
Trees

Chapter 6

Chapter 8: Trees 2

Chapter Objectives

•  Use of trees to represent hierarchical organizations of
information

•  Use of recursion to process trees
•  Tree traversals

•  Binary tree types and there implementation
•  Binary trees, binary search trees, heaps

•  Use of binary search trees to store information
•  Use of Huffman trees to encode characters efficiently

Chapter 8: Trees 3

Tree Terminology
•  A rooted tree consists of a collection of elements or

nodes, with each node may be linked to its successors
•  The node at the top of a tree is called its root
•  The links from a node to its successors are called

branches
•  The node without successors are called leaves

•  The successors of a node are called its children
•  There is at most one predecessor of a node, and that

predecessor is called its parent
•  Nodes that have the same parent are siblings
•  A generalization of the parent-child relationship is the

ancestor-descendent relationship

Tree Example

Chapter 8: Trees 4

Chapter 8: Trees 5

Example 1: Expression Tree

•  Each node contains an operator or an operand

Chapter 8: Trees 6

Example 2: Huffman Tree
•  Represents Huffman codes for characters that might

appear in a text file
•  Uses different numbers of bits to encode letters

Chapter 8: Trees 7

Binary Trees

•  A binary tree is a tree such that each node has at most
two subtrees

•  The binary tree is recursively defined as follows:
•  The empty tree is a binary tree.
•  A tree T with subtrees TL and TR is a binary tree if

both TL and TR are binary trees.
•  Only trees satisfying constructed this manner are

binary trees.

Chapter 8: Trees 8

Fullness and Completeness
•  Trees grow down from the top

•  Each new value is inserted in a new leaf node
•  A full binary tree is one in which every downward path

from the root to a leaf has an identical length.
•  A complete binary tree is one constructed by removing

from a full binary tree a number of leaves from right.

Chapter 8: Trees 9

General Trees

•  Nodes of a general tree can have any number of
subtrees

•  A general tree can be represented using a binary tree

Chapter 8: Trees 10

Binary Tree Traversals

•  A traversal of a binary tree is a walk through the tree to
identify all the nodes in it in a prescribed order
•  Inorder
•  Preorder
•  Postorder

Chapter 8: Trees 11

Binary Tree Traversals (continued)

•  Preorder: Visit root node, traverse TL, traverse TR
•  Inorder: Traverse TL, visit root node, traverse TR
•  Postorder: Traverse TL, Traverse TR, visit root node

Chapter 8: Trees 12

Visualizing Tree Traversals (continued)

Chapter 8: Trees 13

Traversals of Expression Trees

•  An inorder traversal of an expression tree inserts
parenthesis where they belong (infix form)

•  A postorder traversal of an expression tree results in
postfix form

Chapter 8: Trees 14

The Node<E> Class
•  Just as for a linked list, a node consists of a data part

and links to successor nodes
•  The data part is a reference to type E
•  A binary tree node must have links to both its left and

right subtrees
private class Node {!
 E data;!
 Node left;!
 Node right;!

 Node(E data) {!
 this.data = data;!
 left = null;!
 right = null;!
 }!
 …!
}!

Chapter 8: Trees 15

The BinaryTree<E> Class

Chapter 8: Trees 16

A Binary Search Tree

•  A binary search tree is a binary tree with the following
property:
•  Each data appearing in TL, if any, is smaller than the

data in T.
•  Each data appearing in TR, if any, is greater than the

data in T.

Chapter 8: Trees 17

A Binary Search Tree

Searching for Data D in a Binary Search
Tree T

 if (T is null) return false;
 else if (the data at T is equal to D) return true;
 else if (the data at T is greater than D)

return the result of the visit to TL;
 else // the data at T is less than D

 return the result of the visit to TR;

Chapter 8: Trees 18

Chapter 8: Trees 19

Searching a Binary Tree

Insertion of a Data D into a Binary Search
Tree T

•  Execute the algorithm for binary search for D until the
node to be visited next is null, replace that null with a
node containing D as the data.

Chapter 8: Trees 20

Chapter 8: Trees 21

Insertion into a Binary Search Tree

Deletion of D from a Binary Search Tree T

if D is found at node X, restructure the subtree rooted at D without the node
containing D as follows:
if X has no children replace X with null
else if X has only one child, promote the child to X’s position
else if X’s left child has no right child, promote the left child to X’s position
else

promote the rightmost node Y in the left subtree to X’s position and
promote the left child of Y to Y’s position

Chapter 8: Trees 22

Example: Remove 10, 7, 5, Then 2

Chapter 8: Trees 23

Chapter 8: Trees 24

Interface SearchTree

Methods Action
boolean add(E item) Adds _item_ to the tree in an appropriate location. Returns

whether successful.

boolean contains(E item) Returns whether _item_ is in the tree.

E find(E item) Returns a reference to _item_ if it is in the tree; otherwise,
returns null.

