UNIVERSITY
OF MIAMI

)

Motion and Path Planning
— Graph-based methods —
CSC398 Autonomous Robots

Ubbo Visser

Department of Computer Science

University of Miami

October 29, 2024

DA

gnenanteny | Ggpe | geee | Tefes SR Smamgemrs fysteess

@ Motivation and setup
O Examples

© Approaches

@ Potential Fields
© Grid-based planning
O Combinatorial planning

@ Sampling-based planning

6] T
s / . &ifrry
2{t:T
o:t ' { ,{.-l.
"
p "
e o
.
_____ s
Trag_eTre?
\\
N
“ Tk
N P
Lt Tree
Enftir}
[T T T
t T

Source: Pena & Visser (2020): ITP: Inverse Trajectory Planning for Human Pose Prediction
Kiinst Intell 34, 209-225.

u]

)
I
n

it

DA

Motion Planning in Robotics

Definition and Aim

o Definition: Calculating a sequence of feasible
movements for a robot to achieve a specific goal
without collisions or constraint violations.

o Aim: Enable autonomous robots to navigate and
interact in dynamic, complex environments safely
and efficiently.

Suggested Readings:

o Principles of Robot Motion: Theory, Algorithms, and Implementations, Howie
Choset et al. (2005), MIT Press.

o Planning Algorithms, Steven M. LaValle (2006), Cambridge University Press.

@ Robot Motion Planning and Control, edited by Jean-Paul Laumond (1998),
Springer LNCIS.

u]
)
I
i
!

DA

Perception - Cognition - Action cy

knowledge,
data base
“position”
global map
environment model
Iocallmap
Information
c Extraction
2 ? see-think-act
§' raw data
5 |
o
Sensing

path
V

Path
Execution

1
actuator
commands

Real World

Environment

Source: Siegwart et. al (2018): Autonomous Mobile Robots, Lecture ETH Ziirich

mission

commands

Motion Control

Examples of motion planning _
More examples
o Steering autonomous vehicles.
o Controlling humanoid robot

o Surgery planning
o Protein folding

gy Sgge gt T SR SEmmg e fyriwane

Formally defined in the 1970s

Development of exact, combinatorial solutions in the 1980s

°
o
o Development of sampling-based methods in the 1990s
@ Development of sampling-based methods in the 1990s
o

Current research: inclusion of differential and logical constraints, planning under
uncertainty, parallel implementation, feedback plans and more

u]
)
I
n
it

DA

Simple setup

o Assume 2D workspace: W C R?

o O C W is the obstacle region with polygonal boundary
@ The robot is a rigid polygon

@ Problem: given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region

u]
)
I
n
it

DA

Simple setup _

o Assume 2D workspace: W C R?

o O C W is the obstacle region with polygonal boundary
@ The robot is a rigid polygon

@ Problem: given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region

DA

Popular approaches _

o Potential fields: create forces on the robot that pull
it toward the goal and push it away from obstacles
[Rimon, Koditschek, '92].

o Grid-based planning: discretizes problem into grid
and runs a graph-search algorithm (Dijkstra, A*,
...) [Stentz, '94]

o Combinatorial planning: constructs structures in
the configuration (C-) space that completely
capture all information needed for planning
[LaValle, '06]

o Sampling-based planning: uses collision detection
algorithms to probe and incrementally search the
C-space for a solution, rather than completely
characterizing all of the Cgee structure [Kavraki et
al, '96; LaValle, Kuffner, '06, etc.]

DA

gy G g T SRS S e Syvitmse
Grid-based approaches

o Discretize the continuous world into a grid
o Each grid cell is either free or forbidden
o Robot moves between adjacent free cells
o Goal: find sequence of free cells from start to goal
@ Mathematically, this corresponds to pathfinding in
a discrete graph G =V, &
o Each vertex v € V represents a free cell

o Edges v, u € £ connect adjacent grid cells

DA

gy G g Tl SR S e Syvistmsne
Grid-based approaches - Graph search

@ Having determined decomposition, how to find
optimal path?

o Label-Correcting Algorithms: C(q): cost of path
from S to G

o ldea: progressively discover shorter paths from the
origin to every other node /

