
Self-Balancing Search Trees

Chapter 9

Chapter 11: Self-Balancing Search Trees 2

Chapter Objectives

•  To understand the impact of “height balance” on the
performance of binary search trees

•  To learn about the AVL tree for storing and maintaining a
binary search tree in balance

•  To learn about 2-3 trees, 2-3-4 trees, and B-trees and
how they achieve balance (will not cover Red-Black
trees)

•  To understand the process of search and insertion in
each of these trees and to be introduced to removal

Chapter 11: Self-Balancing Search Trees 3

What Is “Balance”

•  Searching in an unwieldy search tree could cost O(n)
steps

Balanced Search Tree Scheme

•  Define the height of a tree to be the number of nodes in
the longest path from the root to a leaf node

•  In general we say that a tree node is a “balanced” node if
there isn’t much different between the height of its left
tree and the height of its right tree
•  Many binary search tree schemes force “balance” at

every node so that the resulting tree has height at
most c log(n) for any n node tree, for a constant c

Chapter 11: Self-Balancing Search Trees 4

Balanced Search Tree Scheme

•  When insertion or deletion is executed:
•  The “balance” may be broken
•  So the “balance” is fixed on the nodes that have been

affected with a constant number of operations at each
such node

•  The end result is an O(log(n)) method

Chapter 11: Self-Balancing Search Trees 5

Rotations of Node in a Binary-Search
Tree

Basic operations for balancing in self-
balanced trees.

Chapter 11: Self-Balancing Search Trees 6

Right Rotation: L-child -> root
root-> R- child

LR-grandchild -> RL-grandchild

Chapter 11: Self-Balancing Search Trees 7

Chapter 11: Self-Balancing Search Trees 8

Step-by-step Right Rotation
•  Set temp to root.left so as not to lose it.
•  Change root.left to temp.right
•  Set temp.right to root
•  Change root to temp

AVL Tree

Chapter 11: Self-Balancing Search Trees 9

AVL Tree

•  A node in a tree is
balanced if the
difference between
the height of its left
subtree and the
height of its right
subtree is 0 or 1.

•  An AVL tree is a tree
in which every node
is balanced.

Chapter 11: Self-Balancing Search Trees 10

Chapter 11: Self-Balancing Search Trees 11

Insertion/Deletion in an AVL Tree

•  Execute insertion/deletion as in the usual binary search
tree.

•  The operation may break the balance of some subtrees,
but the roots of such trees are on the straight path from
the location of insertion/deletion to the root.

•  Climb from the location to the root and fix all problems.

Left-Left Tree

•  A tree is left-heavy if
the height of the left
subtree is more than
the height of the right
subtree

•  A left-left tree is a
tree in which both the
root and its left
subtree are left-heavy

Chapter 11: Self-Balancing Search Trees 12

Re-balancing Left-left Trees

Chapter 11: Self-Balancing Search Trees 13

Chapter 11: Self-Balancing Search Trees 14

Right-right Tree
•  A tree is right-heavy if the height of the right subtree is

more than the height of the left subtree.
•  A right-right-tree is a tree in which both the root and its

right subtree is right-heavy
•  By symmetry, use one left rotation to re-balance

Left-Right Tree

•  In a left-right tree, the root is left-heavy and its left
subtree is right-heavy

•  Needs one left rotation and one right rotation

Chapter 11: Self-Balancing Search Trees 15

Re-balancing a Left-right Heavy Tree
“L-rotate L-child; R-rotate Parent”

Case 1: Left-right-left is
the heaviest

Case 2: Left-right-right is
the heaviest

Chapter 11: Self-Balancing Search Trees 16

Right-left Tree

•  In a right-left tree, the root is right-heavy and its right
subtree is left-heavy

•  By symmetry, needs one rigt rotation and one left
rotation

Chapter 11: Self-Balancing Search Trees 17

2-3 Trees

Chapter 11: Self-Balancing Search Trees 18

Chapter 11: Self-Balancing Search Trees 19

2-3 Trees

•  The number of possible children for a non-leaf is 2 (“2-
nodes”) or 3 (“3-nodes”)

•  A 2-node is the same as a binary search tree node
•  A 3-node contains two data fields, ordered so that first is

less than the second, and references to three children
•  One child contains values less than the first data field
•  One child contains values between the two data fields
•  Once child contains values greater than the second data field

•  2-3 tree has property that all of the leaves are at the
same distance from the root

Searching in a 2-3 Tree

•  Choose a child by comparing the target against the key
(s) stored at the node.

