
Exception Class Hierarchy

CSC220
Chapter 1: Object-Oriented Programming and

Class Hierarchies
Part 2

Mitsunori Ogihara

University of Miami

September 2, 2010



Exception Class Hierarchy

Outline

1 Exception Class Hierarchy



Exception Class Hierarchy

Program Defects and “Bugs”

An efficient, but erroneous program is worthless!
Errors are found often after software is delivered.
Rigorous testing alone cannot demonstrate correctness.
Sometimes testing itself is very difficult.
Debugging is the process of removing defects

3 / 21



Exception Class Hierarchy

Types of Errors

1 Syntax errors: mistakes in the grammar of the language
2 Runtime errors or exception: problematic situations that

occur during execution that make it impossible for the
program to continue

3 Logic errors: due to incorrect observation and conception
of the programmer, sometimes do not result in runtime
errors

4 / 21



Exception Class Hierarchy

Syntax Errors

Unfortunately, it is easy to write syntactically incorrect
programs. Some common syntax errors are:

Omitting or misplacing braces
Performing an incorrect type of operation on a primitive type
value
Invoking an instance method not defined
Not declaring a variable before using it
Providing multiple declarations of a variable

Fortunately, the Java compiler is designed to detect syntax
errors during compilation.
A programmer must fix them to be able to execute the
program.

5 / 21



Exception Class Hierarchy

Run-time Errors or Exceptions

Examples of run-time errors are:
Division by zero
Array index out of bounds
Number format and Input mismatch error
Null pointer exceptions
A named file doesn’t exist

These cause the Java Virtual Machine to throw an
exception

6 / 21



Exception Class Hierarchy

Logic Errors

Programs that are free of syntax and run-time errors may
have logic errors
Logic Errors

The “best” case: errors occur in a part of the program that
is always executed
The “worst” case: errors occur in rare executions

Sources of Logic Errors
Often occur during the design phase due to incorrect
algorithm
Sometimes typographical errors

7 / 21



Exception Class Hierarchy

Examples of Run-time Errors or Exception

Exceptions Causes/Consequences
ArithmeticException Division by zero

ArrayIndexOutOf An attempt to access an array element
BoundsException outside the scope of the index of an array
IllegalArgument A call of a method with an

Exception incorrect type of argument
NumberFormat An attempt convert a string that is not

Exception representing numeric to a numeric
NullPointer An attempt to access an object
Exception pointed to by a null pointer

NoSuchElement An attempt to obtain the next token
Exception when there is no token remaining

InputMismatch The token returned by a Scanner data object’s
Exception next method doesn’t match the required format

8 / 21



Exception Class Hierarchy

Exception Hierarchy

When an exception is thrown, one of the Java exception
classes is instantiated
Exceptions are defined within a class hierarchy that has
the class Throwable as its superclass
Classes Error and Exception are subclasses of Throwable
Error is a class of serious problems that should not be
caught by try-catch-finally (to be discussed later)
RuntimeException is a subclass of Exception

9 / 21



Exception Class Hierarchy

The Class Throwable

Throwable is the superclass of all exceptions
All exception classes inherit the methods of Throwable

Throwable

AssertionError RuntimeException

ExceptionError

Other Error Classses Checked Exception 
Classes

Unchecked Exception 
Classes

10 / 21



Exception Class Hierarchy

The Class Throwable

Summary of commonly used methods from
java.lang.Throwable class

Method Action
String getMessage() Returns the detailed message

void printStackTrace() Prints the stack trace
to System.err

String toString() Returns the name of
the exception followed

by the detailed message

11 / 21



Exception Class Hierarchy

Checked and Unchecked Exceptions

The Java compiler imposes two categories of exceptions:
checked and unchecked

Checked exceptions: the errors that the Java compiler
enforces the program to be aware of the possibility of
occurrences

All of these belong to Exception
Unchecked exceptions: the res

These included Error class objects

12 / 21



Exception Class Hierarchy

Checked and Unchecked Exceptions

Checked exception is normally not due to programmer
error and is beyond the control of the programmer
Unchecked exception may result from

