
Recursion

Chapter 5

Chapter 7: Recursion 2

Chapter Objectives

•  To understand how to think recursively
•  To learn how to trace a recursive method
•  To learn how to write recursive algorithms and methods

for searching arrays
•  To learn about recursive data structures and recursive

methods for a LinkedList class
•  To understand how to use recursion to solve the Towers

of Hanoi problem

Chapter 7: Recursion 3

Chapter Objectives (continued)

•  To understand how to use recursion to process two-
dimensional images

•  To learn how to apply backtracking to solve search
problems such as finding a path through a maze

Chapter 7: Recursion 4

Recursion

•  Recursion is a problem-solving approach in which a
problem is solved using repeatedly applying the same
solution to smaller instances.
•  Each instance to the problem has size.
•  An instance of size n can be solved by putting

together solutions of instances of size at most n-1.
•  An instance of size 1 or 0 can be solved very easily.

Chapter 7: Recursion 5

An Example: Computing the Length of a List
Object

•  Two data fields: data and next.
•  If the element is null, return 0.
•  If the element is not null, but the next is null, return 1.
•  Otherwise, return 1 + the length of the list starting with

the next.

 public int count() {
 if (this == null) return 0; // Base case 0
 else if (next == null) return 1; // Base case 1
 else return 1 + next.count(); // Recursive call
 }

Chapter 7: Recursion 6

Proof of Correctness is Similar to Proof-By-
Induction

•  Proof by induction
•  Prove the statement is true for the base case (size

0,1, or whatever).
•  Show that if the statement is assumed true for n, then

it must be true for n+1.

Chapter 7: Recursion 7

Proof of Correctness

•  Recursive proof is similar to induction. Verify that:
•  The base case is recognized and solved correctly
•  Each recursive case makes progress towards the

base case
•  If all smaller problems are solved correctly, then the

original problem is also solved correctly

System Processing of a Recursive Call

•  Push onto a stack the information of the current
execution.

•  Execute the recursive call.
•  Retrieve the information from the stack by pop.
•  Too many recursive calls without pop will result in stack

overflow.

Chapter 7: Recursion 8

Recursively Defined Mathematical
Functions

Chapter 7: Recursion 9

Recursive Definitions of Mathematical
Formulas

•  Factorial: n! where n >= 0.
•  0! = 1.
•  If n > 0, n! = n × (n-1)! .

•  Powers: xn, x to the power of n, where x > 0, n >= 0.
•  If n=0, xn = 1.
•  If n>0, xn = x × xn-1.

•  Greatest Common Divisor: gcd(a,b), a, b >= 0
•  gcd(a,b) = gcd(b,a).
•  If b=0, gcd(a,b) = a.
•  If a >= b, gcd(a,b) = gcd(a-b,b).

Chapter 7: Recursion 10

Factorial, Powers, and gcd

Chapter 7: Recursion 11

 public static int factorial(int n) {
 if (n<0) return 0;
 else if (n=0) return 1;
 else return n * factorial(n-1);
 }

 public static int powers(int x, int n) {
 if ((x <= 0) || (n < 0)) return 0;
 else if (n == 0) return 1;
 else return n * powers(x, n-1);
 }

 public static int gcd(int a, int b) {
 if ((a<0) || (b<0)) return 0;

 else if (a == 0) return b;
 else if (b == 0) return a;
 else if (a < b) return gcd(b,a);
 else return gcd(b, a % b);
 }