@ Produce optimal plans by making small
modifications to the general forward-search
algorithm

o Here: Uniform cost search, Dijkstra

0
S

0

100 200 300 400 500 600 700 800

Grid-based approaches - Graph

e
KRR RAARR R RA R ;
PER AR RERND OO
RSN AR R AR AR NN A0 0L !
Iy
Tty .
FRE A BBSSRSBBRRR » 0 b4l
PR & snaad
R s SRORRSREE & s raad
A A EEE EE S L RS B S L) 4. x « Q.GetFirst()
FRRAERAAR AR AR B ARl
AR RAA R AR AR B ARl
AR AR SR B e
aaww
BERNRRT N
BARRRL AN
s sed 6. Compute X « f(x, u)
ERRARE AR AR R R AR RN AR
ERRAR R AR R RN RN RN R
D LRARRARARR AR R
AR AR R R R R R R (7 C0 + T(x, w) < min{C(x), C(xG)}]
i b b e b

8. Update C(x) « C(x) + I(x, u) 9. If X' # xG, Q.Insert(x’)

Animation:https://upload.wikimedia.org/wikipedia/commons/2/23/Dijkstras_progress_animation.gif

DA

Animation: https://upload.wikimedia.org/wikipedia/commons/2/23/Dijkstras_progress_animation.gif

Grid-based approaches - Graph search (3)

GetNext()?

@ Which node is returned by GetNext()?

o Depth-First-Search (DFS): Maintain Q as a stack
— LIFO: Last in/first out. Comment: Lower
memory requirement (only need to store part of
graph) but incomplete if an infinite path

o Breadth-First-Search (BFS): Maintain Q as a list —
FIFO: First in/first first out. Comment: Update
cost for all edges up to the current depth before
proceeding to a greater depth. Can deal with
negative edge (transition) costs.

o Best-First (BF, Dijkstra, A*): (Greedily) select next
q: q = argmingc@C(q). Comment: Repeated
states. Cost monoton increasing, non-negative.
Heuristics! A* complete and optimal.

gy G gt Tl SR S e Syvimasne
Grid-based approaches - Su

@ Pros:

o Simple, easy to use

o Fast (depending on grid size)
o Cons:

o Dependent on resolution, i.e., if grid size too small no solution might be reached
o Limited to simple robots: grid size is exponential in number of DOFs

DA

Continuous motion planning

@ A robot is a geometric entity operating in
continuous space

o Combinatorial techniques for motion planning
capture the structure of this continuous space;
Particularly, the regions in which the robot is not in

collision with obstacles.

@ Such approaches are typically complete, i.e.,

guaranteed to find a solution; and sometimes even
an optimal one

Simple setup - revisit _

o Assume 2D workspace: W C R?

o O C W is the obstacle region with polygonal boundary
@ The robot is a rigid polygon

@ Problem: given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region

DA

Simple setup - revisit

@ Most important: motion planning problem described in the real world, but it really
lives in another space — the configuration (C-) space!

DA

Configuration space

C- space: captures all degrees of freedom (all rigid body transformations)
In more detail, let R € R? be a polygonal robot (e.g., a triangle)
The robot can rotate by angle 6 or translate (x;,y;) C R?

o
o
o
o Every combination g = (xt, yt, 0) yields a unique robot placement: configuration
o Meaning: the C-space is a subset of R3

°

Note: @ 4 27 yields equivalent rotations = C-space is: R? x S?

u]
)
I
n
it

DA

Configuration free space

@ The subset F C C of all collision free configurations is the free space

’ “
/

)

\ /
T v
\

obstacle
YL
b’e

DA

Configuration free spac

E DA

Planning in C-space

o Let R(g) C W denote set of points in the world occupied by robot when in
configuration space g

@ Robot in collision < R(g)N0 # 0
o Accordingly, free space is defined as: Cqee = {g € C|R(q) N0 # 0}

@ Path planning problem in C-space: compute a continuous path:
7 :[0,1] = Cfree, with 7(0) = g1 and 7(1) = g¢

DA

Combinatorial planning

o Key idea: compute a roadmap, which is a graph in which each vertex is a
of vertices

configuration in Cgee and each edge is a path through Cgee that connects a pair

DA

Free-space roadmaps
Given a complete representation of the free space, we compute a roadmap that
captures its connectivity
A roadmap should preserve:
q1 — s1,96 — $2)
roadmap from s; to s,

@ Accessibility: it is always possible to connect some g to the roadmap (e.g.,

o Connectivity: if there exists a path from g; to gg, there exists a path on the
solve it

Main point: a roadmap provides a discrete representation of the continuous motion

planning problem without losing any of the original connectivity information needed to

DA

Cell decomposition
Typical approach: cell decomposition. General requirements:

o Decomposition should be easy to compute
o Each cell should be easy to traverse (ideally convex)

