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Chapter Objectives 

•  To understand the impact of “height balance” on the 
performance of binary search trees 

•  To learn about the AVL tree for storing and maintaining a 
binary search tree in balance 

•  To learn about 2-3 trees, 2-3-4 trees, and B-trees and 
how they achieve balance (will not cover Red-Black 
trees) 

•  To understand the process of search and insertion in 
each of these trees and to be introduced to removal 
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What Is “Balance” 

•  Searching in an unwieldy search tree could cost O(n) 
steps 



Balanced Search Tree Scheme 

•  Define the height of a tree to be the number of nodes in 
the longest path from the root to a leaf node 

•  In general we say that a tree node is a “balanced” node if 
there isn’t much different between the height of its left 
tree and the height of its right tree 
•  Many binary search tree schemes force “balance” at 

every node so that the resulting tree has height at 
most c log(n) for any n node tree, for a constant c 
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Balanced Search Tree Scheme 

•  When insertion or deletion is executed: 
•  The “balance” may be broken 
•  So the “balance” is fixed on the nodes that have been 

affected with a constant number of operations at each 
such node 

•  The end result is an O(log(n)) method 
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Rotations of Node in a Binary-Search 
Tree 

Basic operations for balancing in self-
balanced trees. 
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Right Rotation: L-child -> root 
root-> R- child 

LR-grandchild -> RL-grandchild 
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Step-by-step Right Rotation  
•  Set temp to root.left so as not to lose it. 
•  Change root.left to temp.right 
•  Set temp.right to root 
•  Change root to temp 



AVL Tree 
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AVL Tree 

•  A node in a tree is 
balanced if the 
difference between 
the height of its left 
subtree and the 
height of its right 
subtree is 0 or 1. 

•  An AVL tree is a tree 
in which every node 
is balanced. 
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Insertion/Deletion in an AVL Tree 

•  Execute insertion/deletion as in the usual binary search 
tree. 

•  The operation may break the balance of some subtrees, 
but the roots of such trees are on the straight path from 
the location of insertion/deletion to the root. 

•  Climb from the location to the root and fix all problems. 



Left-Left Tree 

•  A tree is left-heavy if 
the height of the left 
subtree is more than 
the height of the right 
subtree 

•  A left-left tree is a 
tree in which both the 
root and its left 
subtree are left-heavy 
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Re-balancing Left-left Trees 
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Right-right Tree 
•  A tree is right-heavy if the height of the right subtree is 

more than the height of the left subtree. 
•  A right-right-tree is a tree in which both the root and its 

right subtree is right-heavy 
•  By symmetry, use one left rotation to re-balance 



Left-Right Tree 

•  In a left-right tree, the root is left-heavy and its left 
subtree is right-heavy 

•  Needs one left rotation and one right rotation 
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Re-balancing a  Left-right Heavy Tree 
“L-rotate L-child; R-rotate Parent”  

Case 1: Left-right-left is 
the heaviest 

Case 2: Left-right-right is 
the heaviest 
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Right-left Tree 

•  In a right-left tree, the root is right-heavy and its right 
subtree is left-heavy 

•  By symmetry, needs one rigt rotation and one left 
rotation 
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2-3 Trees 
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2-3 Trees 

•  The number of possible children for a non-leaf is 2 (“2-
nodes”) or 3 (“3-nodes”) 

•  A 2-node is the same as a binary search tree node 
•  A 3-node contains two data fields, ordered so that first is 

less than the second, and references to three children 
•  One child contains values less than the first data field 
•  One child contains values between the two data fields 
•  Once child contains values greater than the second data field 

•  2-3 tree has property that all of the leaves are at the 
same distance from the root 



Searching in a 2-3 Tree 

•  Choose a child by comparing the target against the key
(s) stored at the node. 
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A 2-3 Tree 
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Insertion of a Key into a 2-3 Tree 

•  Execute search; start from the leaf node where the 
search stopped. 

•  If the number of keys in the leaf is one, add the new key 
•  Otherwise, do the following: 

•  Set a, b, c (a<b<c) to the two existing keys and the 
new key 

•  Set x to the parent of the leaf 
•  Create two nodes, u and v, who have a and c as the 

sole key, respectively 
•  Call an upward insertion procedure on the quadruple 

(x, b, u, v) 
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Insertion of (x,b,u,v) 

•  Let p be the parent of x. 
•  (Case 1) p has only one key 

•  Insert b into p and insert references u and v into  
•  (Case 2) p has two keys 

•  Let b’ be the median of the existing two keys and b 
•  Create a new node x’ whose unique key is b’ and 

whose children u’ and v’, where u’ takes care of the 
smaller of the three and v’ the larger 

•  Make a recursive call to the insertion procedure with 
(x’, b’, u’, v’) 
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Example of Insertion  

After insertion of 70 
Insertion of 69: 70 
migrated 
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Example (cont’d) 

Insertion of 67 
Insertion of 65: 67 then 70 
migrated 
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Removal from a 2-3 Tree 

•  Preparation: 
•  If the key to be removed is not in a leaf node, 

exchange it with the inorder predecessor; that is, the 
largest key in the rightmost node in the subtree 
immediately to the left of the key. 

