Motion and Path Planning - Graph-based methods CSC398 Autonomous Robots

Ubbo Visser

Department of Computer Science University of Miami

October 29, 2024

Outline

- Motivation and setup
- 2 Examples
- Approaches
- Potential Fields
- Grid-based planning
- Combinatorial planning
- Sampling-based planning

Source: Pena & Visser (2020): ITP: Inverse Trajectory Planning for Human Pose Prediction Künst Intell 34, 209–225.

Motion Planning in Robotics

Definition and Aim

- Definition: Calculating a sequence of feasible movements for a robot to achieve a specific goal without collisions or constraint violations.
- Aim: Enable autonomous robots to navigate and interact in dynamic, complex environments safely and efficiently.

Suggested Readings:

- Principles of Robot Motion: Theory, Algorithms, and Implementations, Howie Choset et al. (2005), MIT Press.
- Planning Algorithms, Steven M. LaValle (2006), Cambridge University Press.
- Robot Motion Planning and Control, edited by Jean-Paul Laumond (1998), Springer LNCIS.

Perception - Cognition - Action cycle

Examples of motion planning

More examples

- Steering autonomous vehicles.
- Controlling humanoid robot
- Surgery planning
- Protein folding

...

Some history

- Formally defined in the 1970s
- Development of exact, combinatorial solutions in the 1980s
- Development of sampling-based methods in the 1990s
- Development of sampling-based methods in the 1990s
- Current research: inclusion of differential and logical constraints, planning under uncertainty, parallel implementation, feedback plans and more

Simple setup

- ullet Assume 2D workspace: $\mathcal{W}\subseteq\mathbb{R}^2$
- ullet $\mathcal{O}\subset\mathcal{W}$ is the obstacle region with polygonal boundary
- The robot is a rigid polygon
- Problem: given initial placement of robot, compute how to gradually move it into a desired goal placement so that it never touches the obstacle region

Simple setup

- Assume 2D workspace: $\mathcal{W} \subseteq \mathbb{R}^2$
- ullet $\mathcal{O}\subset\mathcal{W}$ is the obstacle region with polygonal boundary
- The robot is a rigid polygon
- Problem: given initial placement of robot, compute how to gradually move it into a desired goal placement so that it never touches the obstacle region

Popular approaches

- Potential fields: create forces on the robot that pull it toward the goal and push it away from obstacles [Rimon, Koditschek, '92].
- Grid-based planning: discretizes problem into grid and runs a graph-search algorithm (Dijkstra, A*, ...) [Stentz, '94]
- Combinatorial planning: constructs structures in the configuration (C-) space that completely capture all information needed for planning [LaValle, '06]
- Sampling-based planning: uses collision detection algorithms to probe and incrementally search the C-space for a solution, rather than completely characterizing all of the C_{free} structure [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]

Grid-based approaches

- Discretize the continuous world into a grid
 - Each grid cell is either free or forbidden
 - Robot moves between adjacent free cells
 - Goal: find sequence of free cells from start to goal
- Mathematically, this corresponds to pathfinding in a discrete graph $\mathcal{G}=\mathcal{V},\mathcal{E}$
 - Each vertex $v \in \mathcal{V}$ represents a free cell
 - Edges $v, u \in \mathcal{E}$ connect adjacent grid cells

Grid-based approaches - Graph search

- Having determined decomposition, how to find optimal path?
- Label-Correcting Algorithms: C(q): cost of path from S to G
- Idea: progressively discover shorter paths from the origin to every other node i
- Produce optimal plans by making small modifications to the general forward-search algorithm
- Here: Uniform cost search, Dijkstra

Grid-based approaches - Graph search (2)

Animation: https://upload.wikimedia.org/wikipedia/commons/2/23/Dijkstras_progress_animation.gif

Grid-based approaches - Graph search (3)

GetNext()?

- Which node is returned by GetNext()?
- Depth-First-Search (DFS): Maintain Q as a stack
 LIFO: Last in/first out. Comment: Lower memory requirement (only need to store part of graph) but incomplete if an infinite path
- Breadth-First-Search (BFS): Maintain Q as a list –
 FIFO: First in/first first out. Comment: Update
 cost for all edges up to the current depth before
 proceeding to a greater depth. Can deal with
 negative edge (transition) costs.
- Best-First (BF, Dijkstra, A*): (Greedily) select next q: $q = argmin_{q \in Q}C(q)$. Comment: Repeated states. Cost monoton increasing, non-negative. Heuristics! A* complete and optimal.