Chapter 11: Self-Balancing Search Trees 20

A 2-3 Tree

Chapter 11: Self-Balancing Search Trees 21

Insertion of a Key into a 2-3 Tree

•  Execute search; start from the leaf node where the
search stopped.

•  If the number of keys in the leaf is one, add the new key
•  Otherwise, do the following:

•  Set a, b, c (a<b<c) to the two existing keys and the
new key

•  Set x to the parent of the leaf
•  Create two nodes, u and v, who have a and c as the

sole key, respectively
•  Call an upward insertion procedure on the quadruple

(x, b, u, v)
Chapter 11: Self-Balancing Search Trees 22

Insertion of (x,b,u,v)

•  Let p be the parent of x.
•  (Case 1) p has only one key

•  Insert b into p and insert references u and v into
•  (Case 2) p has two keys

•  Let b’ be the median of the existing two keys and b
•  Create a new node x’ whose unique key is b’ and

whose children u’ and v’, where u’ takes care of the
smaller of the three and v’ the larger

•  Make a recursive call to the insertion procedure with
(x’, b’, u’, v’)

Chapter 11: Self-Balancing Search Trees 23

Example of Insertion

After insertion of 70
Insertion of 69: 70
migrated

Chapter 11: Self-Balancing Search Trees 24

Example (cont’d)

Insertion of 67
Insertion of 65: 67 then 70
migrated

Chapter 11: Self-Balancing Search Trees 25

Chapter 11: Self-Balancing Search Trees 26

Removal from a 2-3 Tree

•  Preparation:
•  If the key to be removed is not in a leaf node,

exchange it with the inorder predecessor; that is, the
largest key in the rightmost node in the subtree
immediately to the left of the key.

•  If either the tree consists of only one node or the key
is a leaf with one more key, remove the key.

•  Now the key to be removed is the sole key in a leaf
node.

•  Let R be the key, let U be the leaf node, and let P be its
parent

Removal from a 2-3 Tree

•  If P has two keys, remove U, and reinsert one key of P
•  If U is the left child, the smaller key
•  Otherwise, the larger key

•  Else if the unique sibling of U has two keys, move the
key of P to U and put one key of the sibling into P
•  From the left sibling: the larger key
•  From the right sibling: the smaller key

•  Else, remove U; move P’s key to the unique sibling, and
then enter resolution stage

Chapter 11: Self-Balancing Search Trees 27

Example

Original Removal of 41

Chapter 11: Self-Balancing Search Trees 28

Example (cont’d)

26 Removed 20 removed and inserted

Chapter 11: Self-Balancing Search Trees 29

Example (cont’d)

5 Removed

Chapter 11: Self-Balancing Search Trees 30

Resolution Stage

•  The loop-invariant during this stage is:
•  There is a non-leaf node, P, that has no key and

has only one child, V

Chapter 11: Self-Balancing Search Trees 31

Resolution Strategy

•  If P is the root of the tree, simply change the root to V.
•  Else if P has only one sibling, which has only one key

•  Merge P and P’s sibling, insert P’s parent there -> the
location of resolution moves to P’s parent.

Chapter 11: Self-Balancing Search Trees 32

Resolution Strategy

•  Else if P has a sibling, S, with two keys.
•  1key at the parent, 2 at S, and 0 at P == 3 total
•  1 subtree at P and 3 at S == 4 total
•  Reorganize these into:

•  One key at the parent
•  One key at P
•  One key at S
•  Two subtrees at P
•  Two subtrees at Q

Chapter 11: Self-Balancing Search Trees 33

Resolution Strategy

•  Else (P has two siblings, S and T, each with only one
key)
•  2 keys at the parent, 1 at S, 1 at T, and 0 at P == 4

total
•  1 subtree at P, 2 each at S and T == 5 total
•  Reorganize these into:

•  One key at the parent
•  One key at P
•  Two keys at S
•  Two subtrees at P
•  Three subtrees at S

