
Sets and Maps

Chapter 7

Chapter 7: Sets and Maps 2

Chapter Objectives

•  To understand and learn the use of
•  The Java Map interface
•  The Java Set interfaces

•  To learn about hash coding and its use to facilitate
efficient search and retrieval

•  To study and implement two forms of hash table:
•  Open addressing
•  Chaining

•  To learn implementation of the Map interface

Chapter 7: Sets and Maps 3

Sets and the Set Interface

•  The set family belongs to the Collection hierarchy. They
consist of three interfaces, two abstract classes, and two
actual classes

interface
Collection

interface
Set

interface
SortedSet

abstract class
AbstractCollection

abstract class
AbstractSet

class
HashSet

class
TreeSet

Chapter 7: Sets and Maps 4

The Set Abstraction

•  A set is a collection of elements without duplication (one
with duplication is called a multiset).

•  Set operations include:
•  Operations with an element:

•  Testing for membership
•  Adding an element
•  Removing an element

•  Operations with a set:
•  Union
•  Intersection
•  Difference
•  Subset

Chapter 7: Sets and Maps 5

The Set Interface and Methods

•  The Set interface has methods required for:
•  Testing set membership
•  Testing for an empty set
•  Determining set size
•  Creating an iterator over the set

•  Two optional methods (defined to throw “Unsupported
Operation” exception unless overridden) for:
•  Adding an element and removing an element

•  Constructors enforce the no-duplicate-members criterion
•  Add method does not allow duplicate items to be

inserted

Some Methods in java.util.Set<E>

Chapter 7: Sets and Maps 6

Methods Action
boolean add(E obj) Adds obj to the set. Returns true if obj was not in the set and false

o.w.

boolean addAll(Collection<E>
coll)

Adds all the elements in coll. Returns true if the set is modified and
false o.w.

boolean contains(E obj) Returns true if the set contains obj and false o.w.

boolean containsAll(Collection<E>
coll)

Returns true if the set contains all the elements of coll and false o.w.

boolean isEmpty() Returns true is the set has no elements and false o.w.

Iterator<E> iterator() Returns an iterator over the set.

boolean remove(E obj) Attempts to remove obj. Returns true if obj was in the set and thus
was removed and false o.w.

boolean removeAll(Collection<E>
coll)

Attempts to remove all objects in coll. Returns true if the set is modified
and false o.w.

boolean retainAll(Collection<E>
coll)

Retain only the elements in coll. Returns true if the set is modified and
false o.w.

int size() Returns the number of elements in the set.

Chapter 7: Sets and Maps 7

Maps and the Map Interface

•  A map is a set of ordered pairs (key,value).
•  In a map, the keys are unique but values may not be

unique.

Chapter 7: Sets and Maps 8

Some of the java.util.Map<K,V> Methods

Methods Action
V get(Object key) Returns the value associated with key. Returns null if there is no pair

with key in the map.

boolean isEmpty() Returns true if the map has no pairs and false o.w.

V put(K key, V value) Assigns value to key in the map. If the key had a value associated with
it, returns the value; o.w., return null.

V remove(Object key) Removes the mapping of key in the map. If there was a value
associated with key returns the value, otherwise returns null.

int size() Returns the number of elements in the map.

Chapter 7: Sets and Maps 9

Hash Tables

•  The goal behind the hash table is to provide an instant
access to many elements through their keys, without
having to search for their keys in an array or in a tree.
•  With proper arrangement, constant-time access can

be provided to every element on average.
•  A hash table is implemented using an array, where an

element is assigned to a slot in an array by a map that
assigns an index value to each key.

Chapter 7: Sets and Maps 10

Hash Code Generation

•  In most applications, a key is a series of digits or a series
of characters.

•  The number of possible key values is much larger than
the table size, but the number of elements to be stored in
the table is expected to be significantly smaller than the
table size.

•  Generating good hash codes is somewhat of an
experimental process.

•  The code generation process must be relatively simple.

A Simplistic Hash Code

•  Treat each element of the series as a number (in the
case of a string), and sum the numbers.
•  Pro: easy to calculate
•  Con: order insensitive

•  “sing” and “sign” are mapped to the same value
•  The Java String.hashCode() returns the integer

calculated by the formula:
•  s0

 x 31(n-1) + s1
 x 31(n-2) + … + sn-1

 where si is the ith character of the string, and n is the
length of the string

•  “Cat” will have a hash code of: ‘C’ x 312 + ‘a’ x 31 + ‘t’
•  31 is a prime number that generates relatively few collisions

Chapter 7: Sets and Maps 11

Chapter 7: Sets and Maps 12

Open Addressing and Chaining

•  Consider two ways to organize hash tables when
collisions occur
•  Open addressing
•  Chaining

•  Linear probing can be used to access an item in a hash
table
•  If that element contains an item with a different key,

increment the index by one
•  Keep incrementing until the key is found or a null

entry is encounter

Chapter 7: Sets and Maps 13

Searching for an Item in Open Indexing

1.  Compute the index by taking the item’s hashCode() % table.length.
2.  if table[index] is null
3.  The item is not in the table.
4.  else if table[index] is equal to the item
5.  The item is in the table.
6.  else (A case of collision)
7.  Repeat the following:
8.  Update the index by adding one and then taking
9.  the modulo (i.e., %) by table.length
10.  Stop if either the item is found or a null is found.

Chapter 7: Sets and Maps 14

Avoid an Infinite Loop

•  If the item is not in the table and the table is full, possibly
enter an infinite loop.

•  Solve the problem by:
•  Stopping when the index becomes the start index
•  Ensuring that the table is never full by enlarging the

table whenever the occupancy rate exceeds a certain
value, for example 50%.