Chapter 7: Recursion 12

Recursion Versus Iteration

•  There are similarities between recursion and iteration
•  In iteration, a loop repetition condition determines

whether to repeat the loop body or exit from the loop
•  In recursion, the condition usually tests for a base case
•  An iterative solution exists to a problem that is solvable

by recursion
•  Recursive code may be simpler than an iterative

algorithm and thus easier to write, read, and debug

Iterative Solutions

Chapter 7: Recursion 13

 public static int factorial(int n) {
 if (n<0) return 0;
 fac = 1;
 for (int i=0; i<n; i++) { fac *= i; }

 return fac;
 }
 public static int powers(int x, int n) {
 if ((x <= 0) || (n < 0)) return 0;
 else if (n == 0) return 1;
 pow = 1;
 for (int i=0; i<n; i++) { pow *= x; }
 return pow;
 }
 public static int gcd(int a, int b) {

 if ((a<0) || (b<0)) return 0;
 if (a < b) { c = a; a = b; b = c; // swap a and b.
 while (b>0) {
 r = a % b; a = b; b = r; // Reduce a&b to b&(a mod b).
 }
 return a;
}

Chapter 7: Recursion 14

Efficiency of Recursion

•  Recursive methods are often than iterative methods
because the stack overhead is larger than the loop
overhead.

•  Recursive methods are easier to write and
conceptualize.

Fibonacci Number

•  F(1) = 1.
•  F(2) = 1.
•  For n>=3, F(n) = F(n-1) + F(n-2)

Chapter 7: Recursion 15

An O(2n) Recursive Method

Chapter 7: Recursion 16

 public static int fibonacci(int n) {
 if (n <= 2) return 1;
 else return fibonacci(n-1) + fibonacci(n – 2);
 }

An O(n) Recursive Method

•  fibo(a,b,c) is invoked to compute F(c+m) when F(m+1)
=a and F(m)=b

Chapter 7: Recursion 17

 public static int fibo(int fiboCurrent, int fiboPrevious, int c) {
 if (c == 1) return fiboCurrent;

 else return fibo(fiboPrevious+fiboCurrent, fiboCurrent, c-1);
 }

 Invoke fibo(1,0,n)

Efficiency of Recursion: Exponential
Fibonacci

Chapter 7: Recursion 18

Inefficient

Efficiency of Recursion: O(n) Fibonacci

Chapter 7: Recursion 19

Recursive Array Search

Linear Search
Versus

Binary Search

Chapter 7: Recursion 20

Chapter 7: Recursion 21

Linear Search in an Array A of size S

•  To search A for an element E, invoke the search in the
range [0, S-1].
•  To search in the range [I, S-1]

•  If I == S, then stop – the element is not in the array.
•  If the I-th element in the array is the one, stop there.
•  Otherwise, recursively search in the range[I+1,S-1].

•  Search requires O(S) time.

Chapter 7: Recursion 22

Binary Search in a Sorted Array
•  The sorted elements in an array A. The first element is

the smallest and the last element is the largest.
•  Maintain the range of indices [I,J] for search.
•  Loop:

•  Indicate “Not found” if I>J.
•  Let K be the middle index; the integer part of (I+J)/2.
•  If (A[K] == target), indicate “Found”.
•  Else if (A[K] > target), set J to K-1.
•  Else set I to K+1.

•  At each iteration, the size of range becomes at most a
half, so the running time is O(log2n).

Chapter 7: Recursion 23

Design of a Binary Search Algorithm
(continued)

Algorithm for Binary Search

•  The target has to be of a data type that implements compareTo:
•  CompareTo is a method that gives as an integer the ordering between

two elements (usually -1, 0, 1).
Chapter 7: Recursion 24

 /** search items for target in the range [first, last]
 * returns the index of the target if found; -1 o.w.
 */
 public int binarySearch(Object[] items, Comparable target, int first, int last) {
 if (first>last) return -1;
 int mid = (first + last)/2;
 if (target.compareTo(items[mid])==0) {
 return mid;
 }
 else if (target.compareTo(items[mid]) < 0) { }
 return binarySearch(items, target, first, mid-1);
 }
 else {

 return binarySearch(items, target, mid+1, last);
 }
 }

Chapter 7: Recursion 25

Method Arrays.binarySearch

•  Java API class Arrays contains a binarySearch method
•  Can be called with sorted arrays of primitive types or

with sorted arrays of objects
•  If the objects in the array are not mutually comparable

or if the array is not sorted, the results are undefined
•  If there are multiple copies of the target value in the

array, there is no guarantee which one will be found
•  Throws ClassCastException if the target is not

comparable to the array elements

The Tower Of Hanoi

Chapter 7: Recursion 26

Towers of Hanoi

•  There are 64 discs of all distinct diameters slid onto a
peg in the increasing order of diameters with the smallest
one on the very top. There are two other pegs