Chapter 11: Self-Balancing Search Trees 34

Resolution

Remove 20
Combine 10 and 11 to
arrive at the loop-invariant

Chapter 11: Self-Balancing Search Trees 35

Resolution (cont’d)

30 joins 45
60 joins 70; remove the
root

Chapter 11: Self-Balancing Search Trees 36

Removal (cont’d)

Initial Removal of 69

Chapter 11: Self-Balancing Search Trees 37

Removal (cont’d)

Situation from last page Moving 45, 60, 57

Chapter 11: Self-Balancing Search Trees 38

Removal (cont’d)

Initial Removal of 94

Chapter 11: Self-Balancing Search Trees 39

Removal (cont’d)

Situation from last page Reorganization

Chapter 11: Self-Balancing Search Trees 40

General Removal Policy for Removing a key

•  If the key is not in the leaf node,
•  Find the leftmost key k in the child immediately to the

right of k
•  Move k to the key’s position and start the process of

removing k

Chapter 11: Self-Balancing Search Trees 41

Removal of a Key Located at a Leaf:
Easy Cases 1 & 2

•  If the leaf has two keys, remove the designated key

•  If the leaf has one key and the leaf is the root, the tree is
now empty

Chapter 11: Self-Balancing Search Trees 42

Removal of a Key Located at a Leaf:
Easy Case 3

•  If the leaf has one key and either:
•  The leaf has two siblings or
•  One sibling has two keys
Then there are 5 – 8 keys in the subtree rooted at the

parent, so 4 – 7 keys after removal.
Turn the remaining keys into a height one 2-3 tree.

Chapter 11: Self-Balancing Search Trees 43

Removal of a Key Located at a Leaf:
Hard Case

•  There is only one sibling and the sibling has only one
key There are only two key remaining in the subtree
rooted at the parent

•  Steal the parent’s key and the sibling’s key and eliminate
the sibling. This turns it into a situation:
•  (*) There is a node with:

•  No keys
•  Just one child with two keys and three children. Either

–  All of the three children are null or
–  All of the three children have the same height

Chapter 11: Self-Balancing Search Trees 44

Resolving (*)
X is the node with no keys

•  If X is the root, turn X’s unique child into the root.

•  If the number of keys stored in the siblings of X is at
least 2, then you can resolve the situation
immediately.

•  If the number of keys stored in the siblings of X is just 1,
then X’s parent has just 1 key, there is one sibling of X,
and that sibling has 1 key. So,
•  Steal the two keys into X, remove the sibling.
•  Now the parent has become X

Chapter 11: Self-Balancing Search Trees 45

Instant Resolution of (*)

•  Let A be the number of keys with the parent and the
siblings combined

•  Let B be the number of children of the siblings
•  Then we have: 3<= A <= 6 and A = B
•  The child of X and the children of the siblings of X have

the same height and there are A+1 of them
•  They can be organized into:

•  One key at the parent, one sibling, and 1 or 2 key
at self and at the sibling (A is at most 5); or

•  Two keys at the parent, two siblings, one key at
self, one key at one sibling, and two keys at the
other Chapter 11: Self-Balancing Search Trees 46

Deletion Example

•  Removing 34 or 41 is
easy … just remove it

•  Removing 5, 11, or 26
requires
reorganization of four
keys from 5, 10, 11,
20, and 26

•  Removing 57 requires
reorganization of 34,
41, and 45

Chapter 11: Self-Balancing Search Trees 47

30

804510, 20

34, 415 11 26 947557 65

67

69

70

60

10

5 11, 26

45

34 57

41

34 45

Deletion Examples

•  Removal of any leaf
in this 2-3 tree
triggers the situation
(*)

•  Let’s try to remove 69

Chapter 11: Self-Balancing Search Trees 48

30, 40

804510

415 11 947557 65

67

69

70

60

35

31 37

First step: before and after

30, 40

804510

415 11 947557 65

67

69

70

60

35

31 37

30, 40

804510

415 11 947557 67

?

70

60

35

31 37

Chapter 11: Self-Balancing Search Trees 49

Second step: before and after

30, 40

804510

415 11 947557 67

?

70

60

35

31 37

30, 40

4510

415 11 947557 67

70, 80

?

