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Chapter Objectives 

•  To understand how to think recursively 
•  To learn how to trace a recursive method 
•  To learn how to write recursive algorithms and methods 

for searching arrays 
•  To learn about recursive data structures and recursive 

methods for a LinkedList class 
•  To understand how to use recursion to solve the Towers 

of Hanoi problem 
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Chapter Objectives (continued) 

•  To understand how to use recursion to process two-
dimensional images 

•  To learn how to apply backtracking to solve search 
problems such as finding a path through a maze 
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Recursion 

•  Recursion is a problem-solving approach in which a 
problem is solved using repeatedly applying the same 
solution to smaller instances. 
•  Each instance to the problem has size. 
•  An instance of size n can be solved by putting 

together solutions of instances of size at most n-1. 
•  An instance of size 1 or 0 can be solved very easily. 
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An Example: Computing the Length of a List 
Object 

•  Two data fields: data and next. 
•  If the element is null, return 0. 
•  If the element is not null, but the next is null, return 1. 
•  Otherwise, return 1 + the length of the list starting with 

the next. 

 public int count() { 
  if (this == null) return 0;   // Base case 0 
  else if (next == null) return 1;  // Base case 1 
  else return 1 + next.count();  // Recursive call 
 } 
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Proof of Correctness is Similar to Proof-By-
Induction 

•  Proof by induction 
•  Prove the statement is true for the base case (size 

0,1, or whatever). 
•  Show that if the statement is assumed true for n, then 

it must be true for n+1. 
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Proof of Correctness 

•  Recursive proof is similar to induction. Verify that: 
•  The base case is recognized and solved correctly 
•  Each recursive case makes progress towards the 

base case 
•  If all smaller problems are solved correctly, then the 

original problem is also solved correctly 



System Processing of a Recursive Call 

•  Push onto a stack the information of the current 
execution. 

•  Execute the recursive call. 
•  Retrieve the information from the stack by pop. 
•  Too many recursive calls without pop will result in stack 

overflow. 
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Recursively Defined Mathematical 
Functions 
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Recursive Definitions of Mathematical 
Formulas 

•  Factorial: n! where n >= 0. 
•  0! = 1. 
•  If n > 0, n!  = n × (n-1)! . 

•  Powers: xn, x to the power of n, where x > 0, n >= 0. 
•  If n=0, xn = 1. 
•  If n>0, xn = x × xn-1. 

•  Greatest Common Divisor: gcd(a,b), a, b >= 0 
•  gcd(a,b) = gcd(b,a). 
•  If b=0, gcd(a,b) = a. 
•  If a >= b, gcd(a,b) = gcd(a-b,b). 
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Factorial, Powers, and gcd 
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 public static int factorial(int n) { 
  if (n<0) return 0; 
  else if (n=0) return 1; 
  else return n * factorial(n-1); 
 } 

 public static int powers(int x, int n) { 
  if ((x <= 0) || (n < 0)) return 0; 
  else if (n == 0) return 1; 
  else return n * powers(x, n-1); 
 } 

 public static int gcd(int a, int b) { 
 if ((a<0) || (b<0)) return 0; 

  else if (a == 0) return b; 
  else if (b == 0) return a; 
  else if (a < b) return gcd(b,a); 
  else return gcd(b, a % b); 
 } 
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Recursion Versus Iteration 

•  There are similarities between recursion and iteration 
•  In iteration, a loop repetition condition determines 

whether to repeat the loop body or exit from the loop 
•  In recursion, the condition usually tests for a base case  
•  An iterative solution exists to a problem that is solvable 

by recursion 
•  Recursive code may be simpler than an iterative 

algorithm and thus easier to write, read, and debug 



Iterative Solutions 
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 public static int factorial(int n) { 
  if (n<0) return 0; 
  fac = 1; 
  for (int i=0; i<n; i++) { fac *= i; } 

 return fac; 
 } 
 public static int powers(int x, int n) { 
  if ((x <= 0) || (n < 0)) return 0; 
  else if (n == 0) return 1; 
  pow = 1; 
  for (int i=0; i<n; i++) { pow *= x; } 
  return pow; 
 } 
 public static int gcd(int a, int b) { 

 if ((a<0) || (b<0)) return 0; 
  if (a < b) { c = a; a = b; b = c;   // swap a and b. 
  while (b>0) { 
   r = a % b; a = b; b = r;  // Reduce a&b to b&(a mod b). 
  } 
  return a;   
} 



Chapter 7: Recursion 14 

Efficiency of Recursion 

•  Recursive methods are often than iterative methods 
because the stack overhead is larger than the loop 
overhead. 

•  Recursive methods are easier to write and 
conceptualize. 



Fibonacci Number 

•  F(1) = 1. 
•  F(2) = 1. 
•  For n>=3, F(n) = F(n-1) + F(n-2) 
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An O(2n) Recursive Method 

Chapter 7: Recursion 16 

 public static int fibonacci(int n) { 
  if (n <= 2) return 1; 
  else return fibonacci(n-1) + fibonacci(n – 2); 
 } 



An O(n) Recursive Method 

•   fibo(a,b,c) is invoked to compute F(c+m) when F(m+1)
=a and F(m)=b  
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 public static int fibo(int fiboCurrent, int fiboPrevious, int c) { 
 if (c == 1) return fiboCurrent; 

  else return fibo(fiboPrevious+fiboCurrent, fiboCurrent, c-1); 
 } 

 Invoke fibo(1,0,n) 



Efficiency of Recursion: Exponential 
Fibonacci 

Chapter 7: Recursion 18 

Inefficient 



Efficiency of Recursion: O(n) Fibonacci 
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Recursive Array Search 

Linear Search 
Versus 

Binary Search 
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Linear Search in an Array A of size S 

•  To search A for an element E, invoke the search in the 
range [0, S-1]. 
•  To search in the range [I, S-1] 

•  If I == S, then stop – the element is not in the array. 
•  If the I-th element in the array is the one, stop there. 
•  Otherwise, recursively search in the range[I+1,S-1]. 

