
Graphs

Chapter 12

Chapter 12: Graphs 2

Chapter Objectives

•  To become familiar with graph terminology and the
different types of graphs

•  To study a Graph ADT and different implementations of
the Graph ADT

•  To learn the breadth-first and depth-first search traversal
algorithms

•  To learn some algorithms involving weighted graphs
•  To study some applications of graphs and graph

algorithms

Chapter 12: Graphs 3

Graph Terminology

•  A graph is a data structure that consists of a set of
vertices and a set of edges between pairs of vertices

•  Edges represent paths or connections between the
vertices

•  The set of vertices and the set of edges must both be
finite and neither one be empty

Chapter 12: Graphs 4

Visual Representation of Graphs

•  Vertices are represented as points or labeled circles and
edges are represented as lines joining the vertices

•  The physical layout of the vertices and their labeling are
not relevant

Chapter 12: Graphs 5

Directed and Undirected Graphs

•  The edges of a graph are directed if the existence of an
edge from A to B does not necessarily guarantee that
there is a path in both directions

•  A graph with directed edges is called a directed graph
•  A graph with undirected edges is an undirected graph

or simply a graph

Chapter 12: Graphs 6

Directed and Undirected Graphs (continued)

•  The edges in a graph may have values associated with
them known as their weights

•  A graph with weighted edges is known as a weighted
graph

Chapter 12: Graphs 7

Paths and Cycles

•  A vertex is adjacent to another vertex if there is an edge
to it from that other vertex

•  A path is a sequence of vertices in which each
successive vertex is adjacent to its predecessor

•  In a simple path, the vertices and edges are distinct
except that the first and last vertex may be the same

•  A cycle is a simple path in which only the first and final
vertices are the same

Chapter 12: Graphs 8

Paths and Cycles (cont’d)

•  A graph is connected if there is a path from every node
to every other node; otherwise, it is unconnected

•  A connected component of a graph is a maximally
large subset of vertices in which every node is connected
to every other node

Chapter 12: Graphs 9

Paths and Cycles (continued)

Chapter 12: Graphs 10

The Graph ADT and Edge Class

•  Java does not provide a Graph ADT
•  In making our own, we need to be able to do the

following
•  Create a graph with the specified number of vertices
•  Iterate through all of the vertices in the graph
•  Iterate through the vertices that are adjacent to a specified

vertex
•  Determine whether an edge exists between two vertices
•  Determine the weight of an edge between two vertices
•  Insert an edge into the graph

Edge Class

Chapter 10: Sorting 11

Data Field Attribute
 private int source The index to the source vertex

 private int dest The index to the destination vertex

 private double weight The weight assigned to the edge

Constructor Purpose

 public Edge(int source, int dest) Constructor with 0 weight

 public Edge(int source, int dest,
double weight)

Constructor with a specific weight value

Method Action
 public boolean equals(Object o) Check equality

 public int getSource()
 public int getDest()
 public double getWeight()

Getters

 public String toString() Conversion to a String object

 public int hashCode() Hash code

Chapter 12: Graphs 12

Implementing the Graph ADT

•  Two representations of graphs are most common
•  Edges are represented by an array of lists called

adjacency lists, where each list stores the vertices
adjacent to a particular vertex

•  Edges are represented by a two dimensional array,
called an adjacency matrix

Chapter 12: Graphs 13

Adjacency List

•  An adjacency list representation of a graph uses an
array of lists

•  One list for each vertex

Chapter 12: Graphs 14

Adjacency List (continued)

Chapter 12: Graphs 15

Adjacency List (continued)

Chapter 12: Graphs 16

Adjacency Matrix

•  Uses a two-dimensional array to represent a graph
•  For an unweighted graph, the entries can be Boolean

values
•  For a weighted graph, the matrix would contain the

weights

Chapter 12: Graphs 17

Overview of the Graph Class Hierarchy

Abstract Class AbstractGraph

Chapter 10: Sorting 18

Data Field Attribute
 private boolean directed Boolean value indicating whether or not the graph is directed

 private int numV The number of vertices

Constructor Purpose

 public AbstractGraph(boolean
isDirected, int numV)

Method Action
 public boolean isDirected()
 public int getNumV()

Getters

 public void loadEdgesFromFile
(BufferedReader bR)

Load data from a buffered reader object

 public static Graph CreateGraph
(BufferedReader bR, boolean
directed, String type)

