A neighborhood S, of pixels around the point (x, y) under examination
o A predefined operation F that is performed on the image pixels within S,,
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Linear spatial filters

o Filters can be linear or non-linear

@ We will focus on linear spatial filters

(X y) =Feol= Z Z F(I,J) I(x+i.y+))
Frltered image

i=—nj=—m Fllter mask
window

Original image
o Filter F (of size (2N + 1)x(2M + 1)) is usually called a mask, kernel, or

@ Dealing with boundaries: e.g., pad, crop, extend, or wrap
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Filter example #1: moving average

@ The moving average filter returns the average of the pixels in the mask
@ Achieves a smoothing effect (removes sharp features)
o E.g., for a normalized 3x3 mask

[ G N Gy

[ G T W T
[ Gy T Wy Ty




Filter example #2: Gauss
o Gaussian function

X2 _|_y2
GO'(X’y) = 27102 exp(—

202 )
@ To obtain the mask, sample the function about its center
o E.g., for a normalized 3x3 mask with 0 = 0.85
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Convolution _
o Still a linear filter, defined as

Pxy)=Fxl=>" > F(ij)l(x—iy—J)

i=—nj=—m
@ Same as correlation, but with negative signs for the filter indices

o Correlation and convolution are identical when the filter is symmetric
@ Convolution enjoys the associativity property

Fx(Gxl)=(FxG)x*l
o Example: to smooth an image & take its derivative = create a combined
filter by convolving a derivative filter with a Gaussian filter & convolving the
resulting combined filter directly with the image to achieve smoothing and
differentiation in one step
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Separability of masks _

@ A mask is separable if it can be broken down into the convolution of two
kernels

F=FxF

o If a mask is separable into “smaller” masks, then it is often cheaper to apply
F1 followed by F;, rather than F directly

@ Special case: mask representable as outer product of two vectors (equivalent
to two-dimensional convolution of those two vectors)
o If mask is M x M, and image has size w X h, then complexity is
o O(M?wh) with no separability
o O(2Mwh) with separability into outer product of two vectors
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Example of separable m

@ Moving average

111 1
1 1 1
111 1
@ Gaussian smoothing
GO'(X7.y) - 271_0_2 eXp(— 20_2 )
2

1 X 1 y?
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Differentiation
Used to detect gradients and edges in the x and y-directions of an image

o Derivative of discrete function (centered difference)

—X:I(X+1,y)—/(X—1,y)
ol

[10—1]
1
—=Ix,y+1)—=I(x,y -1 Fo=10
5, = ey +1) Iy =) o
o Derivative as a convolution operation; e.g., Sobel masks:
1 0 -1 1
5=12 0 -2 S5,=10
1 0 -1

2 1
0 0 Note: masks are mirrored
1 2 —1 in convolution

Along x direction Along y direction
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Similarity measures

o Filtering can also be used to determine similarity across images (e.g., to
detect correspondences)

i=—nj=—m

SAD — Z Z |h(x+ i,y +))—h(xX+i,y" +))|

i=—nj=—m

Z absolute differences
SAD =Y Y [h(x+iy +4) = b(X' +i,y" + )P

Z squared differences
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o Goal: detect local features, i.e., image patterns that differ from immediate
neighborhood in terms of intensity, color, or texture

o We will focus on

o Edge detectors

o Corner detectors
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Use of detectors/descriptors: examples _

Panorama stiching

20 40

60 80 100

Object detection

[m]

=



Edge detectors

o Edge: region in an image where there is a significant change in intensity
direction

values along one direction, and negligible change along the orthogonal
In1D

In 2D
Magnitude of 15t order derivative is large,

2nd order derivative is equal to zero

.
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Criteria for “good” edge d

@ Accuracy: minimize false positives and negatives

o Localization: edges must be detected as close as possible to the true edges
o Single response: detect one edge per real edge in the image

DA



SREEELE MR e, B85hosoonoososcossonoasoscossencss 1T
Strategy to design an edg

Two steps:

@ Smoothing: smooth the image to reduce noise prior to differentiation (step
2)

o Differentiation: take derivatives along x and y directions to find locations
with high gradients

DA
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1D case: differentiation without smoothing _
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1D case: differentiatio

Edges occur at
maxima or
minima of s'(x)

5(z) = go(2) * I(z)

§(z) = (% * s(z)

Differentiation
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A better implementation

@ Convolution theorem:
() = 2 (80 < 1) = (o = 8(x)) #/(x)
—_—

g5(x)

1(x)

g ()= %ga(x)

