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Source: Pena & Visser (2020): ITP: Inverse Trajectory Planning for Human Pose Prediction
Kiinst Intell 34, 209-225.
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Motion Planning in Robotics

Definition and Aim

o Definition: Calculating a sequence of feasible
movements for a robot to achieve a specific goal
without collisions or constraint violations.

o Aim: Enable autonomous robots to navigate and
interact in dynamic, complex environments safely
and efficiently.

Suggested Readings:

o Principles of Robot Motion: Theory, Algorithms, and Implementations, Howie
Choset et al. (2005), MIT Press.

o Planning Algorithms, Steven M. LaValle (2006), Cambridge University Press.

@ Robot Motion Planning and Control, edited by Jean-Paul Laumond (1998),
Springer LNCIS.
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Examples of motion planning _
More examples
o Steering autonomous vehicles.
o Controlling humanoid robot

o Surgery planning
o Protein folding
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Formally defined in the 1970s

Development of exact, combinatorial solutions in the 1980s

°
o
o Development of sampling-based methods in the 1990s
@ Development of sampling-based methods in the 1990s
o

Current research: inclusion of differential and logical constraints, planning under
uncertainty, parallel implementation, feedback plans and more
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Simple setup

o Assume 2D workspace: W C R?

o O C W is the obstacle region with polygonal boundary
@ The robot is a rigid polygon

@ Problem: given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region
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Simple setup _

o Assume 2D workspace: W C R?

o O C W is the obstacle region with polygonal boundary
@ The robot is a rigid polygon

@ Problem: given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region
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Popular approaches _

o Potential fields: create forces on the robot that pull
it toward the goal and push it away from obstacles
[Rimon, Koditschek, '92].

o Grid-based planning: discretizes problem into grid
and runs a graph-search algorithm (Dijkstra, A*,
...) [Stentz, '94]

o Combinatorial planning: constructs structures in
the configuration (C-) space that completely
capture all information needed for planning
[LaValle, '06]

o Sampling-based planning: uses collision detection
algorithms to probe and incrementally search the
C-space for a solution, rather than completely
characterizing all of the Cgee structure [Kavraki et
al, '96; LaValle, Kuffner, '06, etc.]
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Grid-based approaches

o Discretize the continuous world into a grid
o Each grid cell is either free or forbidden
o Robot moves between adjacent free cells
o Goal: find sequence of free cells from start to goal
@ Mathematically, this corresponds to pathfinding in
a discrete graph G =V, &
o Each vertex v € V represents a free cell

o Edges v, u € £ connect adjacent grid cells
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Grid-based approaches - Graph search

@ Having determined decomposition, how to find
optimal path?

o Label-Correcting Algorithms: C(q): cost of path
from S to G

o ldea: progressively discover shorter paths from the
origin to every other node /

@ Produce optimal plans by making small
modifications to the general forward-search
algorithm

o Here: Uniform cost search, Dijkstra
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Grid-based approaches - Graph
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Animation:https://upload.wikimedia.org/wikipedia/commons/2/23/Dijkstras_progress_animation.gif
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Animation: https://upload.wikimedia.org/wikipedia/commons/2/23/Dijkstras_progress_animation.gif

Grid-based approaches - Graph search (3)

GetNext()?

@ Which node is returned by GetNext()?

o Depth-First-Search (DFS): Maintain Q as a stack
— LIFO: Last in/first out. Comment: Lower
memory requirement (only need to store part of
graph) but incomplete if an infinite path

o Breadth-First-Search (BFS): Maintain Q as a list —
FIFO: First in/first first out. Comment: Update
cost for all edges up to the current depth before
proceeding to a greater depth. Can deal with
negative edge (transition) costs.

o Best-First (BF, Dijkstra, A*): (Greedily) select next
q: q = argmingc@C(q). Comment: Repeated
states. Cost monoton increasing, non-negative.
Heuristics! A* complete and optimal.
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Grid-based approaches - Su

@ Pros:

o Simple, easy to use

o Fast (depending on grid size)
o Cons:

o Dependent on resolution, i.e., if grid size too small no solution might be reached
o Limited to simple robots: grid size is exponential in number of DOFs
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Continuous motion planning

@ A robot is a geometric entity operating in
continuous space

o Combinatorial techniques for motion planning
capture the structure of this continuous space;
Particularly, the regions in which the robot is not in

collision with obstacles.