Factory method for graph construction

ListGraph Class

Chapter 10: Sorting 19

Data Field Attribute
 private List<Edge>[] edges List object to maintain list of edges

Constructor Purpose

 public ListGraph(boolean
directed, int numV)

Constructor

Method Action
 public Iterator<Edge>
edgeInterator(int source)

Produce an iterator of the edges from a given source vertex

 public Edge getEdge(int source,
int dest)

Returns an edge from a given source to a given destination

 public void insert(Edge e) Insert an edge

 public boolen isEdge(int source,
int dest)

Return whether there is an edge from source to dest

Graph Traversals

Chapter 12: Graphs 20

Chapter 12: Graphs 21

Traversals of Graphs

•  Most graph algorithms involve visiting each vertex in a
systematic order

•  Most common traversal algorithms are the breadth first
and depth first search

Chapter 12: Graphs 22

Breadth-First Search

•  Visit the first vertex, then visit all the neighbors of the first
vertex, then neighbors of the neighbors of the first
vertex, then neighbors of the neighbors of the neighbors
of the first vertex, and so on.

•  In other words, it visits the in the increasing order of the
number of edges that must be followed to visit starting
from the first vertex.

•  Can be started from any first vertex.

Algorithm for Breadth-First Search Using a
Queue

•  Create a queue myQ consisting only of the first vertex
•  Create an array isVisited of size numV whose initial

values are all false except for the start vertex
•  Output the start vertex
•  While (at least one array element of isVisited is false) do:

•  Poll a vertex v from myQ
•  For each neighbor w of v:

•  If isVisited has the value false for w:
–  Offer w
–  Set the value of isVisited for w to true
–  Output w

Chapter 12: Graphs 23

Example

Queue Output Array
0 0 TFFFFFFF
156 0156 TTFFFTTF
5623 015623 TTTTFTTF
6234 0156234 TTTTTTTF
234 0156234 TTTTTTTF
34 0156234 TTTTTTTF
4 0156234 TTTTTTTF
7 01562347 TTTTTTTT

Chapter 12: Graphs 24

Chapter 12: Graphs 25

Depth-First Search

•  In depth-first search, you start at a vertex, visit it, and
choose one adjacent vertex to visit; then, choose a
vertex adjacent to that vertex to visit, and so on until you
go no further; then back up and see whether a new
vertex can be found

Algorithm for DFS using a Recursive Call
•  Create an array isVisited of size numV whose initial

entries are all false
•  For each u in range [0,numV-1]:

•  Set p to null
•  If isVisited[u] is false, then execute search at u with p

as pVertex
•  Search at u with pVertex:

•  Output u
•  Record pVertex as parent of u
•  Set isVisited[u] to true
•  For each neighbor v of u:

•  If isVisited[v] is false, execute search at v with u as pVertex

Chapter 12: Graphs 26

Example of DFS

Stack Output isVisited
0 0 TFFFFFFF
01 01 TTFFFFFF
012 012 TTTFFFFF
013 0123 TTTTFFFF
0135 01235 TTTTFTFF
01354 012354 TTTTTTFF
013547 0123547 TTTTTTFT
06 01235476 TTTTTTTT

Chapter 12: Graphs 27

Chapter 12: Graphs 28

Shortest Path Through a Maze

Chapter 12: Graphs 29

Shortest Path Through a Maze (continued)

Chapter 12: Graphs 30

Algorithms Using Weighted Graphs

•  Finding the shortest path from a vertex to all other
vertices
•  Solution formulated by Dijkstra

Chapter 12: Graphs 31

Chapter 12: Graphs 32

Chapter 12: Graphs 33

Chapter 12: Graphs 34

Algorithms Using Weighted Graphs
(continued)

•  A minimum spanning tree is a subset of the edges of a
graph such that there is only one edge between each
vertex, and all of the vertices are connected

•  The cost of a spanning tree is the sum of the weights of
the edges

•  We want to find the minimum spanning tree or the
spanning tree with the smallest cost

•  Solution formulated by R.C. Prim and is very similar to
Dijkstra’s algorithm

Chapter 12: Graphs 35

Prim’s Algorithm

Chapter 12: Graphs 36

Chapter 12: Graphs 37

Chapter 12: Graphs 38

Chapter 12: Graphs 39

