
Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

CSC220
Chapter 1: Object-Oriented Programming and

Class Hierarchies

Mitsunori Ogihara

University of Miami

August 31, 2010

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Outline

1 Objectives of Chapter

2 ADT and Interfaces

3 Abstract Class

4 Class Object
Method Overriding

5 Number

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Objectives

1 Abstract data types (ADT)
2 Interfaces and their roles
3 Inheritance and its fascilitation
4 Method selection at runtime
5 Abstract classes
6 Exception hierarchy
7 Class Object and method overriding
8 Package creation and package visibility.

3 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

ADT

Abstract Data Type (ADT for short): a central concept of Java.
It consists of

data encapsulated in the type and
methods executed on the data.

Abstract data types enable their users to write applications
without knowing details of how data are stored and how
methods are implemented.

4 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Interfaces

A Java interface is a way to specify or describe an ADT to an
applications programmer.
It is like a contract that an applications programmer must fulfill.
An interface may specify:

a required set of methods, each along with:
the types of input arguments, if any, and
the type of return object, if any;

constants.

5 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Interface Format

The format for an interface is

public interface InterfaceName {
abstract method headings
constant declarations

}

Things to note about the attribute:
1 The method header has the attribute of public abstract

and thus can be accompnied with any of its sub-word.
2 The constant header has the attribute of public static final

and thus can be accompanied with any of its sub-word.

6 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Example

public interface OneNameInt {
/* Default name to be used */
static final String DEFAULT_FIRST_NAME = “Troy”;
/**
* Set a new value to the name

* @param s the new name

*/
void setName(String s);
/**
* Obtain the name as a string

* @return a string representation of the name

*/
String getName();

}

7 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Properties of Interfaces

An interface specifies only contract and thus fulfillment of
the contract is up to the programmer that implements it.
An interface can be used as type of an object, but since it
only specifies contract you can for constructing an object.

8 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Example

An interface can be extended by another interface.

public interface TwoNamesInt extends OneNameInt {
/**
* set the other name

* @param s the other name

*/
abstract public void setOtherName(String s);
/**
* Obtain the other name

* @return the other name

*/
abstract public String getOtherName();

}

These methods are additions; those defined in OneNameInt
are inherited by the new interface.

9 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Implementing an Interface

A class that fulfills contract of an interface is said to implement
the interface.
With the keyword of implements header specifies this relation:

class C implements I

states that the class C is one that implements interface I.

10 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Instantiation of Class Implementing an Interface

The object should be created with a constructor of the class.
The type of the object can be:

either the interface or one of its super-interfaces (if any); or
either the class itself or one of its superclasses.

In the previous example the following are valid declarations:

PersonNames a = new PersonNames("Jean Thielemans", "Toots");
Object b = new PersonNames("Milt Jackson", "Bags");
OneNameInt c = new PersonNames("Albert Heath", "Tootie");
TwoNamesInt d = new PersonNames("Jeff Watts", "Tain");

The phenomenon in which the same instance can be treated as
of multiple types is called polymorphism.

11 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Abstract Class

Abstract class is a type residing between interface and class.
Abstract class may contain abstract methods.
Abstract class may have constructors; however, it cannot
be instantiated; the constructors can be used only in
constructors of its immediate subclasses.
Abstract class may define data fields.

12 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Example

public abstract class University implements TwoNamesInt {
private String nameOne;
private String nameTwo;
University() {

nameOne = "University of Miami";
nameTwo = "UM";

}
/**
* obtain population

* @return an integer value

*/
public abstract int getPopulation();
public void setName(String s) {

this.nameOne = s;
}
public String getName() {

return this.nameOne;
}
public void setOtherName(String s) {

this.nameTwo = s;
}
public String getOtherName() {

return this.nameTwo;
}

}

13 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Use of Abstract Class

An abstract class may have a constructor, which can be
invoked from a class that extends it.
An abstract class can be used as type, but cannot be
instantiated, so constructors of an abstract class can be
used only in constructors of its extensions.

