Decidability
Decidable Problems About Regular Languages

The Acceptance Problem for DFA

Define A_{DFA} to be:

$$\{\langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w\}.$$

Theorem. A_{DFA} is decidable.

Proof A Turing machine can, given an input x, try to decode x into an NFA B and a string w. If the decoding is successful then it can test whether B accepts w by **simulating** B on w.

CSC527 Chapter 4, Part 1 © 2012 Mitsunori Ogihara
How This Can Be Done

- After checking the legitimacy of encoding, our Turing machine writes on its second tape the input w (as an encoded form).
- Our machine starts simulating M, using the second tape as the tape of M by looking up information about M’s action in the first tape and using a tape symbol encoding scheme consistent with the input x.

When M terminates, our machine terminates accordingly.
Define A_{NFA} to be:

$$\{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}.$$

Theorem. A_{NFA} is decidable.

Proof Given an input x, try to decode x into an NFA B and a string w. If “successful” then:

1. Convert B to a DFA C.
2. Run the machine for A_{DFA} on $\langle C, w \rangle$. If the machine accepts, then accept; otherwise reject.
Define A_{REX} to be:

$$\{\langle R, w \rangle \mid R \text{ is a regular expression that produces } w \}.$$

Theorem. A_{REX} is decidable.

Proof Given an input x, try to decode x into a regular expression R and a string w. If “successful” then:

1. Convert R to a DFA C.
2. Run the machine for A_{DFA} on $\langle C, w \rangle$. If the machine accepts, then accept; otherwise reject.
The Emptiness Problem for DFA

Define $E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA that accepts no string} \}$.

Theorem. E_{DFA} is decidable.

Proof Given an input x, try to decode a DFA A out of x. If “successful” then:

1. **Mark the start state** of A.
2. **Repeat until no new states are marked:**
 - Mark any unmarked state that has a transition from a marked state
3. Accept if **no final state is marked**; reject otherwise.
The Equivalence Problem for DFA

Define EQ_{DFA} to be:
$$\{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFA and accept the same language } \}.$$

Theorem. EQ_{DFA} is decidable.

Proof Given a string x, try to decode x into a pair of DFAs A and B. If “successful” then construct a DFA C that accepts the **symmetric difference** of $L(A)$ and $L(B)$,
$$\bigl(L(A) \cap \overline{L(B)} \bigr) \cup \bigl(\overline{L(A)} \cap L(B) \bigr),$$
and test the emptiness of $L(C)$.
The Acceptance Problem for CFG

Define \(A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \).

Theorem. \(A_{\text{CFG}} \) is decidable.

Proof Given an input \(x \), try to decode \(x \) into a CFG \(G \) and a string \(w \). If “successful” then:

1. Convert \(G \) to an equivalent Chomsky normal form grammar \(G' \).
2. List all derivations with \(2n - 1 \) steps, where \(n = |w| \).
3. If any of the listed derivations generate \(w \), then accept; otherwise, reject.
The Emptiness Problem for CFG

Define \(E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG such that } L(G) = \emptyset \} \).

Theorem. \(E_{\text{CFG}} \) is decidable.

Proof Given \(x \), first try to decode a grammar \(G \) out of it. If “pass” then test the ability of generating terminal strings:

1. **Mark all the terminals.**
2. Repeat the following until no new symbols are marked:
 - Mark any variables \(A \) with a **production** \(A \rightarrow w \) such that all symbols in \(w \) are marked.
3. **Accept** if the start symbol is marked; **reject** otherwise.
Theorem. Every context-free language is decidable.

Simulation of a PDA may not halt.

Proof Use the machine M for A_{CFG}. Let G be a fixed CFG. The machine for $L(G)$, on input w,

1. run $\langle G, w \rangle$ on M, and
2. accepts if M accepts and rejects otherwise.