L L L L L L L ! L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

T T T T T T T T T ]

Edges occur at maxima/minima of s'(x) |

s'(x)=g', (x)*I(x)

Convolution

1) S | . | ...... ‘ ....... | | | l ....... 4
0 200 400 600 800 1000 1200 1400 1600 1800 20
(m] = =
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Edge detection in 2D

Q Find the gradient of smoothed image in both directions

v [E1E - (2800 - [0

Sy
/52 + 52 and discard pixels below a

certain threshold
© Non-maximum suppression: identify local maxima of |V S|

@ Compute the magnitude |V S|
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Derivative of Gaussian
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Canny edge detector

vs| VS| > h
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Suppression
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Corner detectors

Key criteria for “good” corner detectors
o Repeatability: same feature can be found in multiple images despite
geometric and photometric transformations

o Distinctiveness: information carried by the patch surrounding the feature
should be as distinctive as possible
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Repeatability

Without repeatability, matching is impossible
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v
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Distinctiveness

Without distinctiveness, it is not possible to establish reliable correspondences;
distinctiveness is key for having a useful descriptor

DA
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Panorama Stiching

SIFT for feature extraction, flann-based matcher instead of brute-force,
maxlines=100



Corner detectors

Key criteria for “good” corner detectors

o Corner: intersection of two or more edges

we shift a window

@ Geometric intuition for corner detection: explore how intensity changes as

0

Flat: no changes in
any direction

Edge: no change along
the edge direction

Corner: changes in
all directions

DA



Harris detector: example




Properties of Harris detecto
o Widely used
o Detection is invariant to

o Rotation — geometric invariance
o Linear intensity changes — photometric
invariance
@ Detection is not invariant to
o Scale changes
o Geometric affine changes

@ Scale-invariant detection, such as
© Harris-Laplacian

/
Corner

Q in SIFT (specifically, Difference of
Gaussians (DoG))

All points classified as edges!
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Example Application of Corner Detector _
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Difference of Gaussians (Do
Lodee

\/\/ 22 Laplacian of Gaussian
(L0G)

g~ 9

Sr9m — S 290 = £+ (90) — 9)

Gaussian pyramid
scle ST

DoG pyramid
o Features are detected as local

_’. Detect local
extrema in scale and space

extrema
Source

DA
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Descriptors _

o Goal: describe keypoints so that we can compare them across images or use
them for object detection or matching
@ Desired properties:

o Invariance with respect to pose, scale, illumination, etc.
o Distinctiviness
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Simplest descriptor

o Naive descriptor: associate with a given keypoint an n x m window of pixel
intensities centered at that keypoint

@ Window can be normalized to make it invariant to illumination

Main drawbacks
1. Sensitive to pose

2. Sensitive to scale
3. Poorly distinctive
m

-~

n

!
S
o
i)



Popular Detector

o SIFT
o Invariant to rotation and scale,
computationally demanding
o SIFT descriptor is a
. . +++ +++ ++ ++
128-dimensional vector! - -
X X +++ +++ ++ ++
‘ SURF X X X X +++ +++ ++ +
o FAST X X X X X +++ ++ ++ ++
X X ++ ++ ++ +++
[+ BRIEF x . ++ ++ |
[+] ORB X X X X | | +
o BRISK S BT B W e v v
o LIFT
=] = = E E DA
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A case study for learning-based Descriptors
Dense Object Nets

Learning Dense Visual Object Descriptors
By and For Robotic Manipulation. CORL 2018

Peter R. Florence, Lucas Manuelli, Russ Tedrake

Slides adapted from CS326 by Kevin Zakka and Sriram Somasundaram

o F = = z 9ace
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Case study

Scene

D(k) = D(k)

Hao



Case study
Brief history

B . il >
adEN - B .
R - L
: . 2l .
Sparse Engineered: SIFT

Dense Learned
Sparse Learned: LIFT

BEoHES -
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Case study
Why dense?

Bachrach et. al.



Case study

Dense descriptors

Input is an RGB image

Output

)

RWxHx3

D-dim descriptor
for each pixel

RWxHxD

Pay attention to the difference in Dimensionality
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Case study

Dense descriptors

Input is an RGB image

RWxHx3

()

Output

RWxHxD

Hao



Case study
Network Architecture

X

Data

-
w

Pooling Indices

Data
Convolutional Encoder-Decoder

X

DA



Case study
Single object
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Case study _

Learned Dense Correspondences

Reference

Target (heatmap)

Target (RGB)




Case study
Class consistent descriptors
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RoboCanes vision pipeline, base
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