Data and Variables

Mitsu Ogihara

Department of Computer Science University of Miami

Using Variables for Computation

Table of Contents

- Data, Literals, and Variables

- Binary Operations on Numbers

The programs we have seen so far used only:

- Method calls and
- System.out.println and System.out.print

We will learn now how to record and modify information during execution of a program

Data, Literals, and Variables

- The bit is the fundamental unit in computation
- The bit has two values, 0 and 1 ("off" and "on")
- In computers and in computer programs, information is encoded as a finite sequence of bits, and that is called data

- Data come and go
- Data require specific ways of interpretation (type)
 - The same sequence of bits may be interpreted differently according to the type

- Data can be generated by operations
- Data can be stored for future references → variable
- Data can be succinctly specified → literal

Variables and Literals

- A variable is a place to store data during execution of a program
- Because data must have a type and a value, so must a variable
- On the other hand, literals are data with values but no name

For example, the "Hello, World!" as it appears in the statement System.out.println("Hello, World!") is a literal

Primitive Data Types

A primtive data type in Java is a data type with a fixed number of bits allocated for storing information

Using Variables for Computation

There are four primitive data types for whole numbers in Java:

- byte: 8 bits: -128 through 127
- **short**: 16 bits; -32, 768 through 32, 767
- int: 32 bits: −2, 147, 483, 648 through 2, 147, 483, 647
- long: 64 bits; −9, 223, 372, 036, 854, 775, 808 through 9, 223, 372, 036, 854, 775, 807

There are two primitive data types for floating numbers (real numbers; i.e., specifications for digits below the decimal point)

- float: 32 bits: 3.4e⁻³⁸ through 3.4e³⁸
- **duble**: 64 bits; $1.7e^{-308}$ through $1.7e^{308}$

There are also **boolean** (one bit, logical value) and **char** (16 bits, a character)

In Java an exact number can be specified by providing the digits and by default such a number is thought of as either an int or a double; e.g.,

Using Variables for Computation

- 401 (as an int)
- −2.223344 (as a double)

Such specification fails if the number goes out of the range of the data type, e.g., 9876543210 (more than 32 bits will be needed)

These are called number literals

Number Arithmetic

In a formula

27 and 10 are operands and / is an operator

/ is an operator that takes two operands and so is a **binary operator**

There are five **binary operators**: +, -, *, /, and %

% is the remainder that preserves the sign of the number to be divided;

$$-40.5 \% 2 = -0.5, \ 0 \% 3 = 2$$

If both operands are integers / is the quotient; that is,

$$10 / 3 = 1$$

*, /, and % have predence over + and -If one of the operands is a double, the result will be a double

$$27 - (10 + 4.5 * 2) + (-9.0/2 \% 2)$$

$$= 27 - (10 + 9.0) + (-9.0/2 \% 2)$$

$$= 27 - 19.0 + (-9.0/2 \% 2)$$

$$= 8.0 + (-9.0/2 \% 2)$$

$$= 8.0 + (-4.5 \% 2)$$

$$= 8.0 + (-0.5)$$

$$= 7.5$$

Viewing the Value via System.out.println

System.out.println and System.out.print print the value of a number literal or a number literal formula

```
public class NumberFormulas {
2
      public static void main( String[] args ) {
3
        System.out.print("-40.5% 2 is");
        System.out.println( -40.5 % 2 );
5
        System.out.print( "20 % 3 is " );
6
7
        System.out.println(20 % 3);
        System.out.print( "27 - (10 + 4.5 * 2) + (-9.0 / 2 % 2) is ");
8
        System.out.println(27 - (10 + 4.5 * 2) + (-9.0 / 2 % 2));
9
        System.out.print( "10 / 3 is " );
10
        System.out.println(10 / 3);
11
        System.out.print( "10 / 3.0 is " );
12
        System.out.println(10 / 3.0);
13
14
```

Notice the output of print is finite and may not agree with with our perception at the last digit

String Arithmetic

Strings can be connected with the '+' sign, which means **concatenation** If either side of a '+' sign is a String the result is a String

```
public class StringConcat {
2
      public static void main( String[] args ) {
3
        System.out.print( "\"abc\" + \"def\" is " );
 4
        System.out.println( "abc" + "def" );
5
        System.out.print( "0 + 1 is " );
6
        System.out.println(0 + 1);
 7
        System.out.print( "0 + 1 + \"234\" is " );
8
        System.out.println(0 + 1 + "234");
        System.out.print( "0 + \"1\" + 234 is " );
10
        System.out.println(0 + "1" + 234);
11
        System.out.print( "0 + \"1\" + \"234\" is " );
12
        System.out.println( 0 + "1" + "234" );
13
14
```

