Nonregular Languages

How can we show that a language is not regular?
The Pumping Lemma

Theorem. (Pumping Lemma) Let L be an arbitrary regular language. Then there exists a positive integer p with the following property:

Given an arbitrary member w of L having length at least p (i.e., $|w| \geq p$), w can be divided into three parts, $w = xyz$, such that

- $|y| \geq 1$ (the middle part is nonempty),
- $|xy| \leq p$ (the first two parts together have length at most p), and
- for each $i \geq 0$, $xy^i z \in L$ (removing or repeating the middle part produces members of L).
Proof of the Pumping Lemma

Let L be an arbitrary regular language. Then there is an FA, say M, that decides L. Let p be the number of states of M.

Let w be an arbitrary member of L having length n with $n \geq p$.

Let q_0, q_1, \ldots, q_n be the states that M on input w. That is, for each i, after reading the first i symbols of w, M is at q_i.

Clearly, q_0 is the initial state of M. Also, because $w \in L$, q_n is a final state of M.
The Pigeonhole Principle

We are placing a number of pigeons in a number of holes.

If there are more pigeons than there are holes, at least one hole should host more than one pigeon.
The Pigeonhole Principle

We are placing a number of pigeons in a number of holes.

If there are more pigeons than there are holes, at least one hole should host more than one pigeon.

Consider q_0, \ldots, q_p (the first $p + 1$ states that M goes through on input w). By the pigeonhole principle, there exist c and d, $0 \leq c < d \leq p$, such that $q_c = q_d$.

Pick an arbitrary such pair (c, d).
Proof of the Pumping Lemma (cont’d)

Let $x = w_1 \ldots w_c$, $y = w_{c+1} \ldots w_d$, and $z = w_{d+1} \ldots w_n$. Then

- $|y| \geq 1$,
- $|xy| \leq p$,
- M transitions from q_0 to q_c on x,
- M transitions from q_c to q_c on y,
- M transitions from q_c to q_n on z.

Thus, for every $i \geq 0$, M transitions from q_0 to q_n on $xy^i z$, and so $xy^i z$ is a member of L.

CSC527, Chapter 1, Part 4 © 2012 Mitsunori Ogihara
Application of the Pumping Lemma

Example 1: \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.
Application of the Pumping Lemma

Example 1: $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof Assume that B is regular. Let p be a constant from the pumping lemma for B. Let $w = 0^p1^p$.
Application of the Pumping Lemma

Example 1: \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof Assume that \(B \) is regular. Let \(p \) be a constant from the pumping lemma for \(B \). Let \(w = 0^p1^p \).

Then \(w \) is in \(B \) so it can be divided into \(w = xyz \) such that

- \(|y| \geq 1, \)
- \(|xy| \leq p, \) and
- for each \(i \geq 0 \), \(xy^iz \in B \).
Application of the Pumping Lemma

Example 1: \(B = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof Assume that \(B \) is regular. Let \(p \) be a constant from the pumping lemma for \(B \). Let \(w = 0^p1^p \).

Then \(w \) is in \(B \) so it can be divided into \(w = xyz \) such that

- \(|y| \geq 1 \),
- \(|xy| \leq p \), and
- for each \(i \geq 0 \), \(xy^iz \in B \).

Since \(|xy| \leq p \), both \(x \) and \(y \) consist solely of 0s. The word \(xyyz \) has more 0s than 1s, and thus, not in \(B \). However, by the pumping lemma, \(xyyz \in B \), a contradiction. Hence, \(B \) is not regular.
Illustrating Conversation

I think "0^n1^n" is regular...
I think "0^n1^n" is regular...

You're wrong, and here's why. Assuming it's regular, how many states do you need to build an FA for it?
Illustrating Conversation

Well, it must be large, but I think it should be less than a trillion...
Illustrating Conversation

Well, it must be large, but I think it should be less than a trillion...

Let p be the number and $w=0^p1^p$. The Pumping Lemma divides this into xyz. What is y?
Well, $y = 0^k$ for some positive $k...$
Illustrating Conversation

Well, $y = 0^k$ for some positive k...

Then xz must be a member, but it has fewer 0s than 1s, so it can't be. We thus have a contradiction.
Illustrating Conversation

Oh, I was so naive. I should have taken CSC527...

It's not too late.
Example 2

\[C = \{ w \mid w \in \{0, 1\}^* \text{ and has an equal number of 0s and 1s } \} \text{ is not regular.} \]
Example 2

\[C = \{ w \mid w \in \{0, 1\}^* \text{ and has an equal number of 0s and 1s } \} \] is not regular.

Proof Assume, to the contrary, that \(C \) is regular. Let \(p \) be the constant from the pumping lemma for \(C \).
Example 2

\(C = \{ w \mid w \in \{0, 1\}^* \text{ and has an equal number of } 0\text{s and } 1\text{s } \} \) is not regular.

Proof Assume, to the contrary, that \(C \) is regular. Let \(p \) be the constant from the pumping lemma for \(C \).

Let \(w = 0^p1^p \). Then \(w = xyz \) such that \(|xy| \leq p\), \(|y| \geq 1\), and for every \(i \geq 0\), \(xy^iz \in C \).
Example 2

\[C = \{ w \mid w \in \{0, 1\}^* \text{ and has an equal number of 0s and 1s } \} \]

is not regular.

