Recursion

Chapter 5

Chapter Objectives

To understand how to think recursively
To learn how to trace a recursive method

To learn how to write recursive algorithms and methods
for searching arrays

To learn about recursive data structures and recursive
methods for a LinkedList class

To understand how to use recursion to solve the Towers
of Hanoi problem

Chapter 7: Recursion 2

Chapter Objectives (continued)

 To understand how to use recursion to process two-
dimensional images

« To learn how to apply backtracking to solve search
problems such as finding a path through a maze

Chapter 7: Recursion 3

Recursion

* Recursion is a problem-solving approach in which a
problem is solved using repeatedly applying the same
solution to smaller instances.

« Each instance to the problem has size.

« An instance of size n can be solved by putting
together solutions of instances of size at most n-1.

« An instance of size 1 or O can be solved very easily.

Chapter 7: Recursion

An Example: Computing the Length of a List
Object

« Two data fields: data and next.
* If the element is null, return O.
e |f the element is not null, but the next is null, return 1.

* Otherwise, return 1 + the length of the list starting with
the next.

public int count() {

if (this == null) return 0; // Base case 0
else if (next == null) return 1; // Base case 1
else return 1 + next.count(); I/l Recursive call

Chapter 7: Recursion 5

Proof of Correctness is Similar to Proof-By-
Induction

* Proof by induction

* Prove the statement is true for the base case (size
0,1, or whatever).

 Show that if the statement is assumed true for n, then
it must be true for n+1.

Chapter 7: Recursion

Proof of Correctness

« Recursive proof is similar to induction. Verify that:
* The base case is recognized and solved correctly

« Each recursive case makes progress towards the
base case

« If all smaller problems are solved correctly, then the
original problem is also solved correctly

Chapter 7: Recursion

System Processing of a Recursive Call

Push onto a stack the information of the current
execution.

Execute the recursive call.
Retrieve the information from the stack by pop.

Too many recursive calls without pop will result in stack
overflow.

Chapter 7: Recursion 8

Recursively Defined Mathematical
Functions

Chapter 7: Recursion

Recursive Definitions of Mathematical
Formulas

* Factorial. n! where n>= 0.
« Ol =1.
e fn>0,n! =nx(n-1).
* Powers: x", x to the power of n, where x>0, n>=0.
o If n=0, x"=1.
e If >0, x" = x x x™1,
* Greatest Common Divisor. gcd(a,b), a, b >=0
* gcd(a,b) = gcd(b,a).
 If b=0, gcd(a,b) = a.
« If a>=b, gcd(a,b) = gcd(a-b,b).

Chapter 7: Recursion

10

Factorial, Powers, and gcd

public static int factorial(int n) {
if (n<0) return O;
else if (n=0) return 1;
else return n * factorial(n-1);

}

public static int powers(int x, int n) {
if (x<=0)]| (n <0)) return 0O;
else if (n == 0) return 1;
else return n * powers(x, n-1);

}

public static int gcd(int a, int b) {
if ((@<0) || (b<0)) return O;
else if (a == 0) return b;
else if (b == 0) return a;
else if (a < b) return gcd(b,a);
else return ged(b, a % b);

Chapter 7: Recursion

11

Recursion Versus lteration

There are similarities between recursion and iteration

In iteration, a loop repetition condition determines
whether to repeat the loop body or exit from the loop

In recursion, the condition usually tests for a base case

An iterative solution exists to a problem that is solvable
by recursion

Recursive code may be simpler than an iterative
algorithm and thus easier to write, read, and debug

Chapter 7: Recursion 12

lterative Solutions

public static int factorial(int n) {
if (n<0) return O;
fac=1;
for (inti=0; i<n; i++) {fac *=i; }
return fac;
}
public static int powers(int x, int n) {
if (x<=0)]| (n <0)) return 0O;
else if (n == 0) return 1;
pow = 1;
for (int i=0; i<n; i++) { pow *= Xx; }
return pow;
}
public static int gcd(int a, int b) {
if ((a<0) || (b<0)) return 0O;

if(a<b){c=a;a=b;b=c; /[swap a and b.
while (b>0) {
r=a%b;a=b;b=r; // Reduce a&b to b&(a mod b).
}
return a;

Chapter 7: Recursion

13

Efficiency of Recursion

Recursive methods are often than iterative methods
because the stack overhead is larger than the loop
overhead.