Using Variables for Computation

Table of Contents

- Data, Literals, and Variables
- Using Variables
- Binary Operations on Numbers

Basic Actions on a Variable

- Declaring a variable with its type (**declaration**) <type> <name>
- Assigning a value to a variable (assignment) <name> = <value> RHS can be a formula; the value is evaluate and then given to the variable

- Obtaining the value held by a variable (reference) <name>
- Passing it to a method <method name>(<name>)
- In the case of a non-primitive (that is, object) data type, perform one of its permissible method <name>.<method name>(<parameter>)
 - Declaration should precede reference or assignment
- Actions other than declaration can be performed any number of times

2

3

5

6 7 8

9

10 11

The String Type

```
public class HelloWorldString {
  public static void main( String[] args ) {
    String message;
    message = "Hello, World!";
    System.out.println( message );
    message = "Hello, Class!";
    System.out.println( message );
    message = "Welcome to the world of Java!";
    System.out.println( message );
}
```

Declaration of the String variable message

```
public class HelloWorldString {
  public static void main( String[] args ) {
    String message;
    message = "Hello, World!";
    System.out.println( message );
    message = "Hello, Class!";
    System.out.println( message );
    message = "Welcome to the world of Java!";
    System.out.println( message );
    message = "Welcome to the world of Java!";
    System.out.println( message );
}
```

Three different assignments to the variable

```
public class HelloWorldString {
       public static void main( String[] args ) {
         String message;
 4
        message = "Hello, World!";
5
         System.out.println( message );
6
        message = "Hello, Class!";
 7
         System.out.println( message );
8
        message = "Welcome to the world of Java!";
         System.out.println( message );
10
11
```

Using Variables for Computation

Passing the variable to System.out.println to have its value printed on screen

A natural extension of printing a String literal

```
public class HelloStrings {
2
      public static void main( String[] args ) {
3
         String helloMessage;
 4
         String nameMessage;
5
         String loveMessage;
        helloMessage = "Hello, World!";
 7
         nameMessage = "My name is Mitsu!";
8
         loveMessage = "I love computing.";
9
         System.out.println( helloMessage );
10
         System.out.println( nameMessage );
11
         System.out.println(loveMessage);
12
         System.out.println( helloMessage );
13
         System.out.println( nameMessage );
14
         System.out.println( loveMessage );
15
16
```

Declaration of the String variables

```
public class HelloStrings {
2
      public static void main( String[] args ) {
3
         String helloMessage;
         String nameMessage;
5
         String loveMessage;
6
        helloMessage = "Hello, World!";
 7
         nameMessage = "My name is Mitsu!";
8
         loveMessage = "I love computing.";
9
         System.out.println( helloMessage );
10
         System.out.println( nameMessage );
11
         System.out.println(loveMessage);
12
         System.out.println( helloMessage );
13
         System.out.println( nameMessage );
14
         System.out.println( loveMessage );
15
16
```

Using Variables for Computation

Assignment to the variables

Using Multiple Strings

```
public class HelloStrings {
2
      public static void main( String[] args ) {
3
         String helloMessage;
         String nameMessage;
         String loveMessage;
6
         helloMessage = "Hello, World!";
 7
         nameMessage = "My name is Mitsu!";
8
         loveMessage = "I love computing.";
9
         System.out.println( helloMessage );
10
         System.out.println( nameMessage );
11
         System.out.println( loveMessage );
12
         System.out.println( helloMessage );
13
         System.out.println( nameMessage );
14
         System.out.println( loveMessage );
15
16
```

Print the messages

```
public class HelloStrings {
2
      public static void main( String[] args ) {
3
         String helloMessage;
         String nameMessage;
         String loveMessage;
6
         helloMessage = "Hello, World!";
 7
         nameMessage = "My name is Mitsu!";
8
         loveMessage = "I love computing.";
9
         System.out.println( helloMessage );
10
         System.out.println( nameMessage );
11
         System.out.println( loveMessage );
12
         System.out.println( helloMessage );
13
         System.out.println( nameMessage );
14
         System.out.println( loveMessage );
15
16
```

