
ISBN 0-321—49362-1

Chapter 6
part 1

Data Types

(updated based on
11th edition)

2

Chapter 6 Topics

• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Types
• Array Types
• Associative Arrays
• Record Types
• Union Types
• Pointer and Reference Types

3

Primitive Data Types

• Almost all programming languages provide a set
of primitive data types

• Primitive data types: Those not defined in terms
of other data types

• Some primitive data types are merely reflections
of the hardware

• Others require only a little non-hardware
support for their implementation

4

Primitive Data Types: Integer

• Almost always an exact reflection of the
hardware so the mapping is trivial

• There may be as many as eight different integer
types in a language

• Java’s signed integer sizes: byte, short, int, long
• Example integer type of unlimited length not

supported by hardware?

5

Primitive Data Types: Floating Point

• Model real numbers, but only as approximations
• Languages for scientific use support at least two

floating-point types (e.g., float and double;
sometimes more

• Usually exactly like the hardware, but not always
• IEEE Floating-Point
• Standard 754

6

Primitive Data Types: Complex

• Some languages support a complex type, e.g.,
Fortran and Python

• Each value consists of two floats, the real part
and the imaginary part

• Literal form (in Python):
• (7 + 3j), where 7 is the real part and 3 is the

imaginary part

7

Primitive Data Types: Decimal

• For business applications (money)
– Essential to COBOL
– C# offers a decimal data type

• Store a fixed number of decimal digits, in coded
form (BCD) as character strings

• Advantage: accuracy
• Disadvantages: limited range, wastes memory

8

Primitive Data Types: Boolean

• Simplest of all
• Range of values: two elements, one for “true”

and one for “false”
• Could be implemented as bits, but often as

bytes
– Advantage: readability

9

Primitive Data Types: Character

• Stored as numeric codings
• Most commonly used 8-bit coding: ASCII
• An alternative, 16-bit coding: Unicode

– Includes characters from most natural languages
– Originally used in Java
– C#, JavaScript, Python, Perl also support Unicode

10

Character String Types

• Values are sequences of characters
• Design issues:

– Is it a primitive type or just a special kind of array?
– Should the length of strings be static or dynamic?

11

Character String Types Operations

• Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)
– Catenation
– Substring reference
– Pattern matching

12

Character String Type in Certain Languages
• C and C++

– Not primitive
– Use char arrays and a library of functions that provide operations

• SNOBOL4 (a string manipulation language)
– Primitive
– Many operations, including elaborate pattern matching

• Fortran and Python
– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP
• - Provide built-in pattern matching, using regular
• expressions

13

Character String Length Options

• Static: COBOL, Java’s String class, Python
• Limited Dynamic Length (fixed maximum): C and

C++
– In these languages, a special character is used to

indicate the end of a string’s characters, rather than
maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

• Ada supports all three string length options

We showed Python and Ruby string examples

14

Character String Type Evaluation

• Aid to writability
• As a primitive type with static length, they are

inexpensive to provide--why not have them?
• Dynamic length is nice, but is it worth the

expense?

15

Character String Implementation

• Static length: compile-time descriptor
• Limited dynamic length: may need a run-time

descriptor for length (but not in C and C++)
• Dynamic length: need run-time descriptor;

allocation/de-allocation is the biggest
implementation problem

16

Compile- and Run-Time Descriptors

Compile-time
descriptor for
static strings

Run-time
descriptor for
limited dynamic
strings

17

Enumeration Types

• All possible values, which are named constants,
are provided in the definition

• C# example
– enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in

more than one type definition, and if so, how is the
type of an occurrence of that constant checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

18

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a color
as a number

• Aid to reliability, e.g., compiler can check:
– operations (don’t allow colors to be added)
– No enumeration variable can be assigned a value

outside its defined range
– Ada, C#, and Java 5.0 provide better support for

enumeration than C++ because enumeration type
variables in these languages are not coerced into
integer types

– Book says not supported in recent scripting languages
such as Python, but has been added to standard
Python library in 2013

19

Subrange Types

• An ordered contiguous subsequence of an
ordinal type
– Example: 12..18 is a subrange of integer type

• Ada’s design
– type Days is (mon, tue, wed, thu, fri, sat, sun);
– subtype Weekdays is Days range mon..fri;
– subtype Index is Integer range 1..100;

– Day1: Days;
– Day2: Weekday;
– Day2 := Day1;

20

Subrange Evaluation

• Aid to readability
– Make it clear to the readers that variables of subrange

can store only certain range of values
• Reliability

– Assigning a value to a subrange variable that is
outside the specified range is detected as an error

21

Implementation of User-Defined Ordinal
Types

• Enumeration types are implemented as integers
• Subrange types are implemented like the parent

types with code inserted (by the compiler) to
restrict assignments to subrange variables

22

Array Types

• An array is an aggregate of homogeneous data
elements in which an individual element is
identified by its position in the aggregate,
relative to the first element.

23

Array Design Issues

• What types are legal for subscripts?
• Are subscripting expressions in element

references range checked?
• When are subscript ranges bound?
• When does allocation take place?
• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are any kind of slices supported?

