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Chapter Objectives 

•  Use of trees to represent hierarchical organizations of 
information 

•  Use of recursion to process trees 
•  Tree traversals 

•  Binary tree types and there implementation 
•  Binary trees, binary search trees, heaps 

•  Use of binary search trees to store information 
•  Use of Huffman trees to encode characters efficiently 
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Tree Terminology 
•  A rooted tree consists of a collection of elements or 

nodes, with each node may be linked to its successors 
•  The node at the top of a tree is called its root 
•  The links from a node to its successors are called 

branches 
•  The node without successors are called leaves 

•  The successors of a node are called its children 
•  There is at most one predecessor of a node, and that 

predecessor is called its parent 
•  Nodes that have the same parent are siblings 
•  A generalization of the parent-child relationship is the 

ancestor-descendent relationship 



Tree Example 
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Example 1: Expression Tree 

•  Each node contains an operator or an operand 
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Example 2: Huffman Tree 
•  Represents Huffman codes for characters that might 

appear in a text file 
•  Uses different numbers of bits to encode letters 
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Binary Trees 

•  A binary tree is a tree such that each node has at most 
two subtrees 

•  The binary tree is recursively defined as follows: 
•  The empty tree is a binary tree. 
•  A tree T with subtrees TL and TR is a binary tree if 

both TL and TR are binary trees. 
•  Only trees satisfying constructed this manner are 

binary trees. 
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Fullness and Completeness 
•  Trees grow down from the top 

•  Each new value is inserted in a new leaf node 
•  A full binary tree is one in which every downward path 

from the root to a leaf has an identical length. 
•  A complete binary tree is one constructed by removing 

from a full binary tree a number of leaves from right. 
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General Trees 

•  Nodes of a general tree can have any number of 
subtrees 

•  A general tree can be represented using a binary tree 
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Binary Tree Traversals 

•  A traversal of a binary tree is a walk through the tree to 
identify all the nodes in it in a prescribed order 
•  Inorder 
•  Preorder 
•  Postorder 
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Binary Tree Traversals (continued) 

•  Preorder: Visit root node, traverse TL, traverse TR 
•  Inorder: Traverse TL, visit root node, traverse TR 
•  Postorder: Traverse TL, Traverse TR, visit root node 
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Visualizing Tree Traversals (continued) 
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Traversals of Expression Trees 

•  An inorder traversal of an expression tree inserts 
parenthesis where they belong (infix form) 

•  A postorder traversal of an expression tree results in 
postfix form 
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The Node<E> Class 
•  Just as for a linked list, a node consists of a data part 

and links to successor nodes 
•  The data part is a reference to type E 
•  A binary tree node must have links to both its left and 

right subtrees 
private class Node {!
    E data;!
    Node left;!
    Node right;!

    Node(E data) {!
        this.data = data;!
        left = null;!
        right = null;!
    }!
    …!
}!
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The BinaryTree<E> Class 
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A Binary Search Tree 

•  A binary search tree is a binary tree with the following 
property: 
•  Each data appearing in TL, if any, is smaller than the 

data in T. 
•  Each data appearing in TR, if any, is greater than the 

data in T. 
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A Binary Search Tree 



Searching for Data D in a Binary Search 
Tree T 

 if (T is null) return false; 
 else if (the data at T is equal to D) return true; 
 else if (the data at T is greater than D) 

return the result of the visit to TL; 
 else // the data at T is less than D 

 return the result of the visit to TR; 
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Searching a Binary Tree 



Insertion of a Data D into a Binary Search 
Tree T 

•  Execute the algorithm for binary search for D until the 
node to be visited next is null, replace that null with a 
node containing D as the data. 
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Insertion into a Binary Search Tree 



Deletion of D from a Binary Search Tree T 

if D is found at node X, restructure the subtree rooted at D without the node 
containing D as follows: 
if X has no children replace X with null 
else if X has only one child, promote the child to X’s position 
else if X’s left child has no right child, promote the left child to X’s position 
else 

promote the rightmost node Y in the left subtree to X’s position and 
promote the left child of Y to Y’s position    
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Example: Remove 10, 7, 5, Then 2 

Chapter 8: Trees 23 



Chapter 8: Trees 24 

Interface SearchTree 

Methods Action 
boolean add(E item) Adds _item_ to the tree in an appropriate location.  Returns 

whether successful. 

boolean contains(E item) Returns whether _item_ is in the tree. 

E find(E item) Returns a reference to _item_ if it is in the tree; otherwise, 
returns null. 

E delete(E item) Attempts to find and remove _item_.  If successful, returns a 
reference to the deleted _item_. Otherwise, returns null. 

boolean remove(E item) Attempts to find and remove _item_.  Returns whether the 
operation was successful. 