Print the messages again

For a variable declared within a method, the name is valid between

- the point of declaration and
- the close-curly-bracket '}' of the inner-most matching pair of curly brackets that include the declaration

Using Variables for Computation

Table of Contents

- Using Variables for Computation
- Binary Operations on Numbers

Data, Literals, and Variables

Using Variables for Computation

Given a radius R, compute the following:

- The perimeter of a circle having radius $R \dots 2\pi R$
- The area of a circle having radius $R \dots \pi R^2$
- The surface area of a sphere having radius $R \dots 4\pi R^2$
- The volume of a sphere having radius $R \dots \frac{4}{3}\pi R^3$

The Program

```
// compute values given a radius
public class Radius {
   public static void main( String[] args ) {
      int radius;
      double circlePerimeter, circleArea, ballArea, ballVolume;
      double pi;

      //--- set the values of pi and radius
      pi = 3.14159265;
      radius = 10;

      // calculcate the values
      circlePerimeter = 2 * pi * radius;
      circleArea = pi * radius * radius;
      ballArea = 4 * pi * radius * radius;
      ballVolume = 4 * pi * radius * radius * radius / 3;
```

Declare radius to be an int variable and circlePerimeter, circleArea, ballArea, ballVolume, pi to be double variables
To declare multiple variables of the same type, you may use a comma between the names
<type> <name1>, <name2>, ... <namek>;

```
// compute values given a radius
    public class Radius {
      public static void main( String[] args ) {
         int radius:
        double circlePerimeter, circleArea, ballArea, ballVolume;
6
        double pi;
         //--- set the values of pi and radius
8
        pi = 3.14159265;
9
        radius = 10:
10
        // calculcate the values
11
        circlePerimeter = 2 * pi * radius;
12
         circleArea = pi * radius * radius;
13
         ballArea = 4 * pi * radius * radius;
14
         ballVolume = 4 * pi * radius * radius * radius / 3;
```

pi and radius are assigned data from the literals 3.14159265 and 10

The Program

```
// compute values given a radius
    public class Radius {
3
      public static void main( String[] args ) {
        int radius:
        double circlePerimeter, circleArea, ballArea, ballVolume;
6
        double pi;
7
        //--- set the values of pi and radius
8
        pi = 3.14159265;
9
        radius = 10;
10
         // calculcate the values
11
        circlePerimeter = 2 * pi * radius;
12
        circleArea = pi * radius * radius;
13
        ballArea = 4 * pi * radius * radius;
14
        ballVolume = 4 * pi * radius * radius * radius / 3;
```

The values for circlePerimeter, circleArea, ballArea, ballVolume receive values from calculation Here \star is the multiplication

```
15
         //-- output the values
16
         System.out.print( "The radius is " );
17
         System.out.println( radius );
18
         System.out.print( "The perimeter is " );
19
         System.out.println( circlePerimeter );
20
         System.out.print( "The area of the disc is " );
21
         System.out.println( circleArea );
22
         System.out.print( "The area of the ball is " );
23
         System.out.println( ballArea );
24
         System.out.print( "The volume of the ball is " );
25
         System.out.println( ballVolume );
```

Print the radius

The Program (cont'd)

```
15
         //-- output the values
16
         System.out.print( "The radius is " );
17
         System.out.println( radius );
18
         System.out.print( "The perimeter is " );
19
         System.out.println( circlePerimeter );
20
         System.out.print( "The area of the disc is " );
21
         System.out.println( circleArea );
22
         System.out.print( "The area of the ball is " );
23
         System.out.println( ballArea );
24
         System.out.print( "The volume of the ball is " );
25
         System.out.println( ballVolume );
```

Print the perimeter

The Program (cont'd)

Data, Literals, and Variables

```
15
         //-- output the values
16
         System.out.print( "The radius is " );
17
         System.out.println( radius );
18
         System.out.print( "The perimeter is " );
19
         System.out.println( circlePerimeter );
20
         System.out.print( "The area of the disc is " );
21
         System.out.println( circleArea );
22
         System.out.print( "The area of the ball is " );
23
         System.out.println( ballArea );
24
         System.out.print( "The volume of the ball is " );
25
         System.out.println( ballVolume );
```