Chapter 7: Sets and Maps 15

Issues

•  No meaningful way to enumerate the elements in the
table.

•  When open indexing is used, can’t remove element
because the slot may need to be recognized as occupied
to find another element.
•  A dummy value must be stored instead and so

deleted items waste storage space and reduce search
efficiency

•  Recovery can be made when table size is changed.
•  Use a prime number for the size of the table so as to

reduce collisions
•  A fuller table will result in increased collisions

Chapter 7: Sets and Maps 16

Quadratic Probing

•  Linear probing tends to form clusters of keys in the table,
causing longer search chains. This is because
consecutive indices are examined for an open slot.

•  Quadratic probing can reduce the effect of clustering
•  Increments form a quadratic series. The i-th probing

examines the slot:
•  h(k,i) = (h0(k) + c0i + c1i2) % table_size

•  The next index calculation is time consuming as it
involves some additions and a modulo division

•  Not all table elements are examined when looking for
an insertion index

Chapter 7: Sets and Maps 17

Chaining

•  Chaining is an alternative to open addressing
•  Each table element references a linked list that contains

all of the items that hash to the same table index
•  The linked list is often called a bucket
•  The approach sometimes called bucket hashing

•  Only items that have the same value for their hash codes
will be examined when looking for an object

Chapter 7: Sets and Maps 18

Chaining (continued)

Slot 0

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Node

next
data="Tom"

Node

next
data="Greg"

Node

next
data="Carl"

Node

next
data="Anna"

Node

next
data="Tess"

Chapter 7: Sets and Maps 19

Performance of Hash Tables

•  Load factor is the number of filled cells divided by the
table size

•  Load factor has the greatest effect on hash table
performance

•  The lower the load factor, the better the performance as
there is a lesser chance of collision when a table is
sparsely populated

Chapter 7: Sets and Maps 20

Mini-Implementation of a Hash Table
KWHashMap<K,V>

Methods Action
V get(Object key) Returns the value associated with key. Returns null if there is no pair

associated with key in the map.

boolean isEmpty() Returns true is the map has no pairs and false o.w.

V put(K key, V value) Assigns value to key in the map. Returns the value the key had an
associated value and null o.w.

V remove(Object key) Removes the mapping of key in the map. If there was a value
associated with key returns the value, otherwise returns null.

int size() Returns the number of elements in the set.

Internal Class Entry<K, V>

Chapter 7: Sets and Maps 21

Data Field Attributes
private E key The key

private V value The value

Constructor Action
public Entry(E key, V Value) Construct an entry with the key and the value

Methods Action
public K getKey() Returns the key of the entry.

public V getValue() Returns the value of the entry.

public setValue(V val) Sets the value of the entry.

Implementation of Hash Tables
HashTableOpen

Chapter 7: Sets and Maps 22

Data Field Attributes
 private Entry<E,V>[] table The hash table realized as an array of Entry type objects

 private static final int START_CAPACITY The initial capacity (the initial table size)

 private double LOAD_THRESHOLD The maximum load capacity

 private int numKeys The number of keys currently stored in the table, excluding the
keys that were deleted

 private final Entry<E, V> DELETED An Entry type object used in place of a deleted entry.

Private Methods Action
 private int find(Object, key) Returns the index of the specified key if present in the table,

otherwise, returns the index of the first available slot.

 private void rehash() Doubles the capacity of the table and permanently removes
deleted items.

Implementation of Hash Tables
HashTableChain

Chapter 7: Sets and Maps 23

Data Field Attributes
 private LinkedList<Entry <E,V>>[] table The hash table realized as an array of LinkedList type

objects that link Entry type objects

 private static final int CAPACITY The initial capacity (the initial table size)

 private static final int LOAD_THRESHOLD The maximum load capacity

 private int numKeys The number of keys currently stored in the table,
excluding the keys that were deleted

Chapter 7: Sets and Maps 24

Implementation Considerations for Maps
and Sets

•  Class Object implements methods hashCode() and
equals(Object o), so every class can access these
methods unless it overrides them
•  Object.equals(Object o) compares this and o based

on their addresses, not their contents
•  Object.hashCode calculates the hash code of this

based on its address, not based on its contents
•  Java recommends that overriding of the equals method

should be accompanied with overriding of the hashCode
method

Implementing HashSetOpen

Chapter 7: Sets and Maps 25

Map Methods Set Methods
Object get(Object key) boolean contains(Object key)

Object put(Object key, Object value) boolean add(Object key)

Object remove(Object key) boolean remove(Object key)

Chapter 7: Sets and Maps 26

Implementing the Java Map and Set
Interfaces

•  The Java API uses a hash table to implement both the
Map and Set interfaces

•  The task of implementing the two interfaces is simplified
by the inclusion of abstract classes AbstractMap and
AbstractSet in the Collection hierarchy

Chapter 7: Sets and Maps 27

Nested Interface Map.Entry

•  One requirement on the key-value pairs for a Map object
is that they implement the interface Map.Entry<K, V>,
which is an inner interface of interface Map
•  An implementer of the Map interface must contain an

inner class that provides code for the methods in the
table below

Methods Action
public K getKey() Returns the key of the entry.

public V getValue() Returns the value of the entry.

public setValue(V val) Sets the value of the entry.

Chapter 7: Sets and Maps 28

Other Applications of Maps

•  Phone Directory can be viewed as a Map of a name to a
number

•  Huffman Coding Problem
•  Use a map for creating an array of elements and

replacing each input character by its bit string code in
the output file

•  Frequency table
•  The key will be the input character
•  The value is the character code string

Chapter 7: Sets and Maps 29