@ Adjacencies between cells should be straightforward to determine

DA

Computing a trapezoidal cell decom
For every vertex (corner) of the forbidden space:

o Extend a vertical ray until it hits the first edge from top and bottom

o Compute intersection points with all edges, and take the closest ones
o More efficient approaches exists

DA

Other roadmaps
For every vertex (corner) of the forbidden space:

o Extend a vertical ray until it hits the first edge from top and bottom

o Compute intersection points with all edges, and take the closest ones
o More efficient approaches exists
Maximum clearance (medial axis)

One closest
point

Minimum distance (visibility graph)
[——
I

—
ey oo
__________________ Two closest
points
One closest
point [

-

Note: No loss in optimality for a proper choice of discretization

DA

Caveat: free-space computation

@ The free space is not known in advance

o We need to compute this space given the
ingredients

o Robot representation, i.e., its shape (polygon,
polyhedron, ...)

o Representation of obstacles

) "Tr‘ee\ space

i
' '

3

ry <

@ To achieve this we do the following:

o Contract the robot into a point

[N

o In return, inflate (or stretch) obstacles by the
shape of the robots

DA

Higher dimensions
Extensions to higher dimensions is challenging = algebraic decomposition methods

DA

Additional resources on combinatorial plann

@ Visualization of C-space for polygonal robot:

For every vertex (corner) of the forbidden space:

https://wuw.youtube.com/watch?v=SBFwgR4K1Gk

al., “"Computational geometry: algorithms and application”, 2008

@ Algorithmic details for Minkowski sums and trapezoidal decomposition: de Berg et

o Implementation in C4++: Computational Geometry Algorithms Library

CGAL

Computational
Geometry

Al d Appli

https://www.youtube.com/watch?v=SBFwgR4K1Gk

Combinatorial planning: sum

@ These approaches are complete and even optimal in some cases, do not discretize
or approximate the problem

@ Have theoretical guarantees on the running time (complexity is known)
@ Usually limited to small number of DOFs

@ Problem specific: each algorithm applies to a specific type of robot/problem
(intractable for many problems)

o Difficult to implement: require special software to reason about geometric data
structures (CGAL)

u]
)
I
n
it

DA

Next: sampling-based planning

Acknowledgements

Acknowledgement
This slide deck is based on material from the Stanford ASL and ETH Zirich

DA

	Motivation and setup
	Examples
	Approaches
	Potential Fields
	Grid-based planning
	Combinatorial planning
	Sampling-based planning

	anm0:
	0.381:
	0.380:
	0.379:
	0.378:
	0.377:
	0.376:
	0.375:
	0.374:
	0.373:
	0.372:
	0.371:
	0.370:
	0.369:
	0.368:
	0.367:
	0.366:
	0.365:
	0.364:
	0.363:
	0.362:
	0.361:
	0.360:
	0.359:
	0.358:
	0.357:
	0.356:
	0.355:
	0.354:
	0.353:
	0.352:
	0.351:
	0.350:
	0.349:
	0.348:
	0.347:
	0.346:
	0.345:
	0.344:
	0.343:
	0.342:
	0.341:
	0.340:
	0.339:
	0.338:
	0.337:
	0.336:
	0.335:
	0.334:
	0.333:
	0.332:
	0.331:
	0.330:
	0.329:
	0.328:
	0.327:
	0.326:
	0.325:
	0.324:
	0.323:
	0.322:
	0.321:
	0.320:
	0.319:
	0.318:
	0.317:
	0.316:
	0.315:
	0.314:
	0.313:
	0.312:
	0.311:
	0.310:
	0.309:
	0.308:
	0.307:
	0.306:
	0.305:
	0.304:
	0.303:
	0.302:
	0.301:
	0.300:
	0.299:
	0.298:
	0.297:
	0.296:
	0.295:
	0.294:
	0.293:
	0.292:
	0.291:
	0.290:
	0.289:
	0.288:
	0.287:
	0.286:
	0.285:
	0.284:
	0.283:
	0.282:
	0.281:
	0.280:
	0.279:
	0.278:
	0.277:
	0.276:
	0.275:
	0.274:
	0.273:
	0.272:
	0.271:
	0.270:
	0.269:
	0.268:
	0.267:
	0.266:
	0.265:
	0.264:
	0.263:
	0.262:
	0.261:
	0.260:
	0.259:
	0.258:
	0.257:
	0.256:
	0.255:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