Grid-based approaches - Summary

- Pros:
 - Simple, easy to use
 - Fast (depending on grid size)
- Cons:
 - Dependent on resolution, i.e., if grid size too small no solution might be reached
 - Limited to simple robots: grid size is exponential in number of DOFs

Continuous motion planning

- A robot is a geometric entity operating in continuous space
- Combinatorial techniques for motion planning capture the structure of this continuous space;
 Particularly, the regions in which the robot is not in collision with obstacles.
- Such approaches are typically complete, i.e., guaranteed to find a solution; and sometimes even an optimal one

Simple setup - revisit

- Assume 2D workspace: $\mathcal{W} \subseteq \mathbb{R}^2$
- ullet $\mathcal{O}\subset\mathcal{W}$ is the obstacle region with polygonal boundary
- The robot is a rigid polygon
- Problem: given initial placement of robot, compute how to gradually move it into a desired goal placement so that it never touches the obstacle region

Simple setup - revisit

• Most important: motion planning problem described in the real world, but it really lives in another space – the configuration (C-) space!

Configuration space

- C- space: captures all degrees of freedom (all rigid body transformations)
- In more detail, let $\mathcal{R} \in \mathbb{R}^2$ be a polygonal robot (e.g., a triangle)
- The robot can rotate by angle θ or translate $(x_t, y_t) \subset \mathbb{R}^2$
- Every combination $q = (x_t, y_t, \theta)$ yields a unique robot placement: configuration
- Meaning: the *C*-space is a subset of \mathbb{R}^3
- Note: $\theta \pm 2\pi$ yields equivalent rotations \Rightarrow *C*-space is: $\mathbb{R}^2 \times \mathcal{S}^1$

Configuration free space

 \bullet The subset $\mathcal{F}\subseteq\mathcal{C}$ of all collision free configurations is the **free space**

Configuration free space

Planning in *C*-space

- Let $R(q) \subset W$ denote set of points in the world occupied by robot when in configuration space q
- Robot in collision $\Leftrightarrow R(q) \cap 0 \neq \emptyset$
- Accordingly, free space is defined as: $C_{free} = \{q \in C | R(q) \cap 0 \neq \emptyset\}$
- Path planning problem in *C*-space: compute a **continuous** path: $\tau: [0,1] \to C_{free}$, with $\tau(0) = q_1$ and $\tau(1) = q_G$

Combinatorial planning

• Key idea: compute a roadmap, which is a graph in which each vertex is a configuration in C_{free} and each edge is a path through C_{free} that connects a pair of vertices

Free-space roadmaps

Given a complete representation of the free space, we compute a roadmap that captures its connectivity

A roadmap should preserve:

- Accessibility: it is always possible to connect some q to the roadmap (e.g., $q_1 \to s_1, q_G \to s_2$)
- Connectivity: if there exists a path from q_1 to q_G , there exists a path on the roadmap from s_1 to s_2

Main point: a roadmap provides a discrete representation of the continuous motion planning problem without losing any of the original connectivity information needed to solve it

Cell decomposition

Typical approach: cell decomposition. General requirements:

- Decomposition should be easy to compute
- Each cell should be easy to traverse (ideally convex)
- Adjacencies between cells should be straightforward to determine

Computing a trapezoidal cell decomposition

For every vertex (corner) of the forbidden space:

- Extend a vertical ray until it hits the first edge from top and bottom
 - Compute intersection points with all edges, and take the closest ones
 - More efficient approaches exists

Other roadmaps

One closest • point

For every vertex (corner) of the forbidden space:

- Extend a vertical ray until it hits the first edge from top and bottom
 - Compute intersection points with all edges, and take the closest ones
 - More efficient approaches exists

Maximum clearance (medial axis)

One closest point Two closest points

Minimum distance (visibility graph)

Note: No loss in optimality for a proper choice of discretization

Caveat: free-space computation

- The free space is not known in advance
- We need to compute this space given the ingredients
 - Robot representation, i.e., its shape (polygon, polyhedron, ...)
 - Representation of obstacles
- To achieve this we do the following:
 - Contract the robot into a point
 - In return, inflate (or stretch) obstacles by the shape of the robots

Higher dimensions

Extensions to higher dimensions is challenging \Rightarrow algebraic decomposition methods

Additional resources on combinatorial planning

For every vertex (corner) of the forbidden space:

- Visualization of C-space for polygonal robot: https://www.youtube.com/watch?v=SBFwgR4K1Gk
- Algorithmic details for Minkowski sums and trapezoidal decomposition: de Berg et al., "Computational geometry: algorithms and application", 2008
- Implementation in C++: Computational Geometry Algorithms Library

Combinatorial planning: summary

- These approaches are complete and even optimal in some cases, do not discretize or approximate the problem
- Have theoretical guarantees on the running time (complexity is known)
- Usually limited to small number of DOFs
- Problem specific: each algorithm applies to a specific type of robot/problem (intractable for many problems)
- Difficult to implement: require special software to reason about geometric data structures (CGAL)

Next: sampling-based planning

Acknowledgements

Acknowledgement

This slide deck is based on material from the Stanford ASL and ETH Zürich