## Trees

Chapter 6

# Chapter Objectives

- Use of trees to represent hierarchical organizations of information
- Use of recursion to process trees
  - Tree traversals
- Binary tree types and there implementation
  - Binary trees, binary search trees, heaps
- Use of binary search trees to store information
- Use of Huffman trees to encode characters efficiently

# Tree Terminology

- A *rooted tree* consists of a collection of elements or nodes, with each node may be linked to its successors
  - The node at the top of a tree is called its *root*
  - The links from a node to its successors are called branches
  - The node without successors are called *leaves*
- The successors of a node are called its *children*
- There is at most one predecessor of a node, and that predecessor is called its *parent*
- Nodes that have the same parent are *siblings*
- A generalization of the parent-child relationship is the ancestor-descendent relationship

## Tree Example



## Example 1: Expression Tree

• Each node contains an operator or an operand



# Example 2: Huffman Tree

- Represents Huffman codes for characters that might appear in a text file
- Uses different numbers of bits to encode letters



# Binary Trees

- A binary tree is a tree such that each node has at most two subtrees
- The binary tree is recursively defined as follows:
  - The empty tree is a binary tree.
  - A tree T with subtrees TL and TR is a binary tree if both TL and TR are binary trees.
  - Only trees satisfying constructed this manner are binary trees.

# **Fullness and Completeness**

- Trees grow down from the top
  - Each new value is inserted in a new leaf node
- A *full binary tree* is one in which every downward path from the root to a leaf has an identical length.
- A *complete binary tree* is one constructed by removing from a full binary tree a number of leaves from right.



### **General Trees**

- Nodes of a general tree can have any number of subtrees
- A general tree can be represented using a binary tree



## Binary Tree Traversals

- A traversal of a binary tree is a walk through the tree to identify all the nodes in it in a prescribed order
  - Inorder
  - Preorder
  - Postorder

## Binary Tree Traversals (continued)

- Preorder: Visit root node, traverse TL, traverse TR
- Inorder: Traverse TL, visit root node, traverse TR ۲
- Postorder: Traverse TL, Traverse TR, visit root node •

#### Algorithm for Preorder Traversal

| 1. | if the tree is empty  |
|----|-----------------------|
| 2. | Return.               |
|    | else                  |
| 3. | Visit the root.       |
| 4. | Preorder traverse the |
|    | left subtree.         |

5. Preorder traverse the 5. right subtree.

#### Algorithm for Inorder Traversal

- if the tree is empty 1. 2
  - Return.

#### el se

3.

4.

- Inorder traverse the left subtree. Visit the root.
  - Inorder traverse the right subtree.

#### Algorithm for Postorder Traversal

- if the tree is empty 1.
- 2. Return.

#### el se

3.

5.

- Postorder traverse the left subtree.
- 4. Postorder traverse the right subtree.
  - Visit the root.

## Visualizing Tree Traversals (continued)



Preorder: 10, 5, 2, 7, 15, 11, 20 Inorder: 2, 5, 7, 10, 11, 15, 20 Postorder: 2, 7, 5, 11, 20, 15, 10

## Traversals of Expression Trees

- An inorder traversal of an expression tree inserts parenthesis where they belong (infix form)
- A postorder traversal of an expression tree results in postfix form



# The Node<E> Class

- Just as for a linked list, a node consists of a data part and links to successor nodes
- The data part is a reference to type E
- A binary tree node must have links to both its left and right subtrees

```
private class Node {
    E data;
    Node left;
    Node right;
    Node(E data) {
        this.data = data;
        left = null;
        right = null;
    }
    ...
}
```

### The BinaryTree<E> Class



# A Binary Search Tree

- A binary search tree is a binary tree with the following property:
  - Each data appearing in TL, if any, is smaller than the data in T.
  - Each data appearing in TR, if any, is greater than the data in T.

### A Binary Search Tree



# Searching for Data D in a Binary Search Tree T

if (T is null) return false;
else if (the data at T is equal to D) return true;
else if (the data at T is greater than D)

return the result of the visit to TL;

else // the data at T is less than D

return the result of the visit to TR;

### Searching a Binary Tree



# Insertion of a Data D into a Binary Search Tree T

• Execute the algorithm for binary search for D until the node to be visited next is null, replace that null with a node containing D as the data.

### Insertion into a Binary Search Tree



# Deletion of D from a Binary Search Tree T

- **if** D is found at node X, restructure the subtree rooted at D without the node containing D as follows:
  - if X has no children replace X with null
  - else if X has only one child, promote the child to X's position
  - else if X's left child has no right child, promote the left child to X's position
  - else
    - promote the rightmost node Y in the left subtree to X's position and promote the left child of Y to Y's position

## Example: Remove 10, 7, 5, Then 2



## Interface SearchTree

| Methods                  | Action                                                                                                             |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| boolean add(E item)      | Adds _item_ to the tree in an appropriate location. Returns whether successful.                                    |  |  |
| boolean contains(E item) | Returns whether _item_ is in the tree.                                                                             |  |  |
| E find(E item)           | Returns a reference to _item_ if it is in the tree; otherwise, returns null.                                       |  |  |
| E delete(E item)         | Attempts to find and remove _item If successful, returns a reference to the deleted _item Otherwise, returns null. |  |  |
| boolean remove(E item)   | Attempts to find and remove _item Returns whether the operation was successful.                                    |  |  |

# Heaps and Priority Queues

## Heaps and Priority Queues

• Heap is a complete binary tree such that the value in each node is less than all values in its two subtrees



## Inserting an Item into a Heap

- Place the item at the next leaf position. It is the left child of the leftmost leaf is the tree is full.
- Work from that node towards the root by swapping a node and its parent that are violating the heap property.