Print the area of the disk

Binary Operations on Numbers

The Program (cont'd)

```
15
         //-- output the values
16
         System.out.print( "The radius is " );
17
         System.out.println( radius );
18
         System.out.print( "The perimeter is " );
19
         System.out.println( circlePerimeter );
20
         System.out.print( "The area of the disc is " );
21
         System.out.println( circleArea );
22
         System.out.print( "The area of the ball is " );
23
         System.out.println( ballArea );
24
         System.out.print( "The volume of the ball is " );
25
         System.out.println( ballVolume );
```

Print the area of the ball

```
15
         //-- output the values
16
         System.out.print( "The radius is " );
17
         System.out.println( radius );
18
         System.out.print( "The perimeter is " );
19
         System.out.println( circlePerimeter );
20
         System.out.print( "The area of the disc is " );
21
         System.out.println( circleArea );
22
         System.out.print( "The area of the ball is " );
23
         System.out.println( ballArea );
24
         System.out.print( "The volume of the ball is " );
25
         System.out.println( ballVolume );
```

Print the volume of the ball

2

3

5

6

7

8

9

10

11

12

Using Variables

You may combine declaration and assignment in <type> <name> = <value>;

```
// compute values given a radius
public class RadiusAlt {
  public static void main( String[] args ) {
    //--- set the values of pi and radius

    double pi = 3.14159265;
    int radius = 10;
    // calculcate the values

    double circlePerimeter = 2 * pi * radius;
    double circleArea = pi * radius * radius;
    double ballArea = 4 * pi * radius * radius;
    double ballVolume = 4 * pi * radius * radius * radius / 3;
    //-- output the values
```

Body-Mass Index is given by the formula

BMI = 703 * weight (in pounds) / height² (in inches)

Using Variables for Computation

We consider the problem of computing BMI given a weight value and a height value

Computing the BMI

Body-Mass Index is given by the formula

BMI = 703 * weight (in pounds) / height² (in inches)

We consider the problem of computing BMI given a weight value and a height value

- Declare variables for weight, height, and BMI
- Assign values to weight and height
- Compute the BMI value
- Print the result

Body-Mass Index is given by the formula

BMI = 703 * weight (in pounds) / height² (in inches)

We consider the problem of computing BMI given a weight value and a height value

Using Variables for Computation

- Declare variables for weight, height, and BMI
- Assign values to weight and height
- Compute the BMI value
- Print the result

Do the above twice

The Program

```
public class BMI {
2
      public static void main( String[] args ) {
        double weight, height, bmi;
4
5
6
7
         // first time
        weight = 140.0; // weight
        height = 67.0; // height
        bmi = 703.0 * weight / (height * height);
8
         System.out.print( "weight = " );
         System.out.println( weight );
10
         System.out.print( "height = " );
11
         System.out.println( height );
12
         System.out.print( "BMI = " );
13
         System.out.println(bmi);
```

Variable declarations

```
public class BMI {
2
      public static void main( String[] args ) {
3
        double weight, height, bmi;
4
         // first time
5
6
7
        weight = 140.0; // weight
        height = 67.0; // height
        bmi = 703.0 * weight / (height * height);
8
         System.out.print( "weight = " );
9
         System.out.println( weight );
10
         System.out.print( "height = " );
11
         System.out.println( height );
12
         System.out.print( "BMI = " );
13
         System.out.println(bmi);
```

Assignments (first round)

```
public class BMI {
2
      public static void main( String[] args ) {
3
        double weight, height, bmi;
4
        // first time
        weight = 140.0; // weight
6
7
        height = 67.0; // height
        bmi = 703.0 * weight / (height * height);
8
        System.out.print( "weight = " );
9
        System.out.println( weight );
10
        System.out.print( "height = " );
11
        System.out.println( height );
12
        System.out.print( "BMI = " );
13
        System.out.println(bmi);
```

Calculation (first round)

Data, Literals, and Variables

11

12

13

```
public class BMI {
2
      public static void main( String[] args ) {
3
        double weight, height, bmi;
4
        // first time
        weight = 140.0; // weight
6
7
        height = 67.0; // height
        bmi = 703.0 * weight / (height * height);
8
        System.out.print( "weight = " );
9
        System.out.println( weight );
10
        System.out.print( "height = " );
```

Printing the value of weight

System.out.println(height);

System.out.print("BMI = ");

