
Objectives of Chapter ArrayList Single-Linked List Double-linked List

CSC220
Chapter 2: Lists and the Collection Interface

Mitsunori Ogihara

University of Miami

September 9, 2010



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Outline

1 Objectives of Chapter

2 ArrayList

3 Single-Linked List

4 Double-linked List



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Objectives

1 To become familiar with the List interface
2 To understand how to write an array-based implementation

of the List interface
3 To study the difference between single-, double-, and

circular linked list data structures
4 To learn how to implement the List interface using a

linked-list
5 To understand the Iterator interface
6 To learn how to implement the iterator for a linked list
7 To become familiar with the Java Collection framework

3 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

The List Interface and ArrayList Class

Properties of Arrays:
Pros: An array is an indexed structure

You can select its elements in arbitrary order using a
subscript value
Elements may be accessed in sequence using a loop that
increments the subscript

Cons:
You cannot increase or decrease the length
You cannot insert/remove an element without shifting the
elements after it

4 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

The List Interface and ArrayList Class (cont’d)

Allowed operations on the List interface include:
Checking whether a given data object appears in the list
Adding, removing, and replacing an element at a given
location
Adding and removing an element at the end
Obtaining the size
Returning an object that allows sequential scanning of the
data objects without indexing

Not all classes implementing the interface perform the
allowed operations with the same degree of efficiency
An array provides the ability to store primitive-type data
whereas the List classes all store references to Objects.
Autoboxing facilitates this.

5 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

The List Interface and ArrayList Class

<<interface>>
List

<<abstract class>>
AbstractList

ArrayList (Vector)

Stack LinkedList

<<abstract class>>
AbstractSequentialList

<<interface>>
Collection

6 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

ArrayList

An implementation of the List interface using array as a method
of storage.
The class consists of three fields:

1 The actual array
2 The array size . . . capacity
3 The number of elements stored in the array . . . size

Insertion and removal are executed by moving all the
elements after the point of insertion/removal
Search is executed by sequentially scanning of the array
If there is no room for insertion, double the size of the array

Create a new double-sized array
Move all the elements from the current array to the new one
Add the new element

7 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

ArrayList is a Generic Class

A generic class is a class defined with some parameters that
specify types of data objects that can be dealt with
List<String> myList = new
ArrayList<String> ();
specifies

myList will be considered to be a List class with String as
the type of data to be stored
myList is actually an ArrayList object with String as the
type of data to be stored

8 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Generic Type Declaration in a Class Header

public class Foo<E> implements FooInt<E>;

public class Bar<E,F>;

public interface MyInt<E extends
Comparable<E>>;

public class MyMy<E extends Comparable<E>>
implements MyInt<E>;

The last two mean that MyInt and MyMy can be used to store
data that has the method compareTo

9 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

ArrayList Internal Representation

An important thing to note about ArrayList is that you cannot
create an array of a generic type!

10 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Solution

Use Object as the class and down-cast if necessary.
For example, in the empty constructor, you might want to
execute:
private int capacity = ARRAY_LIST_INITIAL_SIZE;
private Object[] data = new Object[capacity];
private int size = 0;

and then later, for returning an object at index i as an E object,
use
return (E)data[i];

11 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

ArrayList Operation Headers

E get(int index) Returns the item at position index
E set(int index, Replaces the item at the index;
E anEntry) returns the previous value
int size() Returns the number of items in the list
boolean add(E anEntry) Inserts at the end
void add(int index, Inserts a reference to anEntry
E anEntry) at position index
int indexOf(E target) Returns the position of the first

occurrence of target;
returns -1 if target doesn’t appear

E remove(int index) Remove the item at position
index and returns the removed item

12 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Advantages and Disadvantages of ArrayList

set and get require constant time
add and remove require linear time

13 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

More About Addition

How do we deal with the capacity has been reached?
We will use array size doubling.

14 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

List structure

Linked list overcomes this by providing ability to add or
remove items anywhere in the list in constant time, but at
the cost of slow indexing
Each element (node) in a linked list stores information and
a link to the next, and optionally previous, node

15 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Basic Component in List

A “node” consisting of a field for storing a data object and a
field for referencing to the next node

Node

E data

next

16 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

An Inner Node Class

public MOList<E> {
public class Node<E> {

E data;
Node<E> next;
Node(E item) {

/* constructor */
}
/* Other methods */

}
Node<E> head;
int size;
MOList() {

/* constructor */
}
/* Other methods */

}

17 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Following the “next” Reference to Traverse Data
Objects

If x is a node object, then x.next is the next object of x, and
x.next.next is the next, next object of x.