Programmer error
Serious external conditions that are unrecoverable

13 / 21



Exception Class Hierarchy

Some Checked Exceptions

Exception Class Cause
IOException Some sort of input/output error
EOFEcception An attempt to read beyond

the end of the data in a file
FileNotFound A file not found

14 / 21



Exception Class Hierarchy

The Exception Hierarchy

Throwable

AssertionError
RuntimeException

ExceptionError

Other
Checked Exception 

Classes

Other 
RunTimeException 

Classes

Other Error Classses

VirtualMachineError

OutOfMemoryError

IOException

Other IOException 
Classes

NumberFormula
Exception

ArithmeticException

IllegalArgument 
Exception

EOFException

FileNotFoundException

15 / 21



Exception Class Hierarchy

Catching and Handling Exception

An exception causes program execution interruption.
Console shows the series of calls starting from the main
method that resulted in the exception

Interruption can be avoided by:
Enclosing the execution in a try block
Processing the exception using a catch block

16 / 21



Exception Class Hierarchy

Try-Catch-Finally

When an exception occurs, the series of catch statements
is checked in order and the operations within the first
matching block are executed; the rest are ignored.
If all statements within the try block execute without error,
the catch block is skipped.
The code in the finally block is executed either after the try
block is exited or after a catch clause is exited
The finally block is optional

17 / 21



Exception Class Hierarchy

Example

Scanner scIn = new Scanner(System.in);
while (true) {

try {
System.out.print("enter a number, 0 for exist: ");
int n = scIn.nextInt();
scIn.nextLine();
System.out.println("Your number is " + n);
if (n==0) {

System.out.println("Quitting.");
break;

}
}
catch (InputMismatchException e) {

System.out.println("You must enter a number.");
scIn.nextLine();

} finally {
System.out.prtinln("Try again.");

}
}

18 / 21



Exception Class Hierarchy

How to Throw Exception

Reporting an exception to the method that invoked the
method in which an exception has occurred
Can be chained and returned all the way back to the main
method

Use throws EXCETPTION_CLASS_NAME at the method
declaration to declare that the method may throw an
exception
To throw, use
throw new EXCEPTION_CLASS_NAME(message)
Handle recoverable exceptions on the spot

19 / 21



Exception Class Hierarchy

Big-O (from Chapter 2)

We want to be able to say something about efficiency of
algorithms (programs) in terms of how their usage of resources
(time and memory) increases as input size increases.
For example, there are many ways to reorder numbers
appearing in an array. We can imagine that for each such
method, the time it takes for it to reorder increases as the size
of array increases.
Is there a simple way to say the way the time increases in this
situation?

20 / 21



Exception Class Hierarchy

Big-O

Let f and g be functions from the set of nonnegative integers to
the set of real numbers. We say that f is a “big-O” of g, write
f = O(g) or f ∈ O(g), if there exists a positive constant c such
that for all but finitely many n,

f (n) ≤ c · g(n)

This means that the growth rate of f can be bounded by some
multiple of the growth rate of g.

21 / 21



Exception Class Hierarchy

Big-O Examples

In the following, f is a big-O of g
1 f (n) = 100n, g(n) = 3n.
2 f (n) = 19n log n, g(n) = 4n2.
3 f (n) = n2, g(n) = n!.
4 f (n) = n17, g(n) = 2n.

22 / 21



Exception Class Hierarchy

Small-O

Let f and g be functions from the set of nonnegative integers to
the set of real numbers. We say that f is a “small-O” of g, write
f = o(g) or f ∈ o(g), if

lim
n→∞

f (n)
g(n)

= 0.

In some sense, this means that the growth rate of f is strictly
less than the growth rate of g.

23 / 21



Exception Class Hierarchy

Small-O Examples

In the following, f is a small-O of g
1 f (n) = 100n, g(n) = 3n2.
2 f (n) = 19n log n, g(n) = 4n2.
3 f (n) = n2, g(n) = n!.
4 f (n) = n17, g(n) = 2n.

24 / 21