System.out.println(bmi);

```
public class BMI {
2
      public static void main( String[] args ) {
3
        double weight, height, bmi;
4
        // first time
        weight = 140.0; // weight
6
7
        height = 67.0; // height
        bmi = 703.0 * weight / (height * height);
8
        System.out.print( "weight = " );
9
        System.out.println( weight );
10
        System.out.print( "height = " );
11
        System.out.println( height );
12
        System.out.print( "BMI = " );
13
        System.out.println(bmi);
```

Printing the value of height

The Program

Printing the value of bmi

The Program (cont'd)

```
14
        // second time
15
        weight = 150.0;  // weight
16
        height = 70.0; // height
17
        bmi = 703.0 * weight / ( height * height );
18
        System.out.print( "weight = " );
19
        System.out.println( weight );
20
        System.out.print( "height = " );
21
        System.out.println( height );
22
        System.out.print( "BMI = " );
23
        System.out.println(bmi);
24
25
```

Assignments (second round)

```
14
        // second time
15
        weight = 150.0;
                            // weight
16
        height = 70.0; // height
17
        bmi = 703.0 * weight / ( height * height );
18
        System.out.print( "weight = " );
19
        System.out.println( weight );
20
        System.out.print( "height = " );
21
        System.out.println( height );
22
        System.out.print( "BMI = " );
23
        System.out.println(bmi);
24
25
```

Printing the results

Table of Contents

- Using Variables
- Binary Operations on Numbers

Mathematical Short-hand

Data, Literals, and Variables

It is possible to short-hand expressions for updating a variable's value with one operation

Given an expression $a = a \circ b$; such that

- a is a number variable, \circ is one of $\{+, -, /, *, \%\}$, and b is an expression that produces a number, or
- a is a String variable, is +, and b is an expression,

we may write $a \circ = b$;

For example, we can write x += 3 in place of x = x + 3

Data, Literals, and Variables

- For all number variables x,
 - x = x + 1; can be simplified as as ++x; and as x++;

Using Variables for Computation

• x = x - 1; can be simplified as as --x; and as x--;

- For all number variables x,
 - x = x + 1; can be simplified as as ++x; and as x++;
 - x = x 1; can be simplified as as --x; and as x--;
- The ++ and −− can be attached to a variable appearing in a formula
 - In ++x and --x, the +1 and -1 to x occur before the evaluation of the formula

Using Variables for Computation

• In x++ and x--, the +1 and -1 to x occur after the evaluation of the formula

```
public class ShortHandExperiment {
2
      public static void main( String[] args ) {
3
         int myInt, other;
4
        myInt = 10;
5
        other = 13:
6
         System.out.print( "myInt is " );
7
         System.out.print( myInt );
8
         System.out.print( ", other is " );
9
         System.out.println(other);
10
11
        myInt += other;
12
         System.out.print( "Executed myInt += other\tmyInt is " );
13
         System.out.println( myInt );
14
15
        myInt *= other;
16
         System.out.print( "Executed myInt *= other\tmyInt is " );
17
         System.out.println( myInt );
18
19
        mvInt -= other:
20
         System.out.print( "Executed myInt -= other\tmyInt is " );
21
         System.out.println( myInt );
```

Variable declaration

```
public class ShortHandExperiment {
2
      public static void main( String[] args ) {
3
         int myInt, other;
4
        mvInt = 10:
5
        other = 13:
6
        System.out.print( "myInt is " );
7
         System.out.print( myInt );
8
         System.out.print( ", other is " );
9
         System.out.println(other);
10
11
         myInt += other;
12
         System.out.print( "Executed myInt += other\tmyInt is " );
13
         System.out.println( myInt );
14
15
        mvInt *= other:
16
         System.out.print( "Executed myInt *= other\tmyInt is " );
17
         System.out.println( myInt );
18
19
         myInt -= other;
20
         System.out.print( "Executed myInt -= other\tmyInt is " );
21
         System.out.println( myInt );
```

Initial assignments

1

2

3

4

5

6 7

8

9

10 11

12

13

14 15

16

17

18 19

20

21

Combining Math Short-hand Expressions

```
public class ShortHandExperiment {
  public static void main( String[] args ) {
    int myInt, other;
    myInt = 10;
    other = 13:
    System.out.print( "myInt is " );
    System.out.print( myInt );
    System.out.print( ", other is " );
    System.out.println(other);
    myInt += other;
    System.out.print( "Executed myInt += other\tmyInt is " );
    System.out.println( myInt );
    mvInt *= other:
    System.out.print( "Executed myInt *= other\tmyInt is " );
    System.out.println( myInt );
    myInt -= other;
    System.out.print( "Executed myInt -= other\tmyInt is " );
    System.out.println( myInt );
```