•  If either the tree consists of only one node or the key 
is a leaf with one more key, remove the key. 

•  Now the key to be removed is the sole key in a leaf 
node. 

•  Let R be the key, let U be the leaf node, and let P be its 
parent 



Removal from a 2-3 Tree 

•  If P has two keys, remove U, and reinsert one key of P 
•  If U is the left child, the smaller key 
•  Otherwise, the larger key 

•  Else if the unique sibling of U has two keys, move the 
key of P to U and put one key of the sibling into P 
•  From the left sibling: the larger key 
•  From the right sibling: the smaller key 

•  Else, remove U; move P’s key to the unique sibling, and 
then enter resolution stage 
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Example 

Original Removal of 41 
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Example (cont’d) 

26 Removed 20 removed and inserted 
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Example (cont’d) 

5 Removed 

Chapter 11: Self-Balancing Search Trees 30 



Resolution Stage 

•  The loop-invariant during this stage is: 
•  There is a non-leaf node, P, that has no key and 

has only one child, V 
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Resolution Strategy 

•  If P is the root of the tree, simply change the root to V. 
•  Else if P has only one sibling, which has only one key 

•  Merge P and P’s sibling, insert P’s parent there -> the 
location of resolution moves to P’s parent. 
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Resolution Strategy 

•  Else if P has a sibling, S, with two keys. 
•  1key at the parent, 2 at S, and 0 at P == 3 total 
•  1 subtree at P and 3 at S == 4 total 
•  Reorganize these into: 

•  One key at the parent 
•  One key at P 
•  One key at S 
•  Two subtrees at P 
•  Two subtrees at Q 
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Resolution Strategy 

•  Else (P has two siblings, S and T, each with only one 
key) 
•  2 keys at the parent, 1 at S, 1 at T, and 0 at P == 4 

total 
•  1 subtree at P, 2 each at S and T == 5 total 
•  Reorganize these into: 

•  One key at the parent 
•  One key at P 
•  Two keys at S 
•  Two subtrees at P 
•  Three subtrees at S 

Chapter 11: Self-Balancing Search Trees 34 



Resolution  

Remove 20 
Combine 10 and 11 to 
arrive at the loop-invariant 
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Resolution (cont’d) 

30 joins 45 
60 joins 70; remove the 
root 
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Removal (cont’d) 

Initial Removal of 69  
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Removal (cont’d) 

Situation from last page Moving 45, 60, 57 
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Removal (cont’d) 

Initial Removal of 94 
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Removal (cont’d) 

Situation from last page Reorganization 
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General Removal Policy for Removing a key 

•  If the key is not in the leaf node, 
•  Find the leftmost key k in the child immediately to the 

right of k 
•  Move k to the key’s position and start the process of 

removing k 
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Removal of a Key Located at a Leaf: 
Easy Cases 1 & 2 

•  If the leaf has two keys, remove the designated key 

•  If the leaf has one key and the leaf is the root, the tree is 
now empty 
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Removal of a Key Located at a Leaf: 
Easy Case 3 

•  If the leaf has one key and either: 
•  The leaf has two siblings or 
•  One sibling has two keys 
Then there are 5 – 8 keys in the subtree rooted at the 

parent, so 4 – 7 keys after removal. 
Turn the remaining keys into a height one 2-3 tree. 
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Removal of a Key Located at a Leaf: 
Hard Case 

•  There is only one sibling and the sibling has only one 
key There are only two key remaining in the subtree 
rooted at the parent 

•  Steal the parent’s key and the sibling’s key and eliminate 
the sibling.  This turns it into a situation: 
•  (*) There is a node with: 

•  No keys 
•  Just one child with two keys and three children.  Either 

–  All of the three children are null or 
–  All of the three children have the same height 
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Resolving (*) 
X is the node with no keys 

•  If X is the root, turn X’s unique child into the root. 

•  If the number of keys stored in the siblings of X is at 
least 2, then you can resolve the situation 
immediately. 