Node

next =
data =      

String

value = "Tom"

Node

next =
data =      

String

value = "Dick"

Node

next =
data =      

String

value = "Harry"

Node

next = null
data =      

String

value = "Sam"

Single Linked List

head =
      

18 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Insertion

Node

next =
data =      

String

value = "Tom"

Node

next =
data =      

String

value = "Dick"

Node

next =
data =      

String

value = "Harry"

Node

next = null
data =      

String

value = "Sam"

Single Linked List

head =
      

Node

next =
data =      

String

value = "Bob"

FirstSecond

19 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Removal

Node

next =
data =      

String

value = "Tom"

Node

next =
data =      

String

value = "Dick"

Node

next =
data =      

String

value = "Harry"

Node

next = null
data =      

String

value = "Sam"

Single Linked List

head =
      

20 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Double-Linked List

A double-linked list is a list that overcomes some of the
limitations of a single-linked list:

Easy to insert a node after a referenced node, but hard to
insert a node before a referenced node
Can remove a node only if a reference to the predecessor
is available
Can traverse the list only in the forward direction

21 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Double-linked Node

The basic unit of information storage is a node with two links,
one pointing to the next node and the other pointing to the
previous node

Node

E data

nextprev

22 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Double Linked List Example

Node

next =
prev = null
data =      

String

value = "Tom"

String

value = "Dick"

String

value = "Harry"

String

value = "Sam"

Double Linked 
List

head =
      

Node

next =
prev =
data =      

Node

next =
prev =
data =      

Node

next =null
prev =
data =      

23 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Insertion

Node

next =
prev = null
data =      

String

value = "Tom"

String

value = "Dick"

String

value = "Harry"

String

value = "Sam"

Double Linked 
List

head =
      

Node

next =
prev =
data =      

Node

next =
prev =
data =      

Node

next =null
prev =
data =      

String

value = "Sam"

Node

next =
prev =
data =      

FirstSecond

24 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Removal

Node

next =
prev = null
data =      

String

value = "Tom"

String

value = "Dick"

String

value = "Harry"

String

value = "Sam"

Double Linked 
List

head =
      

Node

next =
prev =
data =      

Node

next =
prev =
data =      

Node

next =null
prev =
data =      

First

Second

25 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Circular List

This is a double-linked list with:
the “prev” data field of head pointing to the tail;
the “next” data field of tail pointing to the head

Need to be careful with that for every node both “prev” and “tail”
are defined

Node

next =
prev = 
data =      

String

value = "Tom"

String

value = "Dick"

String

value = "Harry"

String

value = "Sam"

Double Linked 
List

head =
tail =      

Node

next =
prev =
data =      

Node

next =
prev =
data =      

Node

next =
prev =
data =      

26 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Iterator

Iterator<E> is an interface that enables sequential
scanning of objects of type E
Three methods are required:

boolean hasNext(): answers whether there is an item
to be returned;
E next(): returns an item and prepares to return the
subsequent item;
void remove(): removes the item that has just been
returned; produces an error if there is no such element

27 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

Pictorial description

In some sense, the reference to the node containing the “next”
data object sits between that node and the previous one

Node Node Node Node Node

head
tail

28 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

How to Implement Iterator

A class that implements Iterable<E> must to have a
method iterator() that returns an object that
implements Iterator<E>
If a class MyClass implements Iterable<E>, then the
following code enables execution with a sequential
scanning of the data in MyClass

for (E foo : MyClass) {
/* loop body */;

}

29 / 30



Objectives of Chapter ArrayList Single-Linked List Double-linked List

ListIterator

Iterator with more methods, in particular, with backward moves

boolean hasPrevious(): returns whether there is a
previous element
E previous(): returns the previous element
void add(E obj): inserts the data obj immediately
before the data to be returned by next()
void set(E obj): replaces the last returned data with
obj
int nextIndex(): returns the index of the item to be
returned by next()
int previoustIndex(): returns the index of the item to
be returned by previous()

30 / 30


	Objectives of Chapter
	ArrayList
	Single-Linked List
	Double-linked List