Print the "myInt is " followed by the value of myInt

public class ShortHandExperiment {

public static void main(String[] args) {

```
2
 3
 4
 5
 6
7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
```

Data, Literals, and Variables

```
int myInt, other;
myInt = 10;
other = 13:
System.out.print( "myInt is " );
System.out.print( myInt );
System.out.print( ", other is " );
System.out.println( other );
myInt += other;
System.out.print( "Executed myInt += other\tmyInt is " );
System.out.println( myInt );
mvInt *= other:
System.out.print( "Executed myInt *= other\tmyInt is " );
System.out.println( myInt );
myInt -= other;
System.out.print( "Executed myInt -= other\tmyInt is " );
System.out.println( myInt );
```

Continued with ", other is "followed by the value of other

```
2
 3
 4
 5
 6
7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
```

Data, Literals, and Variables

```
public class ShortHandExperiment {
  public static void main( String[] args ) {
    int myInt, other;
    myInt = 10;
    other = 13:
    System.out.print( "myInt is " );
    System.out.print( myInt );
    System.out.print( ", other is " );
    System.out.println(other);
    myInt += other;
    System.out.print( "Executed myInt += other\tmyInt is " );
    System.out.println( myInt );
    mvInt *= other:
    System.out.print( "Executed myInt *= other\tmyInt is " );
    System.out.println( myInt );
    myInt -= other;
    System.out.print( "Executed myInt -= other\tmyInt is " );
    System.out.println( myInt );
```

Perform myInt += other and report the outcome

```
2
 3
 4
 5
 6
7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
```

Data, Literals, and Variables

```
public class ShortHandExperiment {
  public static void main( String[] args ) {
    int myInt, other;
    myInt = 10;
    other = 13:
    System.out.print( "myInt is " );
    System.out.print( myInt );
    System.out.print( ", other is " );
    System.out.println(other);
    myInt += other;
    System.out.print( "Executed myInt += other\tmyInt is " );
    System.out.println( myInt );
    mvInt *= other:
    System.out.print( "Executed myInt *= other\tmyInt is " );
    System.out.println( myInt );
    myInt -= other;
    System.out.print( "Executed myInt -= other\tmyInt is " );
    System.out.println( myInt );
```

Perform myInt *= other and report the outcome

```
public class ShortHandExperiment {
2
      public static void main( String[] args ) {
3
         int myInt, other;
4
        myInt = 10;
5
        other = 13:
6
7
        System.out.print( "myInt is " );
        System.out.print( myInt );
8
         System.out.print( ", other is " );
9
        System.out.println(other);
10
11
         myInt += other;
12
         System.out.print( "Executed myInt += other\tmyInt is " );
13
         System.out.println( myInt );
14
15
        mvInt *= other:
16
         System.out.print( "Executed myInt *= other\tmyInt is " );
17
         System.out.println( myInt );
18
19
         myInt -= other;
20
         System.out.print( "Executed myInt -= other\tmyInt is " );
21
         System.out.println( myInt );
```

Perform my Int -= other and report the outcome

Data, Literals, and Variables

```
myInt /= other;
System.out.print( "Executed myInt /= other\tmyInt is " );
System.out.println( myInt );

myInt %= other;
System.out.print( "Executed myInt %= other\tmyInt is " );
System.out.println( myInt );
```

Perform myInt /= other and report the outcome

28

29

Data, Literals, and Variables

```
myInt /= other;
System.out.print( "Executed myInt /= other\tmyInt is " );
System.out.println( myInt );

myInt %= other;
System.out.print( "Executed myInt %= other\tmyInt is " );
System.out.println( myInt );
```

Perform myInt %= other and report the outcome

Data, Literals, and Variables

```
31
         myInt += ++other;
32
         System.out.print( "Executed myInt += ++other\tmyInt is " );
33
         System.out.print( myInt );
34
         System.out.print( ", other is now " );
35
         System.out.println( other );
36
37
         myInt += other++;
38
         System.out.print( "Executed myInt += other++\tmyInt is " );
39
         System.out.print( myInt );
40
         System.out.print( ", other is now " );
41
         System.out.println(other);
42
43
        myInt += --other;
44
         System.out.print( "Executed mvInt += --other\tmvInt is " );
45
         System.out.print( myInt );
46
         System.out.print( ", other is now " );
47
         System.out.println( other );
48
49
        mvInt += other--:
50
         System.out.print( "Executed myInt += other--\tmyInt is " );
51
         System.out.print( myInt );
52
         System.out.print( ", other is now " );
53
         System.out.println( other );
54
55
```