E delete(E item) Attempts to find and remove _item_. If successful, returns a
reference to the deleted _item_. Otherwise, returns null.

boolean remove(E item) Attempts to find and remove _item_. Returns whether the
operation was successful.

Heaps and Priority Queues

Chapter 8: Trees 25

Chapter 8: Trees 26

Heaps and Priority Queues

•  Heap is a complete binary tree such that the value in
each node is less than all values in its two subtrees

Inserting an Item into a Heap

•  Place the item at the next leaf position. It is the left child
of the leftmost leaf is the tree is full.

•  Work from that node towards the root by swapping a
node and its parent that are violating the heap property.

Chapter 8: Trees 27

Example: Inserting 4

Chapter 8: Trees 28

Removing an Item from a Heap
•  Decrease the value of the item to a special value that is

smaller than any other value appearing in the heap.
•  Execute the resolution algorithm for insertion from that

node.
•  Promote the last leaf to the root.
•  Starting from the root, recursive resolve violation as

follows:
•  If the current node and the children do not violate the

property stop.
•  Swap the current node with the child having the

smaller value than the other sibling.
•  Move to the node with which the swap took place.

Chapter 8: Trees 29

Example: Removing 67

Chapter 8: Trees 30

Chapter 8: Trees 31

Implementing a Heap as an Array
•  Because a heap is a complete binary tree, it can be

implemented efficiently using an array instead of a linked
data structure

•  Storing goes in the increasing order of the distance from
the root and from left to right.

Relations Between Parent and Children
•  If the parent has index P, then the left and right children

have indices 2P+1 and 2P+2, respectively.
•  If a child has index Q, then the parent has index (Q-1)/2,

where / denotes the integer division.

Chapter 8: Trees 32

Chapter 8: Trees 33

Priority Queues

•  A priority queue is a special kind of queue in which each
object has an priority value

•  The element with the smallest value is served the next
and removed from the queue.

•  The priority value of any node can be increased or
decreased.

•  This can be implemented using a heap.
•  Removal, insertion, and value modification require O

(log2n) time

Chapter 8: Trees 34

The PriorityQueue Class
•  Java provides a PriorityQueue<E> class that implements

the Queue<E> interface given in Chapter 6.
•  Peek, poll, and remove methods return the smallest item

in the queue rather than the oldest item in the queue.

Methods Behavior
E element() Returns the object at the top of the queue without removing it. . If the

queue is empty, returns NoSuchElement exception.

E peek() Returns the object at the top of the queue without removing it. . If the
queue is empty, returns null.

E remove() Returns the object at the top of the queu and removes it. If the queue is
empty, returns NoSuchElement exception.

E poll() Returns the object at the top of the queue and removes it. If the queue
is empty, returns null.

boolean offer(E obj) Appends item obj at the end of queue. Returns true if successful false
otherwise.

Interface Comparator<E>

•  This interface requires only one method:
•  int compare(E o1, E o2), which returns the result of

comparison
•  For a method that requires, a Comparator<E> object,

you need to supply an object of class that implements
Comparator<E>
•  For example, a class MyC implements

Comparator<E> (and thus has a method compare(E
o1, E o2) that returns int), then

•  You can supply: new MyC()

Chapter 8: Trees 35

Chapter 8: Trees 36

Design of a KWPriorityQueue Class

Data Field Attribute

ArrayList<E> theData Array list to hold the data

Comparator<E> comparator An object that implements the Comparator<E>
interface, may be null

Method Action

KWPriorityQueue () Constructor that provides an empty queue.

KWPriorityQueue(int cap, Comparator<E>
comp)

Constructor that provides a queue with
capacity cap and with comparator comp.

private int compare(E left, E right) Returns -1 if left is smaller than right, 0 if they
are equal, and 1 otherwise; if comparator is
null, default to the compareTo method of E

private void swap(int i, int j) Swaps object at index i and object at index j.

Chapter 8: Trees 37

Huffman Trees

•  A Huffman tree can be implemented using a binary tree
and a PriorityQueue

•  A straight binary encoding of an alphabet assigns a
unique binary number to each symbol in the alphabet
•  Unicode for example

•  The message “go eagles” requires 144 bits in Unicode
but only 38 using Huffman coding

Chapter 8: Trees 38

Huffman Trees (continued)

Construction of a Huffman Tree

•  Input: characters c[0], …, c[m-1] and their frequency
values v[0], …, v[m-1]

•  Initialization: construct binary trees T[0], …, T[m-1],
where each node T[i] has v[i] as the data

•  Iteration: while there is more than one tree remaining do:
•  Find two trees, T1 and T2, whose data values are the

smallest of all remaining trees
•  Construct a new tree T3, whose data value is the

some of the data values of T1 and T2 and whose
subtrees are T1 and T2.

•  Remove T1 and T2 from the collection and add T3.
Chapter 8: Trees 39

Chapter 8: Trees 40

Huffman Trees (continued)

Chapter 8: Trees 41