•  Search requires O(S) time. 
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Binary Search in a Sorted Array 
•  The sorted elements in an array A.  The first element is 

the smallest and the last element is the largest. 
•  Maintain the range of indices [I,J] for search. 
•  Loop: 

•  Indicate “Not found” if I>J. 
•  Let K be the middle index; the integer part of (I+J)/2. 
•  If (A[K] == target), indicate “Found”. 
•  Else if (A[K] > target), set J to K-1. 
•  Else set I to K+1. 

•  At each iteration, the size of range becomes at most a 
half, so the running time is O(log2n). 
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Design of a Binary Search Algorithm 
(continued) 



Algorithm for Binary Search 

•  The target has to be of a data type that implements compareTo: 
•  CompareTo is a method that gives as an integer the ordering between 

two elements (usually -1, 0, 1). 
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 /** search items for target in the range [first, last] 
  * returns the index of the target if found; -1 o.w. 
  */ 
 public int binarySearch(Object[] items, Comparable target, int first, int last) { 
  if (first>last) return -1; 
  int mid = (first + last)/2; 
  if (target.compareTo(items[mid])==0) { 
                             return mid; 
              } 
  else if (target.compareTo(items[mid]) < 0) { } 
   return binarySearch(items, target, first, mid-1); 
  } 
  else { 

   return binarySearch(items, target, mid+1, last); 
  } 
 } 
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Method Arrays.binarySearch 

•  Java API class Arrays contains a binarySearch method 
•  Can be called with sorted arrays of primitive types or 

with sorted arrays of objects 
•  If the objects in the array are not mutually comparable 

or if the array is not sorted, the results are undefined 
•  If there are multiple copies of the target value in the 

array, there is no guarantee which one will be found 
•  Throws ClassCastException if the target is not 

comparable to the array elements 



The Tower Of Hanoi 
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Towers of Hanoi 

•  There are 64 discs of all distinct diameters slid onto a 
peg in the increasing order of diameters with the smallest 
one on the very top.  There are two other pegs 

•  Move all the discs to one of the two other pegs with the 
following rules: 
•  A disc can be moved only one at a time. 
•  A larger disc must not be placed on a smaller disc. 

•  Goal: Compute the shortest moves to accomplish this 
talk. 
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Formulation of the Towers-of-Hanoi Problem 

•  Consider the sub-problem of moving the top N discs from 
peg X to peg Y, where 1 <= N <= 64, X ≠ Y, and X and Y 
are members of { L, M, R }. 

•  The initial invocation: N = 64, X=L, Y=R/M. 



Algorithm for Towers of Hanoi: N=4 
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Recursive Algorithm for Towers of Hanoi 

•  Input N, X, Y 
•  N=1: 

•  Move the top disc of peg X to peg Y. 
•  N>1: 

•  Let Z be the peg other than X or Y. 
•  Move the top N-1 discs from X to Z. 
•  Move the top 1 disc from X to Y. 
•  Move the top N-1 discs from Z to Y. 



Towers of Hanoi Class 
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 public class TowersOfHanoi { 
 /** Recursive method for Towers of Hanoi 
       pre: the three chars are all distinct 
  @param n is the number of disks 
  @param startPeg is the peg where the disks currently are 
  @param destPeg is the peg which the disks should move to 
  @param tempPeg is the remaining peg 

  public static String showMoves(int n, char startPeg, char destPeg,    
    char tempPeg) { 

   if (n==1) {  
   return 
   “Move disc 1 from ” + startPeg + “ to ” + destPeg + “\n”; 
   } else { 
   return 
   TowersOfHanoi(n-1, startPeg, tempPeg, destPeg) + 
   “Move disc ” + n + “ from ” + startPeg + “ to ” + destPeg + “\n”; 
   TowersOfHanoi(n-1, tempPeg, destPeg, startPeg); 

   } 
  } 
 } 



Backtracking 
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Backtracking 

•  Backtracking is an approach to implementing systematic 
trial and error in a search for a solution. 
•  It explores alternative search paths and eliminates 

them if they don’t work. 
•  It remembers the search history to avoid trying the 

same path again. 
•  Recursion is a natural way to implement backtracking 

•  The trace of successive recursive calls represents the 
search history with an instrumentation of exhaustive 
search at each level. 



Maze Threading 

•  Input: a two-dimensional of cells, M by N 
•  BACKGROUND … a cell can be walked in 
•  BLOCKED  … a cell that can never be walked in 

•  Output: 
•  A path from (0,0) to (M-1, N-1) that visits only 

BACKGROUND cells, if one exists 
•  Additional Types: 

•  PATH … a cell that is determined to be on the path to 
be built 

•  TEMPORARY … a non-blocked cell that is found not 
be on any path to the goal 
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Algorithm for Maze Threading 

•  Use recursive search from cell (I,J) 
if (I<0 || J<0 || I>=M || J>=N) { return false; } 
else if (type of cell (I,J) != BACKGROUND) { return false; } 
else { 

set type of cell (I,J) to PATH; 
if (I,J) is goal { return true; } 
else if Search from (I-1,J) returns true { return true; } 
else if Search from (I+1,J) returns true { return true; } 
else if Search from (I,J-1) returns true { return true; } 
else if Search from (I,J+1) returns true { return true; } 
else { set type of cell (I,J) to TEMPORARY; return false; } } 
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