
Chapter 3: Stacks

Chapter 3: Stacks 2

Chapter Objectives

•  To learn about the stack data type and how to use its
four methods: push, pop, peek, and empty

•  To understand how Java implements a stack
•  To learn how to implement a stack using an underlying

array or a linked list
•  To see how to use a stack to perform various

applications, including finding palindromes, testing for
balanced (properly nested) parentheses, and evaluating
arithmetic expressions

Chapter 3: Stacks 3

Stack Abstract Data Type

•  A stack can be compared to a Pez dispenser
•  Only the top item can be accessed
•  Can only extract one item at a time

•  A stack is a data structure with the property that only the
top element of the stack is accessible

•  The stack’s storage policy is Last-In, First-Out

Chapter 3: Stacks 4

Specification of the Stack Abstract Data
Type

•  Only the top element of a stack is visible, and thus, not
many operations performed are possible

•  Need the ability to
•  Inspect the top element
•  Retrieve the top element
•  Push a new element on the stack
•  Test for an empty stack

Specification of the Stack Abstract Data
Type (continued)

•  Specification of StackInt<E>

Chapter 3: Stacks 5

Methods Behavior

boolean empty() Returns true if the stack is empty; otherwise,
return false.

E peek() Returns the object at the top of the stack
without removing it

E pop() Returns the object at the top of the stack and
removes it.

E push(E obj) Pushes an item onto the top of the stack and
returns the item pushed.

Chapter 3: Stacks 6

Two Stack Applications

•  Palindrome finder
•  Palindrome: string that reads the same in either

direction
•  Example: “Able was I ere I saw Elba”

•  Parentheses matcher

Palindrome Checking Using an Array

•  Input is a String object of say length n
•  Convert the String object into its lower case form, say s
•  For p=0 to n/2, test whether the p-th symbol of s is equal

to the (n-1-p)-th symbol of s; if test fails for any p, declare
that s is not a palindrome

•  Declare that s is a palindrome

•  See the sample program

Chapter 3: Stacks 7

Palindrome Checking Using a Stack

•  Again, obtain the lower-case version of input, s
•  Scan s from left to right and put the symbols into a

Stack<Character> object, say charStack
•  Recall autoboxing

•  Note that the height of charStack is equal to the length of
s

•  For p=0 to n/2, check whether the p-th symbol of s is
equal to the symbol that’s been popped from charStack

•  See the sample code

Chapter 3: Stacks 8

Another Method Using a Stack

•  Again, obtain the lower-case version of input, s
•  Scan s from left to right and put the symbols into two

Stack<Character> objects, say charStack1 and
charStack2

•  Keep popping from charStack2 and pushing the
characters into an initially empty stack, charStack0; now
charStack0 has the reverse of charStack1

•  Keep popping from charStack0 and charStack1
concurrently to conduct check

•  See the sample code
Chapter 3: Stacks 9

Chapter 3: Stacks 10

Parenthesis Matchers

•  When analyzing arithmetic expressions, it is important to
determine whether an expression is balanced with
respect to parentheses
•  (a+b*(c/(d-e)))+(d/e)

•  Problem is further complicated if braces or brackets are
used in conjunction with parenthesis

•  Solution is to use stacks!

Solution with a Stack

•  Assign a unique index to each pair of parentheses
•  Initialize an empty integer stack iStack
•  Process the input string, s, from left to right

•  If an open parenthesis is encountered, push its index
to iStack

•  If a close parenthesis is encountered,
•  If iStack is empty, declare s is not balanced
•  Pop the index, m, from iStack
•  If m is not equal to the close parenthesis’s index, declare s is

not balanced

•  If iStack is empty, declare s is balanced; o.w., declare s
is not balanced

Chapter 3: Stacks 11

Two Possible Implementations of Stack

•  Use a single-linked list
•  Treat the head of the list as the point of push and pop

for efficiency
•  Use an array

•  Treat the end of the array as the point of push and
pop

•  As in ArrayList, double the size if there is no room for a new
element

Chapter 3: Stacks 12

Chapter 3: Stacks 13

Implementing a Stack with a List Component

•  Can use any class that implements the List interface
•  Name of class illustrated in the textbook is ListStack<E>

•  ListStack is an adapter class because it provides an
interface by simply adapting the methods available in
another class to the interface by giving different
names to exiting methods in the class.

•  getLast(), addLast, remove(), size()

Chapter 3: Stacks 14

Comparison of Stack Implementations

•  Extending a Vector (as is done by Java) is a poor choice
for stack implementation as all Vector methods are
accessible

•  Easiest implementation would be to use an ArrayList
component for storing data

•  All insertions and deletions are constant time regardless
of the type of implementation discussed
•  All insertions and deletions occur at one end

Chapter 3: Stacks 15

Postfix Arithmetic Notation
•  Binary operations immediately follow the two operands.
•  The notation we normally use is called infix notation.
•  Advantages

•  No need to use parentheses
•  No need to consider precedence
•  Easy for a computer to evaluate expressions in the

postfix notation.
Postfix Infix Value
4 7 + 4 + 7 11

4 7 + 3 * (4 + 7) * 3 33

10 7 − 4 2 / * (10 − 7) * (4 / 2) 6

5 4 3 2 * * * 5 * (4 * (3 * 2)) 240

Algorithm for Evaluation Postfix Expression

1.  Create an empty stack of integers
2.  while the next token exists
3.  receive the next token
4.  if the token is an operation
5.  pop the second operand from the stack
6.  pop the first operand from the stack
7.  apply the operation to the operands
8.  push the result onto stack
9.  else push the token onto stack
10.  Return the top element of the stack

 (There should be no element remaining in the stack after this.)

Chapter 3: Stacks 16

Conversion from InFix to PostFix

•  Assume that the input does not have parentheses
•  We will perhaps look at the case with parentheses in

the future
•  Already the input has been processed into a series of

tokens (String objects), each of which is either an
operand or an operator
•  “5”, “-”, “10”, “+”, “20”, “*”, “30”, “/”, “40”

•  From the series of tokens build its postfix expression
•  “5 10 - 20 30 * 40 / +”

•  Assume that the tokens are given one after the other

Chapter 3: Stacks 17

Things to Notice

•  Creation of postfix expression is the process of
reordering the tokens

•  The order in which the operands appear is unchanged,
as in
•  “5”, “-”, “10”, “+”, “20”, “*”, “30”, “/”, “40”
•  “5 10 - 20 30 * 40 / +”

•  The places where the operators appear have to be
determined

Chapter 3: Stacks 18

Order Determination

•  If either “*” or “/” appears, the operator should be placed
immediately after the next token (operand)

•  If either “+” or “-” appears (call it “o”, the location
depends on the next operator
•  If the next one is either “+” or “-” (that is, it’s in the

form of X o Y +/- …), place o immediately after Y
•  If the next one is either “*” or “/”, place o immediately

after the series of “*” and “/” ends
•  Needs to remember only at most two past operands

Chapter 3: Stacks 19

Chapter 3: Stacks 20