60

35

31 37

Chapter 11: Self-Balancing Search Trees 50

Third step: There are three keys (30, 40, 60)
among the parent and the sibling

30, 40

4510

415 11 947557 67

70, 80

?

60

35

31 37

30

4510

415 11 947557 67

70, 80

60

40

35

31 37

Chapter 11: Self-Balancing Search Trees 51

Deletion Example

30, 40

804510

415 11 947557 65

67

69

70

60

35

31 37

•  This time, let’s try to
remove 37

Chapter 11: Self-Balancing Search Trees 52

Situation (*) emerges and then resolved
because there are four keys (10, 30, 40, 45)

30, 40

804510

415 11 947557 65

67

69

70

60

?

31,35

30

8040, 4510

415 11 947557 65

67

69

70

60

31,35

Chapter 11: Self-Balancing Search Trees 53

B-trees and 2-3-4 trees

Chapter 11: Self-Balancing Search Trees 54

B-Trees

•  In a B-tree, the number of keys in any node is between
d-1 and 2d-1, for some fixed integer d. However, the
root is allowed to have any number of keys between 1
and 2d-1.

•  If a node is not a leaf and has m keys, k1 < … < km, then
it has m+1 subtrees, T0, …, Tm. The keys are
interspersed between the children in increasing order.
•  The keys in T0 are smaller than k1.
•  The keys in Tm are greater than km.
•  The keys in Ti are between ki and ki+1.

Chapter 11: Self-Balancing Search Trees 55

Insertion into a B-tree

•  Insert the key into an appropriate leaf, L.
•  If L has at most 2d-1 keys after insertion, it’s done.
•  Otherwise, reorganize the tree.

•  Let k1 < … < k2d be the keys.
•  Think of the node L as having 2d+1 empty subtrees,

T0, …, T2d
•  Generalize to a situation in which there is a node L

with 2d keys and 2d+1 trees.

Chapter 11: Self-Balancing Search Trees 56

Solution

•  Turn the first d-1 keys into a new leaf node A; and the
last d keys into a new leaf node B; which leaves kd

•  If L is the root, create a new root with r as a unique key
and make A and B its subtrees.

•  If L is not the root, replace the reference to L in the
parent P of L:
•  If L is the leftmost subtree of the parent, replace the

reference with the reference to B and insert A and kd
as yet smaller key and subtree

•  Otherwise, replace the reference with the reference to
A and insert B and kd as next larger key and subtree

Chapter 11: Self-Balancing Search Trees 57

Insertion Examples

Chapter 11: Self-Balancing Search Trees 58

Chapter 11: Self-Balancing Search Trees 59

Chapter 11: Self-Balancing Search Trees 60

Elimination

•  First, if the key is not in a leaf node, exchange it with its
immediate predecessor

•  Let L be the node at which the key is located.
•  Remove the key from L
•  Next, remove the key
•  Repeat an adjustment method until either

•  the current node has at least d keys or
•  the current node becomes the root

Chapter 11: Self-Balancing Search Trees 61

Adjustment Method

•  The current node has d-1 keys (and thus d subtrees) and
the current node is not the root.

•  If either of the two immediate siblings has more than d
keys, move the closest key to the parent and move the
key immediately next to the one to the current node. Also
move the reference immediately to the next to the key
from the sibling.

•  Otherwise, create a new node by merging the current
node, an immediate sibling and the key in between at the
parent
•  Change the value of L to L’s parent

Chapter 11: Self-Balancing Search Trees 62

Chapter 11: Self-Balancing Search Trees 63

Chapter 11: Self-Balancing Search Trees 64

Chapter 11: Self-Balancing Search Trees 65

Chapter 11: Self-Balancing Search Trees 66

Chapter 11: Self-Balancing Search Trees 67

Chapter 11: Self-Balancing Search Trees 68

2-3-4 and B-Trees

•  2-3 tree was the inspiration for the more general B-tree
•  B-tree designed for building indexes to very large

databases stored on a hard disk
•  2-3-4 tree is a specialization of the B-tree because it is

basically a B-tree with d equal to 2.
•  A Red-Black tree can be considered a 2-3-4 tree in a

binary-tree format

Chapter 11: Self-Balancing Search Trees 69