Perform myInt += ++other

```
31
         myInt += ++other;
32
         System.out.print( "Executed mvInt += ++other\tmvInt is " );
33
         System.out.print( myInt );
34
         System.out.print( ", other is now " );
35
         System.out.println( other );
36
37
        myInt += other++;
38
         System.out.print( "Executed myInt += other++\tmyInt is " );
39
         System.out.print( myInt );
40
         System.out.print( ", other is now " );
41
         System.out.println( other );
42
43
        mvInt += --other:
44
         System.out.print( "Executed myInt += --other\tmyInt is " );
45
         System.out.print( myInt );
46
         System.out.print( ", other is now " );
47
         System.out.println( other );
48
49
        mvInt += other--:
50
         System.out.print( "Executed myInt += other--\tmyInt is " );
51
         System.out.print( myInt );
52
         System.out.print( ", other is now " );
53
         System.out.println( other );
54
55
```

Print the values

Data, Literals, and Variables

```
31
         myInt += ++other;
32
         System.out.print( "Executed myInt += ++other\tmyInt is " );
33
         System.out.print( myInt );
34
         System.out.print( ", other is now " );
35
         System.out.println( other );
36
37
         myInt += other++;
38
         System.out.print( "Executed myInt += other++\tmyInt is " );
39
         System.out.print( myInt );
40
         System.out.print( ", other is now " );
41
         System.out.println( other );
42
43
        myInt += --other;
44
         System.out.print( "Executed mvInt += --other\tmvInt is " );
45
         System.out.print( myInt );
46
         System.out.print( ", other is now " );
47
         System.out.println( other );
48
49
        mvInt += other--:
50
         System.out.print( "Executed myInt += other--\tmyInt is " );
51
         System.out.print( myInt );
52
         System.out.print( ", other is now " );
53
         System.out.println( other );
54
55
```

Do the same with myInt += other++

Data, Literals, and Variables

```
31
         myInt += ++other;
32
         System.out.print( "Executed myInt += ++other\tmyInt is " );
33
         System.out.print( myInt );
34
         System.out.print( ", other is now " );
35
         System.out.println( other );
36
37
         myInt += other++;
38
         System.out.print( "Executed myInt += other++\tmyInt is " );
39
         System.out.print( myInt );
40
         System.out.print( ", other is now " );
41
         System.out.println(other);
42
43
        myInt += --other;
44
         System.out.print( "Executed myInt += --other\tmyInt is " );
45
         System.out.print( myInt );
46
         System.out.print( ", other is now " );
47
         System.out.println( other );
48
49
        mvInt += other--:
50
         System.out.print( "Executed myInt += other--\tmyInt is " );
51
         System.out.print( myInt );
52
         System.out.print( ", other is now " );
53
         System.out.println( other );
54
55
```

Do the same with myInt += -other

```
31
         myInt += ++other;
32
         System.out.print( "Executed myInt += ++other\tmyInt is " );
33
         System.out.print( myInt );
34
         System.out.print( ", other is now " );
35
         System.out.println( other );
36
37
         myInt += other++;
38
         System.out.print( "Executed myInt += other++\tmyInt is " );
39
         System.out.print( myInt );
40
         System.out.print( ", other is now " );
41
         System.out.println(other);
42
43
        myInt += --other;
44
         System.out.print( "Executed mvInt += --other\tmvInt is " );
45
         System.out.print( myInt );
46
         System.out.print( ", other is now " );
47
         System.out.println( other );
48
49
        mvInt += other--;
50
         System.out.print( "Executed myInt += other--\tmyInt is " );
51
         System.out.print( myInt );
52
         System.out.print( ", other is now " );
53
         System.out.println( other );
54
55
```

Do the same with myInt += other-

Type Requirement

You cannot store a real number value to an int variable

```
int result = 3.9 * 4.5;
```

will produce a compilation error

To covert, you can truncate the real value using a prefix of (int)

```
int result = (int) (3.9 * 4.5);
```

will assign the vale of 17 (since 3.9 * 4.5 = 17.55) to result