## Example: Inserting 4



# Removing an Item from a Heap

- Decrease the value of the item to a special value that is smaller than any other value appearing in the heap.
- Execute the resolution algorithm for insertion from that node.
- Promote the last leaf to the root.
- Starting from the root, recursive resolve violation as follows:
  - If the current node and the children do not violate the property stop.
  - Swap the current node with the child having the smaller value than the other sibling.
  - Move to the node with which the swap took place.

### Example: Removing 67



# Implementing a Heap as an Array

- Because a heap is a complete binary tree, it can be implemented efficiently using an array instead of a linked data structure
- Storing goes in the increasing order of the distance from the root and from left to right.



# **Relations Between Parent and Children**

- If the parent has index P, then the left and right children have indices 2P+1 and 2P+2, respectively.
- If a child has index Q, then the parent has index (Q-1)/2, where / denotes the integer division.



# Priority Queues

- A priority queue is a special kind of queue in which each object has an priority value
- The element with the smallest value is served the next and removed from the queue.
- The priority value of any node can be increased or decreased.
- This can be implemented using a heap.
  - Removal, insertion, and value modification require O (log<sub>2</sub>n) time

# The PriorityQueue Class

- Java provides a PriorityQueue<E> class that implements the Queue<E> interface given in Chapter 6.
- Peek, poll, and remove methods return the smallest item in the queue rather than the oldest item in the queue.

| Methods              | Behavior                                                                                                               |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| E element()          | Returns the object at the top of the queue without removing it If the queue is empty, returns NoSuchElement exception. |  |  |  |
| E peek()             | Returns the object at the top of the queue without removing it If the queue is empty, returns null.                    |  |  |  |
| E remove()           | Returns the object at the top of the queu and removes it. If the queue is empty, returns NoSuchElement exception.      |  |  |  |
| E poll()             | Returns the object at the top of the queue and removes it. If the queue is empty, returns null.                        |  |  |  |
| boolean offer(E obj) | Appends item obj at the end of queue. Returns <b>true</b> if successful false otherwise.                               |  |  |  |

# Interface Comparator<E>

- This interface requires only one method:
  - int compare(E o1, E o2), which returns the result of comparison
- For a method that requires, a Comparator<E> object, you need to supply an object of class that implements Comparator<E>
  - For example, a class MyC implements Comparator<E> (and thus has a method compare(E o1, E o2) that returns int), then
    - You can supply: new MyC()

# Design of a KWPriorityQueue Class

| Data Field                                        | Attribute                                                                                                                                   |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ArrayList <e> theData</e>                         | Array list to hold the data                                                                                                                 |  |  |
| Comparator <e> comparator</e>                     | An object that implements the Comparator <e> interface, may be null</e>                                                                     |  |  |
| Method                                            | Action                                                                                                                                      |  |  |
| KWPriorityQueue ()                                | Constructor that provides an empty queue.                                                                                                   |  |  |
| KWPriorityQueue(int cap, Comparator <e> comp)</e> | Constructor that provides a queue with capacity cap and with comparator comp.                                                               |  |  |
| private int compare(E left, E right)              | Returns -1 if left is smaller than right, 0 if they are equal, and 1 otherwise; if comparator is null, default to the compareTo method of E |  |  |
| private void swap(int i, int j)                   | Swaps object at index i and object at index j.                                                                                              |  |  |

# Huffman Trees

- A Huffman tree can be implemented using a binary tree and a PriorityQueue
- A straight binary encoding of an alphabet assigns a unique binary number to each symbol in the alphabet
  - Unicode for example
- The message "go eagles" requires 144 bits in Unicode but only 38 using Huffman coding

## Huffman Trees (continued)

#### TABLE 8.8

Frequency of Letters in English Text

| Symbol   | Frequency | Symbol | Frequency | Symbol | Frequency |
|----------|-----------|--------|-----------|--------|-----------|
| <u> </u> | 186       | h      | 47        | g      | 15        |
| c        | 103       | d      | 32        | р      | 15        |
| t        | 80        | 1      | 32        | ь      | 13        |
| а        | 64        | u      | 23        | v      | 8         |
| o        | 63        | с      | 22        | k      | 5         |
| i        | 57        | f      | 21        | j      | 1         |
| n        | 57        | m      | 20        | q      | 1         |
| s        | 51        | w      | 18        | x      | 1         |
| r        | 48        | у      | 16        | z      | 1         |

# Construction of a Huffman Tree

- Input: characters c[0], ..., c[m-1] and their frequency values v[0], ..., v[m-1]
- Initialization: construct binary trees T[0], ..., T[m-1], where each node T[i] has v[i] as the data
- Iteration: while there is more than one tree remaining do:
  - Find two trees, T1 and T2, whose data values are the smallest of all remaining trees
  - Construct a new tree T3, whose data value is the some of the data values of T1 and T2 and whose subtrees are T1 and T2.
  - Remove T1 and T2 from the collection and add T3.

### Huffman Trees (continued)

#### FIGURE 8.35

Huffman Tree Based on Frequency of Letters in English Text