@ Such approaches are typically complete, i.e.,

guaranteed to find a solution; and sometimes even
an optimal one




Simple setup - revisit _

o Assume 2D workspace: W C R?

o O C W is the obstacle region with polygonal boundary
@ The robot is a rigid polygon

@ Problem: given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region
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Simple setup - revisit

@ Most important: motion planning problem described in the real world, but it really
lives in another space — the configuration (C-) space!
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Configuration space

C- space: captures all degrees of freedom (all rigid body transformations)
In more detail, let R € R? be a polygonal robot (e.g., a triangle)
The robot can rotate by angle 6 or translate (x;,y;) C R?

o
o
o
o Every combination g = (xt, yt, 0) yields a unique robot placement: configuration
o Meaning: the C-space is a subset of R3

°

Note: @ 4 27 yields equivalent rotations = C-space is: R? x S?
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Configuration free space

@ The subset F C C of all collision free configurations is the free space

’ “
/

)

\ /
T v
\

obstacle
YL
b’e

DA



Configuration free spac

E DA



Planning in C-space

o Let R(g) C W denote set of points in the world occupied by robot when in
configuration space g

@ Robot in collision < R(g)N0 # 0
o Accordingly, free space is defined as: Cqee = {g € C|R(q) N0 # 0}

@ Path planning problem in C-space: compute a continuous path:
7 :[0,1] = Cfree, with 7(0) = g1 and 7(1) = g¢
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Combinatorial planning

o Key idea: compute a roadmap, which is a graph in which each vertex is a
of vertices

configuration in Cgee and each edge is a path through Cgee that connects a pair
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Free-space roadmaps
Given a complete representation of the free space, we compute a roadmap that
captures its connectivity
A roadmap should preserve:
q1 — s1,96 — $2)
roadmap from s; to s,

@ Accessibility: it is always possible to connect some g to the roadmap (e.g.,

o Connectivity: if there exists a path from g; to gg, there exists a path on the
solve it

Main point: a roadmap provides a discrete representation of the continuous motion

planning problem without losing any of the original connectivity information needed to
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Cell decomposition
Typical approach: cell decomposition. General requirements:

o Decomposition should be easy to compute
o Each cell should be easy to traverse (ideally convex)

@ Adjacencies between cells should be straightforward to determine
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Computing a trapezoidal cell decom
For every vertex (corner) of the forbidden space:

o Extend a vertical ray until it hits the first edge from top and bottom

o Compute intersection points with all edges, and take the closest ones
o More efficient approaches exists
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Other roadmaps
For every vertex (corner) of the forbidden space:

o Extend a vertical ray until it hits the first edge from top and bottom

o Compute intersection points with all edges, and take the closest ones
o More efficient approaches exists
Maximum clearance (medial axis)

One closest
point

Minimum distance (visibility graph)
[ ——
I
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ey oo
__________________ Two closest
points
One closest
point [
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Note: No loss in optimality for a proper choice of discretization
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Caveat: free-space computation

@ The free space is not known in advance

o We need to compute this space given the
ingredients

o Robot representation, i.e., its shape (polygon,
polyhedron, ...)

o Representation of obstacles
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@ To achieve this we do the following:

o Contract the robot into a point

[N

o In return, inflate (or stretch) obstacles by the
shape of the robots
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Higher dimensions
Extensions to higher dimensions is challenging = algebraic decomposition methods
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Additional resources on combinatorial plann

@ Visualization of C-space for polygonal robot:

For every vertex (corner) of the forbidden space:

https://wuw.youtube.com/watch?v=SBFwgR4K1Gk

al., “"Computational geometry: algorithms and application”, 2008

@ Algorithmic details for Minkowski sums and trapezoidal decomposition: de Berg et

o Implementation in C4++: Computational Geometry Algorithms Library

CGAL

Computational
Geometry

Al d Appli



https://www.youtube.com/watch?v=SBFwgR4K1Gk

Combinatorial planning: sum

@ These approaches are complete and even optimal in some cases, do not discretize
or approximate the problem

@ Have theoretical guarantees on the running time (complexity is known)
@ Usually limited to small number of DOFs

@ Problem specific: each algorithm applies to a specific type of robot/problem
(intractable for many problems)

o Difficult to implement: require special software to reason about geometric data
structures (CGAL)
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Next: sampling-based planning
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