14 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Example

public class PrivateUniversity extends University {
private int pop;
private String stateInitial;
PrivateUniversity() {

super(); // parent’s constructor
super.setOtherName("The U");
this.pop = 100000;
this.stateInitial = "FL";

}
PrivateUniversity(String s1, String s2, int n, String s3) {

this.pop = n;
this.setName(s1);
super.setName(s2);
this.stateInitial = s3;

}
@Override
public int getPopulation() {

return this.pop;
}
/**
* Obtain the state initial

* @return a string object

*/
public String getStateInitial() {

return this.stateInitial;
}

}

15 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Use of Keywords “this” and “super”

this.methodName(. . .) in the code of class C refers to
the method methodName defined in the class.
this.dataName in the code of class C refers to the data
field dataName within the class. Without this., it refers
to something that is locally obvious to the program; e.g.,
data by that name given as an argument of a method in
which the reference appears.
super.methodName(. . .) in the code of class C that
extends a class D refers to the method methodName
defined in D.
super.dataName in the code of class C that extends a
class D refers to the data field dataName defined in D.

16 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Extension and Implementation

Class Abstract
ClassClass

extends extends

Interface Interface
extends

Interface Interface
extends

implements

implements

Interface Interface
extends

Abstract
Class

extends

implements

17 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Method Overloading and Selection at Runtime

A class may have multiple methods with the same, as long as
no two of the methods with the same name have the same list
of arguments.
For example, in the previous example of PrivateUniversity,
having
public boolean changeInfo(String a)
public int changeInfo(String a, String b)
public void changeInfo(String a, String b, String c)

for respectively changing information of
the real name,
the real name and the nick name,
the real name, the nick name and the state initials

is legitimate. Note that they may have different return types (int,
boolean, and void).

18 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Empty Constructor as Default

An empty constructor is a constructor with no arguments;
i.e., a constructor of the form ClassName().
If a class has nonempty constructor, its empty constructor
must be explicitly defined.

19 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Class Object

Every non-primitive data type is an extension of Object.

Objects has, in addition to a few others, five important public
methods:

Object clone() for obtaining a copy of an object;
boolean equals(Object obj) for reference equality;
x.equals(y) tests whether x and y refer to the same
object;
Class getClass() for class reference;
int hashCode() for obtaining an integer assigned to an
object;
String toString() for obtaining a String
representation of an object

20 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Clone

The method clone defined in textttObject is a shallow copy
method, in the sense that the method copies only primitive data
types.
As opposed to this, a clone method that copies all the data
fields is called a deep copy method.
The clone method of Object is not visible to its subclasses.

21 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Equals

The code

PrivateUniversity p1 =
new PrivateUniversity("U. Miami", "UM", 10000, "FL");

PrivateUniversity p2 =
new PrivateUniversity("U. Miami", "UM", 10000, "FL");

if (p1.equals(p2)) System.out.println("p1 equals p2");
else System.out.println("p1 does not equal p2");

produces the second output.

22 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

getClass, hashCode, toString

getClass gives the class information.
x.getClass().getName() returns the string object that
is the class name of the class of x.
x.hashCode() can be used when building hash tables.
x.toString() returns a string encodig of x.

23 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Overriding

A class can redefine any methods that are defined in the
class it extends.
The Object methods clone (which is not accessible to
classes that extend Object) and toString are those that
may need to be redefined.
Method override refers to redefining methods provided in
a super-class.
For Javadoc use keyword @override to indicate method
override.
To access the unoverridden method, attach super.

24 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Abstract Class Number

An abstract class that provides the basis for an object version
of the primitive number data types (byte, double, float, int, long,
and short).
The Object versions are: Byte, Double, Float, Integer, Long,
and Short.

25 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Conversion Between a Number Class and Primitive
Version

For only single-object reference, Java automatically converts
between the primitive data type version and the Number
sub-class version.

Integer A = new Integer(10);
int a = A;
Integer B = a;

is a valid code.
This doesn’t work for arrays; i.e., Java won’t convert between
int[] and Integer[].

26 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Casting

If an object O is of class C and C extends D, then O can be
treated as an object of class C as well as an object of class D.
Suppose Class Bar extends Class Foo.

Suppose variable x is of type Foo. You can execute: x =
new Bar(...) and then ((Bar)x).someMethod to
apply someMethod on x being treated as a Bar object.
Suppose y is of type Bar. Suppose both classes have their
own toString() method. Then you can execute
((Foo)y).toString() to execute the Foo-class method
on y.

The former is down-casting and the latter is up-casting.

27 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

instanceof

The instanceof allows you to test whether an object is of
certain class.
In the previous example, x is not only an instance of Foo but
also of a Bar, so

(x instanceof Foo) and
(x instanceof Bar)

evaluate to true

28 / 30

Objectives of Chapter ADT and Interfaces Abstract Class Class Object Number

Class Class

Class is a special class that deals with classes.
x.getClass() method provides the class of object x.

29 / 30