•  Move all the discs to one of the two other pegs with the
following rules:
•  A disc can be moved only one at a time.
•  A larger disc must not be placed on a smaller disc.

•  Goal: Compute the shortest moves to accomplish this
talk.

Chapter 7: Recursion 27

Chapter 7: Recursion 28

Formulation of the Towers-of-Hanoi Problem

•  Consider the sub-problem of moving the top N discs from
peg X to peg Y, where 1 <= N <= 64, X ≠ Y, and X and Y
are members of { L, M, R }.

•  The initial invocation: N = 64, X=L, Y=R/M.

Algorithm for Towers of Hanoi: N=4

Chapter 7: Recursion 29

Chapter 7: Recursion 30

Recursive Algorithm for Towers of Hanoi

•  Input N, X, Y
•  N=1:

•  Move the top disc of peg X to peg Y.
•  N>1:

•  Let Z be the peg other than X or Y.
•  Move the top N-1 discs from X to Z.
•  Move the top 1 disc from X to Y.
•  Move the top N-1 discs from Z to Y.

Towers of Hanoi Class

Chapter 7: Recursion 31

 public class TowersOfHanoi {
 /** Recursive method for Towers of Hanoi
 pre: the three chars are all distinct
 @param n is the number of disks
 @param startPeg is the peg where the disks currently are
 @param destPeg is the peg which the disks should move to
 @param tempPeg is the remaining peg

 public static String showMoves(int n, char startPeg, char destPeg,
 char tempPeg) {

 if (n==1) {
 return
 “Move disc 1 from ” + startPeg + “ to ” + destPeg + “\n”;
 } else {
 return
 TowersOfHanoi(n-1, startPeg, tempPeg, destPeg) +
 “Move disc ” + n + “ from ” + startPeg + “ to ” + destPeg + “\n”;
 TowersOfHanoi(n-1, tempPeg, destPeg, startPeg);

 }
 }
 }

Backtracking

Chapter 7: Recursion 32

Chapter 7: Recursion 33

Backtracking

•  Backtracking is an approach to implementing systematic
trial and error in a search for a solution.
•  It explores alternative search paths and eliminates

them if they don’t work.
•  It remembers the search history to avoid trying the

same path again.
•  Recursion is a natural way to implement backtracking

•  The trace of successive recursive calls represents the
search history with an instrumentation of exhaustive
search at each level.

Maze Threading

•  Input: a two-dimensional of cells, M by N
•  BACKGROUND … a cell can be walked in
•  BLOCKED … a cell that can never be walked in

•  Output:
•  A path from (0,0) to (M-1, N-1) that visits only

BACKGROUND cells, if one exists
•  Additional Types:

•  PATH … a cell that is determined to be on the path to
be built

•  TEMPORARY … a non-blocked cell that is found not
be on any path to the goal

Chapter 7: Recursion 34

Algorithm for Maze Threading

•  Use recursive search from cell (I,J)
if (I<0 || J<0 || I>=M || J>=N) { return false; }
else if (type of cell (I,J) != BACKGROUND) { return false; }
else {

set type of cell (I,J) to PATH;
if (I,J) is goal { return true; }
else if Search from (I-1,J) returns true { return true; }
else if Search from (I+1,J) returns true { return true; }
else if Search from (I,J-1) returns true { return true; }
else if Search from (I,J+1) returns true { return true; }
else { set type of cell (I,J) to TEMPORARY; return false; } }

Chapter 7: Recursion 35

Chapter 7: Recursion 36

