
Chapter 4: Queues 



Chapter 4: Queues 2 

Chapter Objectives 

•  To learn how to represent a waiting line (queue) and how 
to use the methods in the Queue interface for insertion 
(offer and add), removal (remove and poll), and for 
accessing the element at the front (peek and element) 

•  To understand how to implement the Queue interface 
using a single-linked list, a circular array, and a double-
linked list 

•  To understand how to simulate the operation of a 
physical system that has one or more waiting lines using 
Queues and random number generators 



Chapter 4: Queues 3 

Queue Abstract Data Type 

•  A queue can be visualized as a line of customers waiting 
for service 

•  New customers are placed at the end of the line. 
•  The customer at the start of the line will be served the 

next. 
•  Queue realizes the first come, first served principle. 
•  Operating systems use queues for providing services, 

e.g., print queues. 



Chapter 4: Queues 4 

Interface Queue<E> 

Methods Behavior 

E element() Returns the object at the top of the queue without removing it. . If the 
queue is empty, returns NoSuchElement exception. 

E peek() Returns the object at the top of the queue without removing it. .  If the 
queue is empty, returns null. 

E remove() Returns the object at the top of the queue and removes it.  If the 
queue is empty, returns NoSuchElement exception. 

E poll() Returns the object at the top of the queue and removes it.  If the 
queue is empty, returns null.  

boolean offer(E obj) Appends item obj at the end of queue.  Returns true if successful 
false otherwise. 



Chapter 4: Queues 5 

Class LinkedList Implements the Queue 
Interface in JAVA 5.0 

•  Recall that LinkedList implements the List interface and  
provides methods for 
•  Inserting and removing elements at either end of a 

double-linked list 
•  Examining elements at the end and the beginning of 

list (using the size() method and the get() method) 
•  These will be sufficient for implementing queues 
•  Starting in Java 5.0, LinkedList implements the Queue 

interface, so you can declare: 
•  Queue<String> name = new LinkedList<String>(); 



Chapter 4: Queues 6 

Using a Double-Linked List to Implement 
the Queue Interface 

•  Insertion and removal at either end of a double-linked list 
can be done in O(1) so either end can be the front (or 
rear) of the queue 
•  Java designers decided to make the head of the 

linked list the front of the queue. 



Chapter 4: Queues 7 

Using a Single-Linked List to Implement a 
Queue 

•  Can implement a queue using a single-linked list 
•  Class ListQueue contains a collection of Node<E> 

objects 
•  Insertions are at the rear of a queue and removals are 

from the front 
•  Need a reference to the last list node 



Chapter 4: Queues 8 

Using a Single-Linked List to Implement a 
Queue (continued) 



Chapter 4: Queues 9 

Implementing a Queue Using a Circular 
Array 

•  List-based implementation of a queue is acceptable in 
terms of time efficiency but may be wasteful in terms of 
space. 

•  Array Implementation 
•  Need to know the index of the front, the index of the 

read, the size, and the capacity. 
•  Insertion and removal are both O(1) time. 

•  Additional operations on indices required. 
•  Doubling of size and copying required for insertion with size 

equal to capacity. 
–  This may not be an issue, because of the “amortized” (or 

“averaged over time”) effect. 



Chapter 4: Queues 10 

Implementing a Queue Using a Circular 
Array (continued) 



Chapter 4: Queues 11 

Implementing a Queue Using a Circular 
Array (continued) 



Chapter 4: Queues 12 

Implementing a Queue Using a Circular 
Array (continued) 



Chapter 4: Queues 13 

Implementing a Queue Using a Circular 
Array (continued) 



Chapter 4: Queues 14 

Implementing Class ArrayQueue<E>.Iter 

•  A class that implements Queue must implement all the 
methods of Collection. 
•  Data field index stores the subscript of the next 

element to access 
•  The constructor initializes index to front when a new 

Iter object is created 
•  Data field count keeps track of the number of items 

accessed so far 
•  Method Iter.remove throws an Unsupported-

OperationException because it would violate the 
contract for a queue to remove an item other than the 
first one 



Chapter 4: Queues 15 

Comparing the Three Implementations 

•  All three implementations are comparable in terms of 
computation time 

•  Linked-list implementations require more storage 
because of the extra space required for the links 
•  Each node for a single-linked list would store a total of 

two references 
•  Each node for a double-linked list would store a total 

of three references 
•  A circular array that is filled to capacity would require 

half the storage of a single-linked list to store the 
same number of elements … not so bad 



Queue with Item Importance 

•  The position in the queue is determined by importance of 
item. 

•  The item with the highest importance is deQueued 

Chapter 4: Queues 16 



Implementation with a Linked List 

•  Insertion into queue is accomplished by insertion into the 
list … O(n) 

•  Heap (to be studied in Chapter 9) accomplishes this in 
time O(log n) 

•  There is a better one called Fibonacci Heap, which 
executes it in time O(log* n) 
•  Log*n is the smallest integer k such that the k 

repeated exponentiation base 2 exceeds n 
•  Log*(2) = 1, Log*(16)=2, Log*(65536)=3, Log*(2^65536)=4 

Chapter 4: Queues 17 