Recursive methods are easier to write and
conceptualize.

Chapter 7: Recursion 14

Fibonacci Number
- F(1)=1.

 F(2)=1.
 Forn>=3, F(n) = F(n-1) + F(n-2)

Chapter 7: Recursion

15

An O(2") Recursive Method

public static int fibonacci(int n) {
if (n <=2) return 1;
else return fibonacci(n-1) + fibonacci(n — 2);

Chapter 7: Recursion

16

An O(n) Recursive Method

« fibo(a,b,c) is invoked to compute F(c+m) when F(m+1)
=a and F(m)=b

public static int fibo(int fiboCurrent, int fiboPrevious, int ¢) {
if (c == 1) return fiboCurrent;
else return fibo(fiboPrevious+fiboCurrent, fiboCurrent, c-1);

}

Invoke fibo(1,0,n)

Chapter 7: Recursion 17

Efficiency of Recursion: Exponential

Fibonacci
fibonacci(5)
/ Inefficient
fibonacci(4) fibonacci(3)
fibonacci(3) \
[
|' fibonacci(2)
i
fibonacci(2) fibonacci(2)
fibonacci(1) fibonacci(1)

Chapter 7: Recursion

18

Efficiency of Recursion: O(n) Fibonacci

fibonacci(5)

\

fibo(1,0,5)

\

fibo(1,1,4)

\

fibo(2,1,3)

return 5

Ch

\

fibo(3,2,2)

\

fibo(5,3,1)

apter 7: Recursion

19

Recursive Array Search

Linear Search
Versus
Binary Search

Chapter 7: Recursion

20

Linear Search in an Array A of size S

« To search A for an element E, invoke the search in the
range [0, S-1].
 To search in the range [l, S-1]
» If | == §, then stop — the element is not in the array.

« If the I-th element in the array is the one, stop there.
» Otherwise, recursively search in the range[l+1,S-1].

* Search requires O(S) time.

Chapter 7: Recursion 21

Binary Search in a Sorted Array

The sorted elements in an array A. The first element is
the smallest and the last element is the largest.

Maintain the range of indices [l,J] for search.

Loop:

* Indicate “Not found” if I>J.

* Let K be the middle index; the integer part of (I1+J)/2.
« If (A[K] == target), indicate “Found”.

« Else if (A[K] > target), set J to K-1.

* Else set | to K+1.

At each iteration, the size of range becomes at most a
half, so the running time is O(log,n).

Chapter 7: Recursion 22

Design of a Binary Search Algorithm
(continued)

FIGURE 7.9

Binary Search for "Dustin"
target kidNames
Dustin Caryn Debbie | Dustin | Elliot | Jacquie |Jonathan| Rich First call
['
! |
first = @ middle = 3 last = 6
target kidNames
Dustin Caryn Debbie | Dustin | Elliot | Jacquie |Jonathan| Rich Second call
\"I" ‘ .
! ‘
first = @ last = 2
middle = 1
target kidNames
Dustin Caryn Debbie | Dustin | Elliot | Jacquie [Jonathan| Rich Third call

first = middle = last = 2

Chapter 7: Recursion

23

Algorithm for Binary Search

[** search items for target in the range [first, last]
* returns the index of the target if found; -1 o.w.
*/
public int binarySearch(Object[] items, Comparable target, int first, int last) {
if (first>last) return -1;
int mid = (first + last)/2;
if (target.compareTo(items[mid])==0) {
return mid;
}

else if (target.compareTo(items[mid]) < 0) { }
return binarySearch(items, target, first, mid-1);

}

else {
return binarySearch(items, target, mid+1, last);

}

« The target has to be of a data type that implements compareTo:

« CompareTo is a method that gives as an integer the ordering between
two elements (usually -1, 0, 1).

