Due date: 10/31/2024, 11:59 pm. This assignment is worth 20 points.

The objective of this exercise is to implement a particle filter utilized for landmark-based robot self-localization. Your task
is to utilize the captured real-time sensor data input to localize the robot utilizing base laser scan and odometry. Data
capture, processing, and significant amounts of the particle filter implementation are provided to you with some portions to be
implemented. This will be detailed in the following steps:

1. New modifications have been made to the catkin workspace. git pull to update.

2. Clone the new assignment: git clone https://classroom.github.com/a/uM4Asu06. Compile with catkin make or
’c’ and source the catkin workspace as usual.

3. Install necessary dependencies by running pip install -r src/assignment-5-[YOUR_NAME]/requirements.txt.

4. Run isaac_sim hsr_localization_start_complete_student.sh to start the isaac sim world, HSR initialization, par-
ticle filter, and robot lab mover behavior. This script will handle all these functions for you, click the Play button on
the Isaac Sim window, and the PF-localization behavior and the robot motion will begin. If you'd like to run the Isaac
Sim world and subsequently run your desired behaviors, run the isaac_sim hsr localization_start.sh and then (in
separate terminals) rosrun your desired behaviors, e.g. localization and lab mover script(s).

5. The script you will be modifying is under the scripts directory called hsr_pf_localization_student.py in which
designated portions of the particle filter's measurement model, resampling, and mean_position functions are to be imple-
mented.

6. (4 points) Implement the calculation for the particle weights under the measurement model function, using only measured
range. The weights can directly be the likelihood assuming Gaussian noise with a standard deviation of ¢ = 0.01.

7. (6 points) Implement universal stochastic sampling in the resample function. This completes the three necessary
components for a particle filter: (1) sample from the motion model (prior implementation), (2) calculate weights us-
ing the sensor model, and (3) resample. Therefore, the particle filter is now able to estimate the robot pose. Run
isaac_sim_localization_start_complete_student.sh. The results should not be very accurate but the particles will
follow the robot.

8. (2 points) Particle filters utilize a set of weighted state hypotheses, which are referred to as particles, to approximate the
true state x; of the robot at every time step t. Think of three different techniques to obtain a single state estimate x;

given a set of N weighted samples S; = {(xy],wk]ﬂz =1,..,N}.

9. (2 points) Implement one of the previous methods you've described in the mean position function. The function is
utilized to draw the estimated pose for the robot (the yellow RViz arrow marker).

10. (1 point) So far, the filter only utilizes measured distances. The mean position also shows the estimated orientation of
the robot. Explain why the orientation is roughly correct, although no angle information of the perception is used.

11. (4 points) Add the calculation of weights using bearing in the measurement_model function. For the noise in the measured
angles, you can use a Gaussian distribution with a standard deviation of ¢ = 0.01.

12. (1 point) How does the computational cost of the particle filter scale with the number of particles and the number of
dimensions in the state vector of the particles? Why can a large dimensionality be a problem for particle filters in practice?

Submission:

1. Add and commit modifications to the provided package to github classroom.


https://classroom.github.com/a/uM4AsuO6

2. Provide a README file describing relevant submission details and submit answers to theoretical questions in a PDF docu-
ment. Optional: computer scientists use LaTeX for publications. You can use this if you want. An introduction of LaTeX
is provided by Overleaf by clicking this link.


https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