24

Array Indexing

• Indexing (or subscripting) is a mapping from
indices to elements

• array_name (index_value_list) → an element
• Index Syntax

– FORTRAN, PL/I, Ada use parentheses
• Ada explicitly uses parentheses to show uniformity between

array references and function calls because both are
mappings

– Most other languages use brackets

25

Arrays Index (Subscript) Types
• FORTRAN, C: integer only
• Ada: integer or enumeration (includes Boolean and

char)
• Java: integer types only
• Index range checking
• - C, C++, Perl, and Fortran do not specify
• range checking
• - Java, ML, C# specify range checking
• - In Ada, the default is to require range
• checking, but it can be turned off

26

Subscript Binding and Array Categories

• Static: subscript ranges are statically bound and
storage allocation is static (before run-time)
– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are
statically bound, but the allocation is done at
declaration time
– Advantage: space efficiency

27

Subscript Binding and Array Categories (cont.)

• Fixed Heap-dynamic: subscript ranges are
dynamically bound and the storage allocation is
dynamic (done at run-time from heap). But both
are still fixed after storage is allocated.
– Advantage: flexibility (the size of an array need not be

known until the array is to be used)

28

• Heap-dynamic: binding of subscript ranges and
storage allocation is dynamic and can change
any number of times
– Advantage: flexibility (arrays can grow or shrink

during program execution)

Subscript Binding and Array Categories (cont.)

29

• C and C++ arrays that include static modifier are
static

• C and C++ arrays without static modifier are
fixed stack-dynamic

• C and C++ provide fixed heap-dynamic arrays
• C# includes a second array class ArrayList that

provides fixed heap-dynamic
• Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays

Subscript Binding and Array Categories (cont.)

30

Heterogeneous Arrays

• A heterogeneous array is one in which the
elements need not be of the same type

• Supported by Perl, Python, JavaScript, and Ruby

31

Array Initialization

• Some language allow initialization at the time of
storage allocation
– C, C++, Java, C# example
– int list [] = {4, 5, 7, 83}
– Character strings in C and C++
– char name [] = “freddie”;
– Arrays of strings in C and C++
– char *names [] = {“Bob”, “Jake”, “Joe”];
– Java initialization of String objects
– String[] names = {“Bob”, “Jake”, “Joe”};

32

Arrays Operations
• APL provides the most powerful array processing

operations for vectors and matrixes as well as unary
operators (for example, to reverse column elements)

• Ada allows array assignment but also catenation
• Python’s array assignments, but they are only

reference changes. Python also supports array
catenation and element membership operations

• Ruby also provides array catenation
• Fortran provides elemental operations because they

are between pairs of array elements
– For example, + operator between two arrays results in an

array of the sums of the element pairs of the two arrays

33

Rectangular and Jagged Arrays
• A rectangular array is a multi-dimensioned array

in which all of the rows have the same number
of elements and all columns have the same
number of elements

• A jagged matrix has rows with varying number
of elements
– Possible when multi-dimensioned arrays actually

appear as arrays of arrays
• C, C++, and Java support jagged arrays
• Fortran, Ada, and C# support rectangular arrays

(C# also supports jagged arrays)

34

Slices

• A slice is some substructure of an array; nothing
more than a referencing mechanism

• Slices are only useful in languages that have
array operations

35

Slice Examples

• Fortran 95
– Integer, Dimension (10) :: Vector
– Integer, Dimension (3, 3) :: Mat
– Integer, Dimension (3, 3) :: Cube

– Vector (3:6) is a four element array

36

Slices Examples in Fortran 95

Similar in Matlab;
Python’s numpy

37

Implementation of Arrays

• Access function maps subscript expressions to an
address in the array

• Access function for single-dimensioned arrays:

• address(list[k]) = address (list[lower_bound]) +
((k-lower_bound) * element_size)

38

Implementation of Arrays

39

Accessing Multi-dimensioned Arrays

• Hardware memory linear, so values of data types
with two or more dimensions (eg, matrix) must
be mapped onto single dimension array)

• Two common ways:
– Row major order (by rows) – used in most languages
– column major order (by columns) – used in Fortran

40

Locating an Element in a Multi-dimensioned Array

location (a[i,j]) = address of a [1,1] +
((((number of rows above the ith row) *
(size of a row)) +
(number of elements left of the jth column)) *
element_size)

41

Locating an Element in a Multi-dimensioned Array (2)

location (a[i,j]) = address of a [1,1] +
((((i-1) * n) + (j-1)) * element_size)

42

Locating an Element in a Multi-dimensioned Array (3)

location (a[i,j]) = address of a [1,1] -((n+1) *
element_size) + (i*n+j)) * element_size)

Rearranged so
first two terms
constant

43

Locating an Element in a Multi-dimensioned Array

•General format
Location (a[i,j]) = address of a [row_lb,col_lb] + (((i -
row_lb) * n) + (j - col_lb)) * element_size

44

Compile-Time Descriptors

Single-dimensioned array Multi-dimensional array

45

Associative Arrays

• An associative array is an unordered collection
of data elements that are indexed by an equal
number of values called keys
– User-defined keys must be stored

• Design issues:
• - What is the form of references to elements?
• - Is the size static or dynamic?

46

Associative Arrays in Perl

• Names (hash variable) begin with %; literals are
delimited by parentheses
– %hi_temps = ("Mon" => 77, "Tue" => 79, “Wed” =>

65, …);
• Subscripting is done using braces and keys

– $hi_temps{"Wed"} = 83;
– Elements can be removed with delete
– delete $hi_temps{"Tue"};

We showed Ruby example