•  If the number of keys stored in the siblings of X is just 1, 
then X’s parent has just 1 key, there is one sibling of X, 
and that sibling has 1 key.  So, 
•  Steal the two keys into X, remove the sibling. 
•  Now the parent has become X 
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Instant Resolution of (*) 

•  Let A be the number of keys with the parent and the 
siblings combined 

•  Let B be the number of children of the siblings 
•  Then we have:  3<= A <= 6 and A = B 
•  The child of X and the children of the siblings of X have 

the same height and there are A+1 of them 
•  They can be organized into: 

•  One key at the parent, one sibling, and 1 or 2 key 
at self and at the sibling (A is at most 5); or 

•  Two keys at the parent, two siblings, one key at 
self, one key at one sibling, and two keys at the 
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Deletion Example 

•  Removing 34 or 41 is 
easy … just remove it 

•  Removing 5, 11, or 26 
requires 
reorganization of four 
keys from 5, 10, 11, 
20, and 26 

•  Removing 57 requires 
reorganization of 34, 
41, and 45 
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Deletion Examples 

•  Removal of any leaf 
in this 2-3 tree 
triggers the situation 
(*) 

•  Let’s try to remove 69 

Chapter 11: Self-Balancing Search Trees 48 

30, 40

804510

415 11 947557 65

67

69

70

60

35

31 37



First step: before and after 

30, 40

804510

415 11 947557 65
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Second step: before and after 
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Third step: There are three keys (30, 40, 60) 
among the parent and the sibling 

30, 40

4510

415 11 947557 67

70, 80

?

60

35

31 37

30

4510

415 11 947557 67

70, 80

60

40

35

31 37
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Deletion Example 

30, 40

804510

415 11 947557 65

67

69

70

60

35

31 37

•  This time, let’s try to 
remove 37 
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Situation (*) emerges and then resolved 
because there are four keys (10, 30, 40, 45) 

30, 40

804510

415 11 947557 65

67

69

70
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B-trees and 2-3-4 trees 
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B-Trees 

•  In a B-tree, the number of keys in any node is between 
d-1 and 2d-1, for some fixed integer d.  However, the 
root is allowed to have any number of keys between 1 
and 2d-1. 

•  If a node is not a leaf and has m keys, k1 < … < km, then 
it has m+1 subtrees, T0, …, Tm.  The keys are 
interspersed between the children in increasing order. 
•  The keys in T0 are smaller than k1. 
•  The keys in Tm are greater than km. 
•  The keys in Ti are between ki and ki+1. 
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Insertion into a B-tree 

•  Insert the key into an appropriate leaf, L. 
•  If L has at most 2d-1 keys after insertion, it’s done. 
•  Otherwise, reorganize the tree. 

•  Let k1 < … < k2d be the keys. 
•  Think of the node L as having 2d+1 empty subtrees, 

T0, …, T2d 
•  Generalize to a situation in which there is a node L 

with 2d keys and 2d+1 trees. 
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Solution 

•  Turn the first d-1 keys into a new leaf node A; and the 
last d keys into a new leaf node B; which leaves kd 

•  If L is the root, create a new root with r as a unique key 
and make A and B its subtrees. 

•  If L is not the root, replace the reference to L in the 
parent P of L: 
•  If L is the leftmost subtree of the parent, replace the 

reference with the reference to B and insert A and kd 
as yet smaller key and subtree 

•  Otherwise, replace the reference with the reference to 
A and insert B and kd as next larger key and subtree 
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Insertion Examples 
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Elimination 

•  First, if the key is not in a leaf node, exchange it with its 
immediate predecessor 

•  Let L be the node at which the key is located. 
•  Remove the key from L 
•  Next, remove the key 
•  Repeat an adjustment method until either 

•  the current node has at least d keys or 
•  the current node becomes the root 
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Adjustment Method 

•  The current node has d-1 keys (and thus d subtrees) and 
the current node is not the root. 

•  If either of the two immediate siblings has more than d 
keys, move the closest key to the parent and move the 
key immediately next to the one to the current node. Also 
move the reference immediately to the next to the key 
from the sibling. 

•  Otherwise, create a new node by merging the current 
node, an immediate sibling and the key in between at the 
parent 
•  Change the value of L to L’s parent 
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2-3-4 and B-Trees 

•  2-3 tree was the inspiration for the more general B-tree 
•  B-tree designed for building indexes to very large 

databases stored on a hard disk 
•  2-3-4 tree is a specialization of the B-tree because it is 

basically a B-tree with d equal to 2. 
•  A Red-Black tree can be considered a 2-3-4 tree in a 

binary-tree format 
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