Chapter 7: Recursion 24

Method Arrays.binarySearch

« Java API class Arrays contains a binarySearch method

« Can be called with sorted arrays of primitive types or
with sorted arrays of objects

« If the objects in the array are not mutually comparable
or if the array is not sorted, the results are undefined

« If there are multiple copies of the target value in the
array, there is no guarantee which one will be found

 Throws ClassCastException if the target is not
comparable to the array elements

Chapter 7: Recursion 25

The Tower Of Hanoi

Chapter 7: Recursion

26

Towers of Hanoi

 There are 64 discs of all distinct diameters slid onto a
peg in the increasing order of diameters with the smallest
one on the very top. There are two other pegs

 Move all the discs to one of the two other pegs with the
following rules:

« A disc can be moved only one at a time.
» A larger disc must not be placed on a smaller disc.

 Goal: Compute the shortest moves to accomplish this
talk.

L M R
Chapter 7: Recursion 27

Formulation of the Towers-of-Hanoi Problem

« Consider the sub-problem of moving the top N discs from
peg Xtopeg Y,where1<=N<=064, X#Y,and Xand Y
are members of {L, M, R }.

« The initial invocation: N = 64, X=L, Y=R/M.

Chapter 7: Recursion 28

Algorithm for Towers of Hanoi: N=4

Chapter 7: Recursion

29

Recursive Algorithm for Towers of Hanoi

 |InputN, X, Y
 N=1:
* Move the top disc of peg X to peg Y.
o« N>1:
« Let Z be the peg other than X or Y.
* Move the top N-1 discs from X to Z.
* Move the top 1 disc from Xto Y.
* Move the top N-1 discs from Zto Y.

Chapter 7: Recursion

30

Towers of Hanoi Class

public class TowersOfHanoi {
[** Recursive method for Towers of Hanoi
pre: the three chars are all distinct
@param n is the number of disks
@param startPeg is the peg where the disks currently are
@param destPeg is the peg which the disks should move to
@param tempPeg is the remaining peg
public static String showMoves(int n, char startPeg, char destPeg,
char tempPeg) {
if (n==1) {
return
“Move disc 1 from ” + startPeg + “to ” + destPeg + “\n”;
} else {
return
TowersOfHanoi(n-1, startPeg, tempPeg, destPeg) +
“Move disc ” + n + “ from ” + startPeg + “ to ” + destPeg + “\n”;
TowersOfHanoi(n-1, tempPeg, destPeg, startPeq);

Chapter 7: Recursion 31

Backtracking

Chapter 7: Recursion

32

Backtracking

« Backtracking is an approach to implementing systematic
trial and error in a search for a solution.

It explores alternative search paths and eliminates
them if they don’t work.

It remembers the search history to avoid trying the
same path again.

* Recursion is a natural way to implement backtracking

* The trace of successive recursive calls represents the
search history with an instrumentation of exhaustive
search at each level.

Chapter 7: Recursion 33

Maze Threading

* Input: a two-dimensional of cells, M by N
« BACKGROUND ... a cell can be walked in
« BLOCKED ... a cell that can never be walked in
e Qutput:
« A path from (0,0) to (M-1, N-1) that visits only
BACKGROUND cells, if one exists
« Additional Types:

« PATH ... a cell that is determined to be on the path to
be built

« TEMPORARY ... a non-blocked cell that is found not
be on any path to the goal

Chapter 7: Recursion 34

Algorithm for Maze Threading

Use recursive search from cell (1,J)

if (1<0 || J<O || I>=M || J>=N) { return false; }

else if (type of cell (I,J) = BACKGROUND) { return false; }

else {
set type of cell (1,J) to PATH;
if (I,J) is goal { return true; }
else if Search from (I-1,J) returns true { return true; }
else if Search from (1+1,J) returns true { return true; }
else if Search from (l,J-1) returns true { return true; }
else if Search from (1,J+1) returns true { return true; }
else { set type of cell (I,J) to TEMPORARY:; return false; } }

Chapter 7: Recursion

35

Chapter 7: Recursion

36