Proof Assume, to the contrary, that \(C \) is regular. Let \(p \) be the constant from the pumping lemma for \(C \).

Let \(w = 0^p1^p \). Then \(w = xyz \) such that \(|xy| \leq p \), \(|y| \geq 1 \), and for every \(i \geq 0 \), \(xy^iz \in C \).

Let \(w' = xz \). Then \(w' \in C \) but \(w' \) has fewer 0s than 1s.
Example 3

The language $F = \{vv \mid v \in \{0, 1\}^*\}$ is not regular (F is the language of all even length strings over $\{0, 1\}$ whose first half is identical to the second half).

Proof Assume, to the contrary, that F is regular. Let p be a constant for which the pumping lemma holds for F.
Example 3

The language \(F = \{vv \mid v \in \{0, 1\}^*\} \) is not regular (\(F \) is the language of all even length strings over \(\{0, 1\} \) whose first half is identical to the second half).

Proof Assume, to the contrary, that \(F \) is regular. Let \(p \) be a constant for which the pumping lemma holds for \(F \).

Let \(w = 0^p1^p0^p1^p \). Then, \(w \) is divided into \(w = xyz \) such that \(|y| > 0, |xy| \leq p, \) and \((\forall i \geq 0)[xy^i z \in F] \). Here \(y \in 0^* \) since \(w \) begins with \(0^p \).
Example 3

The language $F = \{ vv \mid v \in \{0, 1\}^* \}$ is not regular (F is the language of all even length strings over $\{0, 1\}$ whose first half is identical to the second half).

Proof Assume, to the contrary, that F is regular. Let p be a constant for which the pumping lemma holds for F.

Let $w = 0^p1^p0^p1^p$. Then, w is divided into $w = xyz$ such that $|y| > 0$, $|xy| \leq p$, and $(\forall i \geq 0)[xy^iz \in F]$. Here $y \in 0^*$ since w begins with 0^p.

Pick $i = 0$, we have $0^q1^p0^p1^p \in F$, where $q < p$. This word cannot be decomposed as uu. This is a contradiction.
Example 4

\[D = \{1^n^2 \mid n \geq 0\} \] is not regular.
Example 4

\[D = \{1^{n^2} \mid n \geq 0\} \text{ is not regular.} \]

Proof Assume, to the contrary, that \(D \) is regular. Let \(p \) be a constant for which the pumping lemma holds for \(D \).
Example 4

\[D = \{1^n^2 \mid n \geq 0\} \text{ is not regular.} \]

Proof Assume, to the contrary, that \(D \) is regular. Let \(p \) be a constant for which the pumping lemma holds for \(D \).

Let \(w = 1^p^2 \). Then \(w = xyz \) for some \(x, y, z \) such that \(|y| \geq 1 \), \(|xy| \leq p \), and \((\forall i \geq 0)[xy^i z \in D] \).
Example 4

\[D = \{1^{n^2} \mid n \geq 0\} \text{ is not regular.} \]

Proof Assume, to the contrary, that \(D \) is regular. Let \(p \) be a constant for which the pumping lemma holds for \(D \).

Let \(w = 1^{p^2} \). Then \(w = xyz \) for some \(x, y, z \) such that \(|y| \geq 1 \), \(|xy| \leq p \), and \((\forall i \geq 0) [xy^iz \in D] \).

Let \(l = |y| \). Then \(1 \leq l \leq p \). By plugging in \(i = 2 \), we have \(1^{p^2+l} \in D \), but \(p^2 + l \leq p^2 + p < (p + 1)^2 \), a contradiction. \(\square \)
Example 5

\[E = \{0^i1^j \mid i > j\} \text{ is not regular.} \]
Example 5

\[E = \{0^i1^j \mid i > j\} \] is not regular.

Proof Assume, to the contrary, that \(E \) is regular. Let \(p \) be a constant for which the pumping lemma holds for \(E \).
Example 5

\[E = \{0^i1^j \mid i > j\} \] is not regular.

Proof Assume, to the contrary, that \(E \) is regular. Let \(p \) be a constant for which the pumping lemma holds for \(E \).

Let \(w = 0^p1^{p-1} \). Then \(w = xyz \) for some \(x, y, z \) such that \(|y| \geq 1 \), \(|xy| \leq p \), and \((\forall i \geq 0)[xy^i z \in E]\). Here \(y \in 0^* \) since the first \(p \) symbols of \(w \) are all 0.
Example 5

\[E = \{0^i1^j \mid i > j\} \text{ is not regular.} \]

Proof Assume, to the contrary, that \(E \) is regular. Let \(p \) be a constant for which the pumping lemma holds for \(E \).

Let \(w = 0^p1^{p-1} \). Then \(w = xyz \) for some \(x, y, z \) such that \(|y| \geq 1, |xy| \leq p \), and \((\forall i \geq 0)[xy^iz \in E]\). Here \(y \in 0^* \) since the first \(p \) symbols of \(w \) are all 0.

With \(i = 0 \), we have \(0^q1^{p-1} \in E \), where \(q \leq p-1 \), a contradiction.