Heaps and Priority Queues 
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Heaps and Priority Queues 

•  Heap is a complete binary tree such that the value in 
each node is less than all values in its two subtrees 



Inserting an Item into a Heap 

•  Place the item at the next leaf position.  It is the left child 
of the leftmost leaf is the tree is full. 

•  Work from that node towards the root by swapping a 
node and its parent that are violating the heap property. 
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Example: Inserting 4 
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Removing an Item from a Heap 
•  Decrease the value of the item to a special value that is 

smaller than any other value appearing in the heap. 
•  Execute the resolution algorithm for insertion from that 

node. 
•  Promote the last leaf to the root. 
•  Starting from the root, recursive resolve violation as 

follows: 
•  If the current node and the children do not violate the 

property stop. 
•  Swap the current node with the child having the 

smaller value than the other sibling. 
•  Move to the node with which the swap took place. 
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Example: Removing 67 
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Implementing a Heap as an Array 
•  Because a heap is a complete binary tree, it can be 

implemented efficiently using an array instead of a linked 
data structure 

•  Storing goes in the increasing order of the distance from 
the root and from left to right. 



Relations Between Parent and Children 
•  If the parent has index P, then the left and right children 

have indices 2P+1 and 2P+2, respectively. 
•  If a child has index Q, then the parent has index (Q-1)/2, 

where / denotes the integer division. 
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Priority Queues 

•  A priority queue is a special kind of queue in which each 
object has an priority value 

•  The element with the smallest value is served the next 
and removed from the queue. 

•  The priority value of any node can be increased or 
decreased. 

•  This can be implemented using a heap. 
•  Removal, insertion, and value modification require O

(log2n) time 
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The PriorityQueue Class 
•  Java provides a PriorityQueue<E> class that implements 

the Queue<E> interface given in Chapter 6.  
•  Peek, poll, and remove methods return the smallest item 

in the queue rather than the oldest item in the queue. 

Methods Behavior 
E element() Returns the object at the top of the queue without removing it. . If the 

queue is empty, returns NoSuchElement exception. 

E peek() Returns the object at the top of the queue without removing it. .  If the 
queue is empty, returns null. 

E remove() Returns the object at the top of the queu and removes it.  If the queue is 
empty, returns NoSuchElement exception. 

E poll() Returns the object at the top of the queue and removes it.  If the queue 
is empty, returns null.  

boolean offer(E obj) Appends item obj at the end of queue.  Returns true if successful false 
otherwise. 



Interface Comparator<E> 

•  This interface requires only one method: 
•  int compare(E o1, E o2), which returns the result of 

comparison 
•  For a method that requires, a Comparator<E> object, 

you need to supply an object of class that implements 
Comparator<E> 
•  For example, a class MyC implements 

Comparator<E> (and thus has a method compare(E 
o1, E o2) that returns int), then 

•  You can supply: new MyC() 
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Design of a KWPriorityQueue Class 

Data Field Attribute 

ArrayList<E> theData Array list to hold the data 

Comparator<E> comparator An object that implements the Comparator<E> 
interface, may be null 

Method Action 

KWPriorityQueue () Constructor that provides an empty queue. 

KWPriorityQueue(int cap, Comparator<E> 
comp) 

Constructor that provides a queue with 
capacity cap and with comparator comp. 

private int compare(E left, E right) Returns -1 if left is smaller than right, 0 if they 
are equal, and 1 otherwise; if comparator is 
null, default to the compareTo method of E 

private void swap(int i, int j) Swaps object at index i and object at index j. 
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Huffman Trees 

•  A Huffman tree can be implemented using a binary tree 
and a PriorityQueue 

•  A straight binary encoding of an alphabet assigns a 
unique binary number to each symbol in the alphabet 
•  Unicode for example 

•  The message “go eagles” requires 144 bits in Unicode 
but only 38 using Huffman coding 
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Huffman Trees (continued) 



Construction of a Huffman Tree 

•  Input: characters c[0], …, c[m-1] and their frequency 
values v[0], …, v[m-1] 

•  Initialization: construct binary trees T[0], …, T[m-1], 
where each node T[i] has v[i] as the data 

•  Iteration: while there is more than one tree remaining do: 
•  Find two trees, T1 and T2, whose data values are the 

smallest of all remaining trees 
•  Construct a new tree T3, whose data value is the 

some of the data values of T1 and T2 and whose 
subtrees are T1 and T2. 

•  Remove T1 and T2 from the collection and add T3. 
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Huffman Trees (continued) 
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